Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбция на ионных поверхностях

    Адсорбцию ионов поверхностью кристалла, в состав которого входят ионы той же природы, можно рассматривать как кристаллизацию, т. е. как достройку кристаллической решетки способным адсорбироваться ионом. Кристаллы достраиваются лишь теми ионами или атомами, которые входят в их состав. Силы, под влия- [c.271]

    Наблюдаемый эффект обусловлен специфической адсорбцией ионов поверхностью катализаторов и должен приводить к изменению каталитических свойств поверхности. Изменение энергии связи водорода с поверхностью при переходе от КОН к НВг составляет примерно 21 кДж/моль, что должно существенно влиять на активность катализаторов. [c.191]


    Электродные реакции протекают в объеме между поверхностью электрода и первым ионным слоем в растворе. Таким образом, на энергию активации электродной реакции будет влиять не весь потенциал, создаваемый ионным двойным слоем, а лишь та часть его ср = ср —которая падает в плоской части двойного электрического слоя, где — потенциал на расстоянии одного ионного радиуса от поверхности металла, а ср — суммарный потенциал. Разность потен-диалов (<1 1) между слоем, находящимся на расстоянии одного лонного радиус а от поверхности металла, и толщей раствора может возникать как вследствие диффузного строения двой-лого электрического слоя, так и вследствие специфической адсорбции ионов поверхностью металла. [c.92]

    Зарядка частиц в электрическом поле короны происходит вследствие адсорбции ионов поверхностью частиц во внешней зоне коронного разряда при а) бомбардировке частиц ионами, движущимися по направлению силовых линий электрического поля, и б) присоединении к частицам ионов, участвующих в тепловом движении газовых молекул. [c.38]

    Стадия 2. Полученный гептен притягивается к активному центру катализатора, отдающему протон с образованием вторичного карбоний-иона. Последний остается в состоянии адсорбции на поверхности катализатора. [c.337]

    Особенности распределения электронного заряда в молекулах адсорбата и на поверхности адсорбента (пониженная или повышенная электронная плотность) проявляются при адсорбции на полупроводниках. В этих случаях проявляются специфические взаимодействия донорно-акцепторного типа, по своей природе близкие к рассмотренным выше специфическим взаимодействиям на гидроксилированных и ионных поверхностях. Часто эти взаимодействия переходят в еще более специфические и сильные с образованием поверхностных хемосорбционных комплексов. [c.500]

    В более поздней гипотезе, предложенной Макошей 26, 27],. было высказано предположение, что депротонирование субстрата происходит на поверхности раздела фаз. Если катализатор в системе отсутствует, то на поверхности раздела фаз образуется как бы двухслойная структура, включающая со стороны водной фазы катион щелочного металла, а со стороны органической фазы депротонированный анион субстрата. Из-за взаимной нерастворимости в противоположных фазах ионы иммобилизуются и в значительной степени дезактивируются. Эта ситуация похожа на обычную адсорбцию на поверхности. [c.58]


    Выражение (9.43) позволяет высказать предположения о возможном механизме преодоления сил структурного отталкивания в биологических системах в процессе слияния мембран. Известно, что слияние мембран происходит лишь в том случае, когда в растворе, омывающем мембраны, в достаточном количестве присутствуют ионы Са + [430]. Одна из особенностей взаимодействия этих ионов с фосфолипидными бислоями заключается в том, что ионы Са + могут легко связываться с полярными головками фосфолипидных молекул и способны соединять две такие молекулы, образуя между ними кальциевые мостики [430]. Следовательно, адсорбция ионов Са + на поверхности бислоя приводит к стабилизации, цементированию его структуры. Другая особенность связана с тем, что ионы Са +, проникая в область полярных головок бислоя, вытесняют оттуда молекулы воды, т. е. дегидратируют поверхности бислоя [460]. [c.167]

