Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мицелла мицеллообразование

    Мицеллы возникают при ККМ и распадаются с разбавлением раствора. Электростатическое отталкивание ионизированных полярных групп, в поверхностном слое лимитирует рост мицелл, и энтропия системы уменьшается в результате увеличения степени упорядоченности при упаковке молекул в мицеллы. Мицеллообразование возможно только при достаточной длине цепи, начиная с Са. В разбавленных растворах мицеллы имеют сферическую форму, а в концентрированных они превращаются в более устойчивую пластинчатую форму в виде двойных слоев с полярными группами, направленными наружу, и углеводородными цепями, ориентированными параллельно и направленными внутрь слоев (см. рис. 54). [c.245]


    В водных растворах молекулы ПАВ могут объединяться в агрегаты, состоящие из многих молекул, называе.мые мицеллами. Мицеллообразование происходит при определенной для каждого ПАВ концентрации и при достаточной длине углеводородной цепи молекулы — не менее 9—10 углеродных атомов. При это.м изменяются свойства раствора — поверхностное натяжение, электропроводность, плотность и др. [c.325]

    Причиной мицеллообразования является наличие в молекуле сильно полярной группы и гидрофобного радикала [211]. Одна из этих групп способствует растворению молекулы ПАВ в данной среде, а другая препятствует ему. Таким образом, мицеллы представляют собой межмолекулярные ассоциаты ПАВ вокруг собственного ядра с образованием на конечной стадии новой фазовой границы раздела со средой. При этом возникает наиболее энергетически выгодное состояние системы, когда гидрофильные группы окружены гидрофильными, а гидрофобные — гидрофобными. [c.198]

    Нейтрализующее действие, однако, само по себе не обеспечивает эффективной работы масла, так как образующиеся соли обладают невысокой стабильностью и постепенно выпадают в осадок, повышая загрязненность узлов и деталей двигателя. В связи с этим большое значение с энергетической точки зрения, как отмечалось выше, приобретают процессы, протекающие на границе раздела между молекулами моюще-диспергирующих присадок и твердой фазой (металлической поверхностью, продуктами углеродистого происхождения). Интенсивность указанных процессов в значительной степени зависит от характера раствора, образуемого моюще-диспергирующими присадками. Известно, например, что молекулы присадок данного типа в процессе растворения склонны к образованию мицеллярных растворов. В свою очередь, склонность к мицеллообразованию, а также строение мицелл моющих присадок зависят от типа присадки, ее концентрации, температуры, присутствия в системе других продуктов[216]. Предполагается наличие сферических, пластинчатых, эллипсоидальных и цилиндрических мицелл [225]. По предварительным данным в мицеллах могут содержаться от 10 до 1000 молекул. [c.212]

    При определенной концентрации эмульгатора, соответствующей достижению плотной упаковки молекул ПАВ в адсорбционном слое и минимальному поверхностному натяжению на границе раздела фаз, в объеме начинается и заканчивается формирование мицелл, представляющих собой частицы коллоидной (мицелляр-ной) фазы [21, 22]. Такая концентрация называется критической концентрацией мицеллообразования (ККМ). [c.144]


    Надо заметить, что возможность протекания реакции между алкилгалогенидами и основаниями внутри мицелл в качестве реакционной среды исключается на том основании, что эффективные МФ-катализаторы, как правило, представляют собой липофильные ониевые соли с объемистыми, большей частью симметричными заместителями [23]. Типичные мицеллообразующие агенты имеют небольшую полярную группу [например, ( Hз)зN+—] и длинный липофильный хвост. Хотя некоторые симметричные тетраалкиламмониевые соли могут до некоторой степени агрегироваться в воде [36], вопрос о том, является ли этот процесс следствием мицеллообразования, остается открытым [37]. Кроме того, симметричные ониевые ионы имеют более низкую степень агрегирования, чем типичные мицеллообразующие агенты, и хуже растворяют органические субстраты >[38]. Однако еще более важен тот факт, что типичные мицел-лярные реакции проводят в гомогенных водных или органи- [c.65]

