Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Радикально-цепная полимеризация термическая

    Найдено, что гексафтор-1,3-бутадиен, первый из приготовленных и исследованных диолефинов [1], во многих случаях по реакционноспособности соперничает со своим водородным аналогом. Он способен подвергаться радикально-цепной и термической полимеризации, легко галоидируется и окисляется нейтральным перманганатом в противоположность сравнительно инертному гексахлор- [c.241]

    Лэрд, Моррелл и Сид [14] изучили влияние давления на скорость термической, а также инициированной радикально-цепной полимеризации этилена. В цитируемой работе интервал применявшихся давлений составлял от 400 до 2000 атм (при температурах от 20 до 260° С). В качестве инициаторов применялись перекись трет-бутила (ПТБ), а,а -динитрил азоизомасляной кислоты (ДАН), ацетоксим, кислород, а также у-излучение. Во всех изученных случаях давление в весьма значительной степени ускоряло реакцию, в особенности в отсутствие инициаторов. Некоторые результаты исследования представлены на рис. 19, а также в табл. 37. [c.144]


    Инициирование радикально-цепной полимеризации заключается в образовании первичного активного свободного радикала из молекулы мономера. Свободные радикалы могут образоваться под влиянием тепла (термическая полимеризация), света (фотохимическая полимеризация), в результате облучения мономера частицами высокой энергии (радиационная полимеризация), под влиянием инициаторов (полимеризация в присутствии инициаторов).  [c.76]

    Многие образцы нативных нефтяных асфальтенов проявляют значительную ингибирующую способность в различных реакциях, протекающих по свободно-радикальному цепному механизму, в том числе в процессах термической, фото- и термоокислительной деструкции [1068, 1069] и полимеризации [1067]. Кинетические методы исследования позволяют охарактеризовать эту способность ВМС несколькими количественными параметрами константами К, скорости взаимодействия ингибирующих групп с активными центрами (свободными радикалами), числом присутствующих типов ингибиторов, концентрацией ингибирующих групп различных типов и др. Найдено, что в составе нефтяных ВМС может содержаться два — три, реже четыре типа ингибиторов, характеризующихся величинами К, более 100, 30—50 и 5— 15 мл/моль-с соответственно. В высокосернистых нефтях иногда обнаруживаются ингибирующие центры и с еще более высоким уровнем активности (до 640 мл/моль-с в нефти месторождения Кара-Арна, Казахстан), превышающим стабилизирующую способность синтетических ингибиторов. Такое повышение активности, по-видимому, связано с синергическим эффектом, проявляемым сернистыми соединениями [1070]. Суммарная концентрация природных ингибиторов может достигать 0,28 моль/кг нефти или 1,6 моль/кг ВМС. [c.203]

    При неглубоком крекинге, в условиях, когда можно пренебречь вторичными реакциями полимеризации, ароматизации и др., а также влиянием продуктов крекинга на его течение, радикально-цепной процесс более прост и включает реакции зарождения радикалов, взаимодействия их с молекулами алканов и распада сложных радикалов — реакция развития цепей, составляющих цепной цикл, и, наконец, реакции обрыва цепей путем рекомбинации радикалов или захвата их стенками. Совокупность выще перечисленных реакций составляет основу первичного процесса термического радикально-цепного распада алканов. [c.5]


    Первоначально полимеризацию олефинов для получения моторного топлива проводили только под влиянием высокой температуры. Такая термическая полимеризация идет достаточно быстро при 480—540 °С, причем для увеличения равновесной степени конверсии олефина необходимо повышенное давление (около 50 ат). В таких условиях процесс имеет радикально-цепной характер и сопровождается образованием парафинов, нафтенов и даже ароматических соединений. Вследствие этого для целевого синтеза высших олефинов более перспективной оказалась катионная полимеризация, протекающая в присутствии катализаторов кислотного типа. А. М. Бутлеров впервые осуществил ее, применив серную кислоту. Впоследствии были предложены безводный фтористый водород, хлористый алюминий, гетерогенные алюмосиликатные катализаторы и т. д. Наибольшее практическое значение приобрел катализатор Ипатьева, который готовят, пропитывая кизельгур, асбест или другие материалы ортофосфорной кислотой. Она при 200—300 °С дегидратируется, в результате чего получаются пиро- и метафос-форные кислоты  [c.72]