    Явления, происходящие на поверхности твердых частиц суспензии, обусловлены в основном процессами адсорбции ионов, полярных молекул и коллоидных частиц. До настоящего времени нет достаточной ясности в закономерностях, которые связывают поверхностные явления с удельным сопротивлением осадка. Это объясняется, главным образом, сложностью упомянутых закономерностей, а также тем, что различные исследователи применяли неодинаковые методы проведения опытов и для объяснения результатов этих опытов использовали разные теории. [c.191]

    Скорость которого определяет скорость процесса растворения кадмия. Аналогичные представления были развиты Питчем и сотрудниками (1931 г.), согласно которым коррозионный процесс начинается с адсорбции ионов или молекул среды на наиболее энергетически выгодных местах поверхности металла [c.225]

    А. Иофа и Л. А. Медведева (1949 г.) установили, что адсорбция ионов иода на поверхности железа замедляла реакции ионизации атомов металла и [c.226]

    По своей природе ингибиторы коррозии бывают ионными [катионного типа — катапин, ЧМ анионного типа — тиомочевина С5 (ЫН2)2] или молекулярными соединениями (например, антра-ниловая кислота). Ингибиторы адсорбируются на поверхности корродирующего металла или электростатически (адсорбция ионов и полярных молекул за счет кулоновских сил при соответствующем знаке заряда поверхности металла) или специфически (адсорбция поверхностно активных ионов и молекул за счет молекулярных ван-дер-ваальсовских сил), или химически (хемосорбция ионов и молекул за счет валентных сил химического сродства) возможна также адсорбция их вследствие одновременного действия разных сил. [c.345]

    При физической адсорбции на поверхности ионных кристаллов основную роль играют ориентационное и индукционное взаимодействия, а при адсорбции на угле и других подобных материалах процесс определяется дисперсионным взаимодействием. [c.372]

    В результате избирательной адсорбции ионов и образования двойного электрического слоя на поверхности капелек эмульсии возникает электрический заряд. [c.31]

    Глинистые минералы составляют группу слоистых и слоисто-ленточных силикатов и состоят в основном из двух структурных элементов - кремнекислородного тетраэдра и алюмокислородного октаэдра. Они характеризуются гидрофильной поверхностью, способностью к сорбции и ионному обмену [1,2]. Из-за изоморфного замещения атомов кремния и алюминия на катионы более низкой валентности плоские грани кристаллической решетки глинистых минералов приобретают отрицательный заряд. Его компенсация происходит за счет адсорбции ионов Mg Са, Ре", К и На" . Эти катионы представляют ионообменный комплекс глин. Сила взаимодействия катионов ионообменного комплекса с кристаллической решеткой глин обусловливает их физико-химические и механические свойства, в частности, набухаемость. При контакте глин с водой молекулы воды проникают в межплоскостное пространство структурных [c.199]

    В потоке жидкости заряды статического электричества образуются в основном в результате адсорбции ионов данной полярности на поверхности стенок сосудов или трубопроводов. Рассеянный слой ионов противоположного заряда удерживается на определенном расстоянии от поверхности стенок вследствие равновесия сил, обусловленных электрическим притяжением и тепловой диффузией. Подобная модель обычно называется электрическим двойным слоем и может рассматриваться аналогичной пластинам конденсатора. [c.182]

    Сравнение кривых I п 2 показывает, что адсорбция ионов 1 . на поверхности ртути понижает ее поверхностное натяжение. [c.305]

    Источники активации могут быть самые разнообразные. Реакции между ионами в растворе происходят с небольшой энергией активации, которая требуется для дегидратации ионов. Реакции между свободными атомами и радикалами не требуют энергии активации, так как атомы и радикалы являются активными частицами. В гомогенных газовых реакциях основным источником активации служат особо благоприятные столкновения, доля которых определяется законом распределения Больцмана и растет с температурой. В гетерогенных каталитических реакциях источниками активации могут служить изменения, протекающие в реагирующих молекулах при адсорбции их поверхностью катализатора. [c.335]


    Выще было показано, что пластовая жидкость—носитель электрических зарядов из-за трения фаз, адсорбции ионов на поверхности взвещенных фаз и контакта с заряженными поверхностями. В то же время скелет пласта и окружающие горные породы, как правило, являются носителями собственного электрического поля. [c.129]