    Уравнение, устанавливающее связь между ККМ и длиной углеводородного радикала, может быть выведено из рассмотрения мицеллообразования как процесса образования новой фазы. Прн равновесии химические потенциалы ПАВ в растворе лр и в мицелле Им равны -.  [c.300]

    Методы определения ККМ основаны на резком изменении физико-химических свойств растворов ПАВ (например, поверхностного натяжения а, мутности т, эквивалентной электропроводности У., осмотического давления л, показателя преломления п). На кривой зависимости свойство — состав в области ККМ обычно появляется излом (рис. VI. 6). Одна из ветвей кривых (при более низких концентрациях) на рис. VI. 6 описывает свойства системы в молекулярном состоянии, а другая — в коллоидном. Абсциссу точки излома условно считают соответствующей переходу молекул в мицеллы, т. е. критической концентрацией мицеллообразования. Очевидно, что при ККМ существует весьма незначительное число мицелл. Ниже приводится краткое описание некоторых методов определения ККМ. [c.302]

    Наличие двух аммонийных групп делает молекулу достаточно водорастворимой, чтобы ингибировать мицеллообразование в условиях проведения эксперимента. Напомним, что желчные кислоты растворимы в воде, однако образуют мицеллы, [c.313]

    Критическая концентрация мицеллообразования (ККМ) - важнейший параметр мицеллярных растворов. Международный союз теоретической и прикладной химии (ШРАС) рекомендует следующие трактовки терминов мицелла и ККМ [37]  [c.67]

    Приведенные выше факты даже качественно далеко не исчерпывают многообразие экспериментальных результатов по зависимости А = А (с). Для более сложных по своему строению и более высокомолекулярных веществ изотермы А = А (с) имеют более сложный вид. Это вызвано прежде всего мицеллообразованием (агрегированием молекул в объеме в более крупные частицы), наступающим при повышении концентрации раствора выше определенного предела. При наличии мицеллообразования объемная концентрация молекулярно-диспергированной части поверхностно-активного вещества не повышается с ростом его общей концентрации, поскольку прибавление новых, дополнительных количеств вещества идет только на образование мицелл. В результате поверхностная концентрация и А остаются постоянными и не зависят от изменения полной объемной концентрации. Иногда процесс мицеллообразования может быть полностью или частично необратимым, и тогда может наступать пересыщение по отношению к молекулярно-дис- [c.114]

    В водном растворе молекулы ПАВ выше определенной концентрации (критическая концентрация мицеллообразования, ККМ) агрегируют, образуя так называемые мицеллы [98, 991  [c.114]

    Явление мицеллообразования характеризуется рядом особенностей. Подобно адсорбции мицеллообразование протекает самопроизвольно, т. е. с уменьшением энергии Гиббса системы. Действительно, силы когезии между полярными молекулами воды значительно выше, чем силы взаимодействия между углеводородными цепями и водой. Поэтому любые процессы, связанные с переходом углеводородных радикалов из воды в близкую по полярности фазу, энергетически выгод-ны В очень разбавленных (ниже ККМ) растворах стремление системы к убыли свободной энергии удовлетворяется за счет перехода молекул ПАВ в поверхностный слой и выталкивания углеводородных радикалов из воды в неполярную фазу. При полном насыщении адсорбционного слоя такая возможность исчерпывается. С дальнейшим повышением концентрации ПАВ минимизация энергии Гиббса может быть реализована лишь за счет структурных изменений в объеме раствора, т. е. путем образования мицелл. При этом гидрофоб- [c.38]