    Активным центром в реакциях цепной полимеризации может быть свободный радикал или ион. В зависимости от этого разли- чают радикальную и ионную полимеризацию. Существует много способов превращения мономера в первичный радикал. Это может происходить под влиянием тепловой энергии, света, ионизирующего излучения (а-, Р- и у-лучи), а также при введении в систему свободных радикалов или веществ, легко распадающихся на свободные радикалы (инициаторов). В зависимости от способа образования свободных радикалов различают термическую, фотохимическую, радиационную полимеризацию и полимеризацию под влиянием химических инициаторов, в качестве которых применяют перекись бензоила, перекись водорода и др. [c.41]

    В случае дисульфидов следует также учитывать возможность и другого механизма их действия, который, вероятно, состоит в образовании ингибиторных RS-радикалов при разрыве S—S-связи и последующей дезактивации промежуточных продуктов радикально-цепного процесса окисления [258]. Это предположение подтверждается тем, что некоторые дисульфиды инициируют термическую полимеризацию стирола [438]. Такой распад по S—S-связи объясняет также уменьшение стабильности полипропилена, вызываемое иногда дисульфидами, которые, по-видимому, катализируют термораспад молекулярных цепей полимера [466]. [c.275]

    Инициирование радикально-цепного процесса окислительной полимеризации может быть осуществлено по реакциям зарождения и вырожденного разветвления цепей, а также при термическом распаде инициаторов и воздействии излучений высоких энергий. [c.13]

    Процесс цепной полимеризации состоит из трех стадий возбуждения (инициирования) или активации молекул роста цепи и обрыва цепи. Обычно различают два вида цепной полимеризации радикальная (инициированная) и ионная (каталитическая). Инициированные реакции полимеризации заключаются в образовании свободного активного радикала при действии тепла (термическая полимеризация), света (фотополимеризация) или облучения а-, р-и у-частицами (радиационная полимеризация). Наиболее распространенной является полимеризация в присутствии инициатора. В этом случае активация мономера начинается с распада инициатора (I) и образования свободных радикалов (К ), которые взаимодействуют с мономером (А) по схеме  [c.374]

    Одно- или многостадийная химическая реакция, в результате которой образуются реакционноспособные частицы (радикалы, ионы и т.д.), участвующие в цепном процессе. Например, при радикальной полимеризации стирола стадией инициирования является термическая диссоциация специально вводимого в систему пероксида, диазосоединения либо иного соединения, легко образующего свободные радикалы. [c.236]

    Эта группа включает реакции термического разложения, окисления и автоокисления, галоидирования и полимеризации, которые могут протекать по свободно радикальному или ионному механизмам. Обычно действие катализатора сводится к увеличению скорости инициирования цепей несмотря на то что катализатор может в принципе вызывать разветвление цепи, давая два центра путем реакции с одним цепным центром, такое его поведение встречается редко. В некоторых случаях полимеризации, а именно в присутствии катализаторов Циглера, катализатор, кроме того, влияет на развитие цепи, образуя стереорегулярный полимер. Для отдельных каталитических цепных реакций катализатор входит в состав продукта, хотя и в незначительной степени. Позже в этой главе будут высказаны некоторые соображения о правомерности наименования механизма этого типа катализом, как это делается весьма часто. Важным признаком всех цепных реакций является то, что их скорость может быть уменьшена добавлением ингибиторов. Пос- [c.19]

    Свободно-радикальная полимеризация — это цепная реакция, включающая стадии инициирования, роста и обрыва. Первая стадия состоит в генерировании свободных радикалов, обычно происходящем в результате термического распада инициатора (I) на два свободных радикала (К ). Реакция распада характеризуется константой скорости  [c.201]


    К таким процессам прежде всего относятся реакции горения и взрыва, термического крекинга нефти и полимеризации. Проблемы стабилизирования бензинов, смазочных масел, полимеров и резин, предотвращения окислительной порчи пищевых продуктов также связаны со свободно-радикальными процессами. Биохимические процессы ферментативного окисления и торможения, по-видимому, тоже являются цепными реакциями, в промежуточных стадиях которых происходит образование свободных радикалов. [c.98]

    Радикальная полимеризация всегда протекает по цепному механизму и состоит из следующих реакций инициирования (образования свободных радикалов), роста цепи и обрыва цепи. В зависимости от способа образования свободных радикалов различают термическую, фотохимическую, радиационную и инициированную полимеризацию. [c.16]