    Если при образовании тонкой пленки скорость процесса определяется миграцией ионов и преобладающее электрическое поле внутри пленки образуется за счет адсорбции ионов газа на внешней поверхности пленки, то скорость миграции находится в экспоненциальной зависимости от напряженности поля,, а процесс роста пленки описывается обратной логарифмической зависимостью [81  [c.194]

    Особый интерес для коллоидной химии представляет адсорбция ионов поверхностью кристалла, в состав которого входят иоиы той же природы. При этом адсорбцию можно рассматривать как кристаллизацию, т. е. как достройку кристаллической решетки способным адсорбироваться ионом. Согласно Панету и Фаянсу, кристаллы достраиваются лишь теми ионами или атомами, которые входят в их состав. Например, кристаллы Agi, внесенные в раствор KI, адсорбируют на поверхности иодид-ионы. Если же [c.147]

    Для понимания многих свойств золей представляет интерес адсорбция ионов поверхностью кристалла. В этом случае адсорбцию можно рассматривать как кристаллизацию, т. е. как достройку кристаллической решетки адсорбируемыми ионами. Согласно Панету и Фаянсу кристаллы достраивают лишь те ионы или атомы, которые входят в их состав. Например, осадок AgBr, полученный по реакции [c.360]

    В процессе осаждения на поверхности осадка всегда адсорбируются различные ионы. Адсорбируются главным образом те ионы, которые находятся в избытке в растворе. Так, если осаждать ионы серебра хлорид-ионами, то на поверхности осадка Ag l адсорбируются главным образом ионы серебра, которые имеются в избытке. Наоборот, при осаждении хлорида прибавлением нитрата серебра на поверхности адсорбируются главным образом ионы хлорида, так как в этом случае они будут в избытке. Рстественно, что осадок будет адсорбировать и другие ионы, имеющиеся в растворе, например ионы натрия или нитрата, однако в первую очередь, как правило, адсорбируются ионы, входящие в состав малорастворимого соединения. Адсорбированньге ионы кристаллической решетки называют первично адсорбированными ионами. Вследствие адсорбции ионов поверхность осадка приобретает положительный пли отрицательный заряд в зависимости от того, какой ион, входящий в состав осадка имеется в избытке. Под действием этого заряда в зоны раствора, непосредственно примыкающие к частицам осадка, притягиваются противоположно заряженные ионы, которые называют про-тивоионами. Эти противоионы удерживаются слабее по сравнению с первично адсорбированными ионами. Слой противоионов содержит также некоторое количество других катионов и анионов. Адсорбированными ионами на осадке будут преимущественно те ионы, которые имеют наибольший заряд. Если же заряды ионов одинаковы, то в первую очередь адсорбируются те ионы, которые образуют менее растворимые соединения с первично адсорбированными ионами. [c.188]

    Получаемые с помощью Ag2S-MeM6panHoro электрода калибровочные кривые подчиняются уравнению Нернста в концентрационной области от насыщенных ионами Ag и S " растворов до растворов с концентрацией 10 Л1 [4]. Нижний концентрационный предел зависит только от трудностей приготовления очень разбавленных растворов, в которых не происходила бы адсорбция ионов поверхностями сосудов и электродов (это же относится и к десорбции). [c.162]

    Теория коагуляции. В 1908 г. Г. Фрейндлих сформулировал основные положения адсорбционной теории коагуляции. Согласно этой теории коагулирующее действие электролита — следствие адсорбции ионов поверхностью агрегата. Поскольку коагулирующие ионы имеют заряд, противоположный потенциалопрет деляющим ионам, происходит нейтрализация заряда частиц, и устойчивость падает, В частности, при взаимодействии коагулирующих и потенциалопределяющих ионов может образоваться труднорастворимое соединение — происходит химическая коагуляция, [c.515]