    Истолкование этой диаграммы основано на представлениях двухфазной модели мицеллообразования, согласно которой мицеллы рассматриваются как жидкие частицы коллоидной микрофазы, а мономерное ПАВ подобно пару. Тогда кривая молекулярной растворимости ао выражает равновесие кристаллы (твердое гидратированное ПАВ) мономерное ПАВ (пар), кривая оЬ —равновесие кристаллы мицеллы (жидкость). Кривая температурной зависимости ККМ (ос) характеризует равновесие мицеллы мономер (жидкость — пар). Пунктиром обозначена кривая метастабильного существования мицелл, которое реализуется при переохлаждении мицеллярных растворов ПАВ. Переохлажденные ниже темпе- [c.54]


    Самой интересной особенностью ПАВ является способность изменять многочисленные свойства раствора в зависимости от концентрации самого ПАВ. Концентрации выше определенной для каждого класса и вида ПАВ приводят к образованию мицелл. Мицеллообразование в растворах развивается в очень узкой области концентраций, которую называют критической концентрацией мицеллообразо-вания (сокращенно ККМ). [c.15]

    Предел истинной растворимости, или наименьшая концентрация ПАВ, при которой появляются мицеллы, называется критической концентрацией мицеллообразования (ККМ). Этот показатель, а также число агрегации молекул в мицелле тесно связаны с объемными функциональными свойствами поверхностно-активных веществ, такими как моюще-дисиергирующие, солюбилизирующие и др. [c.198]

    Концентрация ПАВ, при которой в растворе появляются мицеллы, называется критической концентрацией мицеллообразования (ККМ) или точкой Крафта. В этой точке на диаграмме состояния (рис. 108) линия равновесия концентрация — температура (молекулярная растворимость) раздваивается на линию фазового перехода макрофаза ПАВ — мицеллы и на линию, отделяющую мицеллярный раствор от молекулярного. Величина ККМ любого ПАВ как показателя свойства самих мицеллярных растворов сильно зависит от присутствия электролитов и других веществ, природы растворителя, наличия солюбилизирующейся составляющей и т. д. Показатель ККМ — один из важнейших и для мицеллярных растворов, [c.186]

    При мицеллообразовании резко изменяются объемные свойства системы. В связи с этим для вышеописанных модельных и реальных систем было измерено удельное объемное сопротивление (см. рис. 62, а 63, а). Для реальных систем (депарафинированное масло+присадка) зависимость р от концентрации выражается прямой, параллельной оси абсцисс. Для модельных систем (депарафинированное масло + присадка) полученная сложная зависимость в интервале малых концентраций присадки (0,008—0,2 /о) аналогична зависимости а от С (см. рис. 63, кривые /). При содержании присадки до 0,008% (масс.) удельное объемное сопротивление резко возрастает. В области этих же концентраций растет и поверхностное натяжение системы. Это указывает на поверхностную инактивность присадки, которая, очевидно, концентрируясь в объеме, связывает молекулы смол, что и приводит к росту рс. Десорбция заканчивается при концентрации присадки 0,008% (масс.) и, начиная с этой концентрации до 0,02% (масс.), добавляемая присадка адсорбируется преимущественно на поверхности, что приводит к снижению поверхностного натяжения и удельного объемного сопротивления, которое достигает минимума при концентрации ПАВ 0,02 /о (масс.), т. е. в области начала мицеллообразования. В интервале концентраций от 0,02 до 0,05% (масс.), очевидно, большая часть присадки расходуется на образование мицелл, что и приводит к повторному увеличению удельного объемного сопротивления и поверхностного натяжения. При концентрациях присадки выше 0,05% (масс.) поверхностное натяжение и удельное объемное сопротивление несколько снижаются и, начиная с 0,2% (масс.), эти параметры [c.175]