    Полимеризация имеет цепной радикальный характер и проходит под действием света, тепла, перекисей и других факторов, инициирующих рост свободных радикалов. Чисто термическая полимеризация протекает очень медленно, и этот способ применяют редко. Обычно полимеризацию проводят в присутствии инициаторов — перекиси бензоила и водорастворенных перекисей. Применяются три основных метода инициированной полимеризации эфиров блочный, водоэмульсионный и в растворителях. [c.129]

    Метил-5-винилииридин легко полимеризуется под действием тепла или инициаторов радикально-цепной полимеризации. Реакцию проводят в среде мономера, в растворе или в эмульсии. При термической полимеризации в среде мономера в течение 8 ч при 120° С успевает превратиться в полимер 56% мономера. Перекиси являются более эффективными инициаторами, чем динитрил азо-бис-изомасляной кислоты (при 80° С за 8 ч в растворе бензола степень превращения достигает 80%). [c.424]

    Этилен в чистом состоянии обнаруживает исключительно малую склонность к полимеризации, которая проявляется без катализатора лишь при очень высоких давлениях и температуре около 400°, причем образуются полиэтилены, имеющие характер пластических масс. Напротив, в присутствии хлористого [293] или бромистого [294] алюминия, как это Уже давно известно, этилен может полимеризоваться при комнатной или немного повышенной температуре, причем получаются вязкие масла, имеющие характер смазочных масел [295—297]. Здесь налицо катионная полимеризация. В смеси с азометаном этилен быстро полимеризуется при 300° , причем радикальная цепная реакция вызывается метилом, образующимся при термическом распаде азометана (т. I, стр. 592). Полимеризацию этилена по анионному механизму до сих пор осуществить не удалось, однако таковая происходит для стирола под действием амида натрия в жидком аммиаке (см. ниже). Стирол может, подобно этилену, быть каталитически заполи-меризован и при помощи катионного механизма. Для него известна также и радикальная цепная полимеризация, которую в технике в этом, как и в других случаях, вызывают радикалами, образующимися при распаде органических перекисей, в частности диацилперекисей (примеры см. т. I, стр. 593, 594). [c.554]

    Синтез ненасыщенных полиэфиров осуществляют аналогично насыщенным [18]. Однако при использовании вместо ортофтале-вого ангидрида менее реакционноспособных изо- и терефталевой кислот для получения продуктов лучшего качества нужно использовать многостадийный процесс, при котором на первой стадии реагирует ароматическая кислота, а затем — малеиновый ангидрид [26, 27]. Поскольку ненасыщенные полиэфиры растворяются в мономерах, способных к термической полимеризации, при разбавлении необходимо, чтобы температура была как можно более низкой. Для предотвращения полимеризации при разбавлении и обеспечения стабильности при хранении, в смеситель, еще до введения в него смолы, необходимо добавлять ингибитор, такой как п-грег-бутилкатехол. Кроме того, смолу можно охладить до затвердевания, раздробить и затем уже растворить в мономере. В качестве мономеров традиционно применяют стирол, а также винилтолуол, метилметакрилат и некоторые аллиловые простые и сложные эфиры, например, диаллилфталат. Окончательное отверждение осуществляется по механизму радикально-цепной полимеризации, инициируемой окислительно-восстановительной системой при комнатной температуре, хотя возможно и термическое инициирование. Окислительно-восстановительная система двухупаковочная и состоит из органического пероксида или гидропероксида в качестве одного компонента и восстановителя (амина или соли высшей жирной кислоты), смешанного со смолой (см. следующую главу). [c.50]

    Термической полимеризацией получают как светлые, так и темные нефтеполимерные смолы. Для производства светлых смол используют фракцию с температурой выкипания до 200 °С, для выработки темных смол — фракции с температурой выкипания выше 200 °С. Процесс протекает по радикально-цепному механизму с приемлемой скоростью при температуре 250-260 °С и давлении до 1,2 МПа продолжительность — до 12 ч. Выход пиропласта-2 составляет 35-45 % на сырье. [c.788]

    Кроме того, в кислотно-основных каталитических реакциях катализаторы несомненно обменивают протоны с исходными веществами и растворителем, как показано в изотопных исследованиях с применением дейтерокислот или окиси дейтерия. При окислении окиси углерода или разложении закиси азота, катализируемом окислами металлов, применение подобным же образом указало на кислородный обмен между газами и поверхностью окислов [15]. При полимеризации замещенных олефинов типа изобутена, катализируемой трехфтористым бором с окисью дейтерия, присутствующей как сокатализатор , в полимере [16] возникают связи D — С эти реакции полимеризации протекают по ионному цепному механизму, и когда цепь обрывается, а построение молекулы полимера уже завершено, происходит регенерация катализатора, и сокатализатор содержит атомы водорода, перешедшие из мономера. Формально аналогичные свободно-радикальные реакции полимеризации ненасыщенных производных углеводородов можно инициировать фрагментами, получающимися при термическом разложении веществ типа перекиси бензоила и азо-бис-изобутиронитрила. Эти фрагменты действительно появляются в молекуле полимера, как было показано при использовании инициатора, меченного [17, 18]. [c.24]

    Первичный крекинг-процесс, протекающий на небольшую глубину (на несколько процентов в таких условиях, при которых можно пренебречь вторичными реакциями распада олефинов, их полимеризацией, ароматизацией и конденсацией, а также влиянием продуктов крекинга на его скорость), представляет собой радикально-цепной процесс, который включает реакции за-рождения радикалов, реакции взаимодействия их с молекулами алканов и распада сложных радикалов (развитие цепей) и, наконец, реакции обрыва цепей при рекомбинации радикалов или при захвате их стенками реактора. Совокупность перечисленных реакций составляет основу первичного процесса термического радикально-цепного крекинга. Уже этого вполне достаточно для того, чтобы из единой радикально-цепной схемы процесса количественно предсказать состав продуктов неглубокого крекинга индивидуальных алканов и их смесей, наблюдаемый на опыте, как это было показано в работах Фроста и Динцеса [3]. Процессу первичного крекинга алканов соответствует кинетика реакций с порядком, равным единице или полуторам, в зависимости от того, происходит обрыв цепей путем рекомбинации различных или одинаковых радикалов, как это было показано еще Ф. Райсом [c.342]

    Вторым этапом на пути решения проблемы глубокого крекинга должно стать исследование взаимодействия продуктов распада, т. е. вторичные реакции распада олефинов, полимеризации, конденсации и ароматизации. Учет этих возмуш,ений второго рода потребует выяснения связи этих вторичных реакций с первичным процессом радикально-цепного распада. Эта связь несомненна, так как термический распад и полимеризация олефинов, по-видимому, также происходят по радикально-цепному механизму и потому могут инициироваться радикалами первичного крекинга. Правда, высокие температуры крекинга менее благоприятны для осуш е-ствления реакций роста полимерных цепей. Согласно концепции Воеводского [27] крекинг самих олефинов может протекать радикально-ценным путем. [c.349]

    Глубокий термический крекинг следует рассматривать как сложный комплекс взаимно связанных радикально-цепных процессов распада алканов и алкенов, а также процессов полимеризации и конденсации последних. Естественно, что кинетика глубокого крекинга, основой которого служат прежде всего реакции радикалов с непредельными углеводородами, отличается от ква-зимономолекулярной кинетики и описывается уравнением само-тормозяш ихся реакций (13). В соответствии с этим глубокий крекинг следует классифицировать как гетерогенно-гомогенный. самотормозяш,ийся с увеличением степени разложения процесс, который достигает предела торможения, не отражаемого, однако, уравнением (13). [c.349]

    Ко второй группе реакций деструкции относятся цепные реакции деструкции, т. е. такие, при которых на один акт разрыва полимерной молекулы под действием какого-либо деструктирующего фактора приходится несколько актов распада цепей в других местах цепи. Как и цепная полимеризация, цепная деструкция может протекать по радикальному или ионному механизму. Инициирование цепной деструкции происходит под влиянием факторов, вызывающих образование радикалов или ионов в ценях полимера (т. е. аналогично цепной полимеризации) под действием тепла, света, излучений высоких энергий, а также химических веществ, распадающихся на свободные радикалы (перекиси) или ионы. Частным случаем цепной деструкции является цепная деполимеризация, протекающая путем последовательного отщепления мономерных звеньев от, концо.в молекулярных цепей и приводящая в итоге к полному переходу полимера в мономер. При этом молекулярная масса полимера последовательно уменьшается. Так протекает, например, термическая деструкция полиметилметакрилата, содержащего на концах цепей двойные связи (такой продукт образуется при свободнорадикальной полимеризации метилметакрилата при обрыве цепи путем диспропорционирования)  [c.180]