    Так, термин мицелла впервые был введен Мак-Бэиом в 1913 г, для обозначения агрегатов дифильных электролитов в водных растворах. Как известно, фундаментальной характеристикой мицеллообразующих веществ является дифильность их молекул, т, е, наличие в молекуле полярной и неполярной частей. В основе современных представлений о структуре мицеллы лежит модель Дж. Хартли, согласно которой мицеллы имеют жидкоподобное ядро, образованное из полярных головок или углеводородных хвостов (в зависимости от типа мицеллярного раствора). Граничный слой образован соответственно углеводородными частями или полярными группами тех же самых молекул, что формируют ядро мицеллы. Процесс мицеллообразования носит кооперативный характер и начинается по достижении критической концентрации мицеллообразования. Сегодня же понятие мицелла используют не только в его первоначальном смысле, но и более широко для обозначения упорядоченных областей в полимерах, органических коллоидных частиц, обнаруженных в угле, глинах и т. д. Такая трансформация термина мицелла не оправдана. Именно поэтому на Международном симпозиуме по мицеллообразоваиию, солюбилизации и микроэмульсиям было предложено применять его в первоначальном смыс.ш Г1191. [c.71]

    Изотермы иоверхностного натяжения коллоидных ПАВ отличаются от изотермы истинно растворимых ПАВ резким понижени- ем а с увеличением концентрации н наличием излома на изотерме в области чрезвычайно малых концентраций, отвечающих истинной растворимости (лг 10 ч-10 моль/л), выше которых поверхностное натяжение остается практически постоянным. Концентрация а точке излома соответствует критической концентрации мицеллообразования (ККМ), выше которой в растворе самопроизвольно протекают процессы образования мицелл и истинный раствор переходит в ультрамикрогетерогенную систему (золь). [c.293]

    Энтальпию мицеллообразования часто определяют из температурной зависимости ККМ в соответствии с уравненпем Вант-Гоффа, допуская независимость размера мицелл от температуры  [c.296]

    Экспериментальные определения и расчеты стандартных термодинамических функций мицеллообразования по полученным соотношениям позволяют оценить энергетику взаимодействия ПАВ с растворителем (растворения) и непосредственно мицеллообразования. Вклад стадий растворения является превалирующим, вследствие чего суммарная движущая сила процесса определяется в осиовиом ростом энтропии. Например, для бромида -додецилт1)иметиламмония в воде ДС° = — 17,8 кДж/моль, = —1,38 кДж/моль, —7Д5 = —16,5 кДж/моль для м-но-децилсульфата натрия соответственно —21,1 кДж/моль, +0,38 кДж/моль и —21,5 кДж/моль. В то же время стадия непосредственно мицеллообразования сопровождается ростом упорядочения, т. е. уменьшением энтропии системы. Однако нельзя не учитывать некоторого роста конформационной энтропии с увеличением размеров ассоциатов (образование мицелл), подобно тому, как это наблюдается для макромолекул в растворах полимеров. Можно заключить, что экспериментально определяемые значения стандартных термодинамических функций отвечают не столько мпцеллообразованию (из истинного раствора), сколько самопроизвольному диспергированию ПАВ. [c.296]

    На процесс м1щеллообразования в водных растворах существенно влияет структура воды, которая способствует выталкиванию углеводородных радикалов из раствора одновременно частично разрущается структура воды. Благодаря дифильному строению молекул ПАВ углеводородные радикалы, взаимодействующие между собой в мицеллах, экранируются полярными гидрофильными группами. Поэтому происходит самопроизвольное мицеллообразование с минимальным поверхностным натяжением на границе раздела мицелла—вода, сопровождающееся умень-и]ением энергии Гиббса системы. Эффектом экранирования объясняется уменьщение энтальпии в процессе мицеллообразования. Взаимодействие отдельных частей молекулы ПАВ в молекулярном растворе с растворителем характеризуется различным изменением энтальпии лиофильная часть взаимодействует с выделением теплоты, лиофобная — с поглощением теплоты. Именно поэтому энтальпия растворения ПАВ имеет небольшие положительные илн отрицательные значения (чаще всего для водных растворов она положительна). В мицеллярном растворе экранирование лнофоб-ных групп приводит к уменьшению поглощения теплоты, т. е. н снижению энтальпии системы по отношению к энтальпии образования истинного раствора. Так как мицеллообразование является процессом возникновения новой фазы, то его можно сравнить с расслоением системы, т. е. с процессом ее упорядочения. Для таких процессов характерно уменьшение энтропии. Таким образом, самопроизвольное мицеллообразование по сравнению с образованием молекулярного раствора обусловлено уменьшением энтальпии [см. уравнение (УГ25)]. [c.297]