    В работе В. И. Гольданского и сотрудников [51] описано кинетическое исследование радиационной полимеризации полиэфиракрилатов при комнатной температуре и проведено сравнение радиационного и термического процессов полимеризации. Для йзучения кинетики использована методика измерения тепловых эффектов в ходе облучения [15]. В результате этих исследований было показано, что начальная скорость полимеризации пропорциональна корню квадратному из мощности дозы и что кислород является активным ингибитором полимеризации. Наличие остаточного пост-эффекта, наряду с упомянутыми закономерностями, свидетельствует о радикально-цепном механизме превращения и в случае полиэфиракрилатов. Эти закономерности являются общими как для радиационной, так и для термической полимеризации. [c.143]

    Если термическое алкилирование проводить в присутствии гомогенных катализаторов, температура резко сшикается. Термические реакции (термическая полимеризация и алкилирование) протекают по радикально-цепному механизму (см. дальше). Если к смеси углеводородов добавлять соединения способные в определенных условиях образовывать свободные радрхкалы, то можно вынудить реакцию протекать уже нри более низкой температуре. В качестве гомогенных катализаторов пригодны главным образом органи- [c.316]

    Если свободные радикалы образуются в результате термического распада перекисей или металлалкилов, для которого требуются значительно более низкие температуры, чем для термического разложения чисто углеводородных молекул, то цепные реакции с участием этих радикалов протекают большей частью при низких температурах. Так, термическая полимеризация олефинов, имеющая радикально-цепной механизм, в присутствии кислорода проходит гораздо легче, так как под действием кислорода образуются перекиси, которые затем распадаются на алкильные радикалы уже при относительно низкой температуре [98]. По Уайтмору и Герехту октен-1, термически полимеризующийся только при 325°, в присутствии ди-трет-бутилперекиси реагирует уже при 200° [99]. [c.334]

    Обращает также внимание то, что скорость термической деполимеризации значительно выше скорости гидролитической деполимеризации. То же самое можно отметить, если сравнить скорости термической полимеризации и поликонденсации. Очевидно, это связано с тем, что в водной среде процесс осуществляется в результате молекулярной реакции, в то время как нри нагревании и охла-нщении полимерные превращения осуществляются по радикальному (цепному) механизму. [c.96]

    В книге изложены некоторые термодинамические и кинетические методы решения задач количественной кинетики, рассмотрено их применение для расчета констант равновесия и скорости основных типов радикальных реакций, играющих важную роль в крекинге, полимеризации, окислении и других раднкально-цепных превращениях, даны примеры использо вания кинетических и термодинамических данных для выяснения механизма термических превращений углеводородов. [c.2]

    В настоящее время ХПЯ обнаружена в самых разных классах реакций распад перекисей и азосоединений, термические перегруппировки и изомеризации молекул, фотохимические реакции распада, фотосенсибилизированные реакции, реакции с участием металлоорганических соединений ртути, магния, кремния, лития, свинца, олова и т. д., реакции переноса электрона, азосочетания, окисления, полимеризации, цепного галоидирования и т. д. [25]. ХПЯ дает важную информацию о механизмах, вскрывает их новые стороны. К новым результатам, полученным методом ХПЯ, относится обнаружение радикальных реакций синглетных карбепов и ориентации нуклеофильного типа в реакциях ароматического присоединения радикалов, установления ряда стабильности ацилоксиради-калов при распаде ацильных перекисей, доказательство роли диа-зофенильного радикала в ряде реакций термического распада и переноса электрона, обнаружение фотохимического распада кетонов в эксиплексах, установление радикального механизма для ряда реакций, считавшихся классическими примерами нуклеофильного или электрофильного замещения, и т. д. [c.223]


Смотреть страницы где упоминается термин Радикально-цепная полимеризация термическая: [c.60]    [c.942]    [c.85]    [c.434]    [c.556]    [c.604]    [c.604]    [c.160]    [c.196]    [c.237]   
Химия синтетических полимеров Издание 3 (1971) -- [ c.76 , c.77 ]




ПОИСК





Смотрите так же термины и статьи:

Полимеризация радикальная цепная

Полимеризация радикально-цепная

Радикальная полимеризация

Термическая полимеризация

Термическая полимеризация. Полимеризация термическая

Цепная полимеризация



© 2024 chem21.info Реклама на сайте