    Мицеллообразование а неводных средах, как правило, является результатом действия сил притяжения между полярными группами ПАВ и взаимодействия углеводородных радикалов с растворителем. Образующиеся мицеллы обращенного вида содержат внутри негидратироваиные или гидратированные полярные группы, окруженные слоем из углеводородных радикалов. Число агрегации (от 3 до 40) значительно меньше, чем для водных растворов ПАВ. Как правило, оно растет с увеличением углеводородного радикала до определенного предела. [c.299]

    Длина углеводородной цепи оказывает решающее влияние на мицеллообразова ние ПАВ в водных средах. Чем длиннее цепь, тем больше оказывается выигрыш энергии в результате когезии углеводородных радикалов и, следовательно, меньше необходимая концентрация ПАВ в растворе для образования мицелл. Критическая концентрация мицеллообразования зависит также от сил электростатического отталки-ваг[ня между ионизированными гидрофильными группами, поскольку сближение этих групп в процессе мицеллообразования требует определенной затраты энергии на преодоление сил кулоновского отталкивания. [c.139]

    Поверхностно-активные вещества (ПАВ) представляют собой бифильные соединения, т. е. они обладают гидрофобными и гидрофильными свойствами (прекрасный пример — моющие средства). В растворе такие низкомолекулярные элс -тролиты образуют ионные пары с противоионами. По мере увеличения концентрации мономера образуются кластеры, а затем и низкомолекулярные агрегаты. В конце концов возникают крупные агрегаты, называемые мицеллами [153— 168]. Мицеллообразование мономерных поверхностно-активных веществ наблюдается, когда концентрация их превысит так называемую критическую концентрацию мицеллообразования [ККМ]. В общем случае ККМ варьирует от 10 до 10— моль/л, и при повышении концентрации проводимость раствора резко меняется. [c.283]

    На рис. 5.7 приведена идеальная сферическая модель мицеллы. В результате мицеллообразования с помощью такого ПАВ, как додецилтриметиламмопийбро- [c.283]

    Кроме того, большое значение могут иметь процессы мицелло-образования и солюбилизации в водной фазе эмульсий, которые будут подробно рассмотрены в главе 2.3.1. Здесь же лишь отметим, что только в зоне критической концентрации мицеллообразования (ККМ) и при более высоких концентрациях проявляется способность ПАВ стабилизировать эмульсии. Солюбилизация при эмульгировании обусловливает перенос масла через межфазную границу, что вызывает снижение поверхностного натяжения и турбулентный режим , способствующие эмульгированию. [c.61]

    ПАВ обладают комплексом уникальных поверхностных и объемных свойств, что, помимо их высокой поверхностной активности, обусловлено способностью молекул ПАВ к ассоциации с образованием мицелл. Фундаментальной характеристикой мицеллобразую-идих мономеров является их дифилъностъ, т.е. присутствие в одной и той же молекуле полярной и неполярной частей. В водных системах, частным случаем которых являются и битумные эмульсии, полярная часть молекулы (так называемая головка ) гидрофильна, а неполярная ( хвост") - гидрофобна. Вопросам мицеллообразования посвящено достаточное количество работ, среди которых отдельно можно выделить труд [16]. В нем изложены теории и закономерности образования мицелл и явления солюбилизации. В этой же главе представлена лишь краткая качественная характеристика этих процессов. [c.66]

    К таким определениям относится критическая концентрация мицеллообразова-ния. Несмотря на то что в нефтяных системах мицелла — понятие условное, и даже в некоторой степени неприемлемое, именно этот термин употребляется для описания изменения свойств нефтяных систем при изменении концентрации дисперсной фазы. Критической концентрацией мицеллообразования в классическом определении считается концентрация поверхностно-активного вещества в растворе, при которой наблюдается резкий рост образования мицелл, фиксируемый по изменению свойств раствора. В нефтяных системах под критической концентрацией мицеллообразования, понимают значение концентрации дисперсной фазы, или некоторой добавки в систему, выше которой в системе наблюдается лавинообразный рост числа структурных образований, который фиксируется по изменению физико-химических свойств системы. [c.27]

    Так, в системах с (С Н2 )2ЫСН теплоты плавления и модификационного перехода постоянно снижаются с увеличением концентрации присадки выше критической концентрации мицеллообразования, что связано с образованием сольватированных сложных структурных единиц. Межмолекулярные взаимодействия в указанных структурных образованиях понижены вследствие перехода кристаллической структуры в аморфную. Кроме этого, крупные сольватированные мицеллы ДЦА оказывают расклиниваюгцее действие на узу ы кристаллической решетки, что также приводит к снижению энергии межмолекулярных взаимодействий структурных образований в системе. Наличие экстремума на линии, соответствующей теплотам полиморфных переходов связано, по-видимому, с тем, что в смеси объединены мицеллы присадки малых размеров, сокристатишзованные с нормальными парафинами в структурные образования без сольватных оболочек. Конфигурационные изменения подобных структурных единиц при повышении концентрации присадки приводят к резким колебаниям величин тепловых эффектов, соответствующих их неоднородному разрушению при плавлении. [c.162]

    Возникновение мицелл в растворе происходит при достижении некоторой концентрации, называемой коити-ческой концентрацией мицеллообразования (ККМ). [c.187]

    Диссоциация ионогенных групп приводит к образованию ДЭС вокруг сферической мицеллы. Взаимодействие таких мицелл в растворе носит электростатический характер. Существенную роль в мицеллообразовании играет увеличение энтропии системы (сверх энтропии смешения). Наличие в воде ближнего порядка и отсутствие дальнего приводит к существованию пустот, "дырок", в которые внедряются неполярные группы молекул ПАВ, уменьшая свободу теплового движения молекул воды и энтропию системы. При объединении углеводородных чааей молекул ПЛВ (гидрофобном взаимодействии) уменьшается наведенная вокруг них ориентация ноле- [c.76]

    Теоретическое пояснение. Определение ККМ путем измерения электрической проводимости (см. гл. IX) основано на том, что при образовании мицелл замедляется рост удельной проводимости раствора с увеличением его концентрации. Это объясняется малой подвижностью крупнкх мицелл в электрическом поле и связыванием (удерживанием) некоторой части противоионов, участвующих в переносе тока. В связи с этим на графике 1// =/(с) появляется излом при концентрации, соответствующей началу мицеллообразования (рис. 20.1). [c.180]

    Первые количественные исследования природы растворов МПАВ принадлежат Мак Бэну. На основании результатов исследования осмотических свойств и электропроводности растворов мыл Мак Бэн впервые (в 1913 г.) сформулировал представления об образовании в них мицелл путем ассоциации индивидуальных молекул или ионов мыла. В дальнейшем развитие теории мицеллообразования связано с именами Г. Гартли, В. Харкинса, П, Дебая. Огромный вклад в эту область внесли работы П. А. Ребиндера и его научной школы. [c.36]

    В общих чертах мицеллообразование заключается в следующем. При достижении 1ЖМ отдельные дифильные частицы (молекулы или ионы ПАВ) ассоциируют, ориентируясь определенным образом углеводородные радикалы, слипаясь за счет ван-дер-ваальсовых.сил, образуют внутреннюю часть (ядро) мицеллы, а гидратированные полярные группы обращаются в сторону водной фазы. При этом в простейшем случае возникает сферическая мицелла, схематически изображенная на рис. 7. [c.38]

    Подтверждением фазовой природы мицеллообразования служит наличие резких изломов на кривых зависимости физико-химических свойств от концентрации ПАВ в области ККМ. Вместе с тем образование мицелл не может считаться истинным фазовым разделением. Размер мицелл слишком мал по сравнению с обычными макроскопическими фазами (числа агрегации лежат обычно в пределах 20—2000). К столь малым частицам не может быть в полной мере приложимо термодинамическое понятие фазы, которое предполагает совокупность достаточно больших по объему гомогенных частей системы. Поэтому мицеллы рассматривают лишь как зародыши новой фазы ( псевдофазу ), а мицеллообразова- [c.46]

    Поскольку коллоидно-мицеллярные растворы типичных ПАВ являются термодинамически устойчивыми и равновесными системами, то для описания их возникновения и свойств можно использовать термодинамический подход, что в принципе невозможно в отношении лиофобных коллоидов. При этом для расчета термодинамических функций процесса мицеллообразования в принципе безразлично, считать ли мицеллы отдельной фазой (псевдофазой), или рассматривать мицеллообразование как процесс, подчиняющийся закону действующих масс. Обе модели приводят к одинаковым выражениям для энергии Гиббса и энтальпии мицеллообразования. [c.48]

    Необходимо отметить, что определенный вклад в положительную энтропию мицеллообразования вносит также увеличение конформационной энтропии углеводородных цепочек, обусловленное увеличением их внутримолекулярной подвижности при переходе из воды в углеводородцое ядро мицеллы. [c.52]

    Изложенные представления распространяются на многие явления, в основе которых лежит взаимодействие гидрофобных частиц в полярной (водной) среде — так называемое гидрофобное взаимодействие . Кроме мицеллообразования к их числу относятся солюбилизация (самопроизвольный переход молекул углеводородов из воды в мицеллы ПАВ), процессы глобулизапии белковых молекул вследствие взаимодействия их гидрофобных углеводородных фрагментов, агломерирование частиц в водных суспензиях неполярных веществ. Сюда же мoжнoJ)тнe ти и явления адсорбции дифильных молекул из водной среды на границе раздела с неполярными средами/образование монослоев нерастворимых ПАВ на поверхности воды. Во всех этих случаях доминирую- [c.52]

    Величина ККМ — важная коллоидно-химическая характеристика ПАВ. Она связана с олеофильно-гидрофильным балансом молекул ПАВ, характеризует их склонность к образованию мицеллярных структур и в известной степени служит мерой олеофильности этих структур. Величина ККМ зависит как от особенностей молекулярного строения ПАВ, так и от внешних факторов — температуры, давления, присутствия в растворе электролитов, полярных и неполярных органических веществ и т. д. Закономерности влияния различных факторов на ККМ и свойства мицелл представляют интерес и с точки зрения развития теории мицеллообразования, и в практическом отношении, поскольку их изучение открывает возможности регулирования коллоидных свойств растворов ПАВ путем направленного изменения их молекулярной структуры, а также за счет различных добавок. [c.58]

    Увеличение склонности к мицеллообразованию в гомологических рядах объясняется усилением ван-дер-ваальсова взаимодействия цепей с ростом их длины, что повышает выигрыш энергии при переходе цепей из воды в неполярную фазу — ядро мицеллы. Существенна и роль энтропийного фактора с увеличением длины цепи возрастает положительное изменение энтропии, обусловленное разрушением айсберговых структур воды вокруг углеводородных радикалов при их ассоциации. [c.58]


Смотреть страницы где упоминается термин Мицелла мицеллообразование: [c.322]    [c.303]    [c.131]    [c.184]    [c.39]    [c.45]    [c.46]    [c.46]    [c.59]   
Общая химия Биофизическая химия изд 4 (2003) -- [ c.523 ]




ПОИСК





Смотрите так же термины и статьи:

Мицеллообразование

Мицеллы



© 2025 chem21.info Реклама на сайте