    Допуская, что потенциал возникает под влияние каких-то сил, денствз ющих на поверхности частицы и разделяющих ионн окружающих электролитов илн даже две одинаковые частнцы, можно к таким силам причислить I) силу, расщепляющую молекулы электролита на ионы, нлн 2) силы, вызывающие неодинаковую адсорбцию ионов поверхностью частицы. Оба оредставления неудовлетворительны, если считать, что - н 9-потенциалы обусловлены одной и той же причиной. Несмо-IOR иа то, что адсорбционная теория вполне может объяс--нить разницу потенциалов порядка величин С, она не может удовлетворительно объяснить возникновение скачков поте1Щиала порядка .  [c.196]

    Как известно, одним из факторов, препятствующих сцеплению коллэидных частиц друг с другом, является наличие у них одноименных электрических зарядов, между которыми действуют силы электростатического отталкивания. Заряды эти возникают вследствие адсорбции частицами ионов из раствора и могут быть нейтрализованы в результате адсорбции ионов противоположного знака. Вследствие этого процесс коагуляции коллоидных растворов может быть вызван прибавлением какого-либо электролита, противоположно заряженные ионы которого, адсорбируясь на поверхности частиц, нейтрализуют заряд коллоидных частиц и таким образом дают им возможность сцепляться между собой. При этом коагулирующая концентрация электролита (т. е. минимальная концентрация его, требуемая для коагуляции данного коллоидного раствора) увеличивается с уменьшением валентности того иона, заряд которого противоположен заряду коллоидных частиц. Так, в случае золя AS2S2, частицы которого заряжены отрицательно, коагуляция вызывается адсорбцией катионов, причем коагулирующие концентрации А1з+, Ва2+- и К+-ионов относятся как 1 20 1000. [c.105]

    Saxe —адсорбцией ионов (на одной или обеих поверхностях), а g— ориентацией диполей (на одной или обеих поверхностях). Из уравнения (87) следует, что если нет обмена заряженными частицами, то остается скачок потенциала, связанный с адсорбцией ионов и диполей  [c.29]

    Если исходить из предположения, что адсорбция ионов на ртути определяется исключительно электростатическими силами, то все анионы должны изменять ход лишь восходящей ветви электрокапиллярной кривой, где поверхность ртути заряжена положительно. Напротив, влияние катионов должно локализоваться только иа кисходя1цей ветви, где они электростатически притягиваются к отрицательно заряженной поверхности ртути. В действительности, как это было найдено еще Гуи, многие анионы изменяют ход элек-трокапиллярпой кривой справа от точки максимума, а некоторые катионы влияют не только на нисходящую, но и на восходящую ветвь кривой. Такое поведение ионов нельзя объяснить действием только кулоновских сил. Оно связано с силами взаимодействия, отличными от простых электростатических сил. Такими силами, специфическими для данного рода частиц, могут быть, например, силы Ваи-дер-Ваальса или химические (валентные). Благодаря этим силам ионы в состоянии удерживаться на одноименно заряженной поверхности ртути и влиять на электрокапиллярные свойства границы металл — раствор. Точно так же нельзя на основе одних только электростатических представлений объяснить влияние неиоинзированных органических веществ на ход электрокапиллярных кривых. Дело в том, что большинство органических веигеств обладает меньшей диэлектрической постоянной, чем вода, и поэтому должны были бы изгоняться ею из двойного слоя уже при не- [c.239]

    Наконец, между молекулой адсорбата и молекулами, атомами или ионами поверхности адсорбента может возникнуть настоящая химическа- реакция с образованием нового поверхностного химического соединения. В этом случае говорят о хемосорбции. Примером хемосорбцил является адсорбция кислорода поверхностями металлов. Хемосорбция с поверхности может распространиться и на объем адсорбента, переходя в обычную гетерогенную реакцию. [c.439]

    При наличии сильной специфической адсорбции ионов, происходящей под действием химических сил или сил Ван-дер-Ваальса, например адсорбции аниона на поверхности ртутного электрода, общий заряд ионов в плотном слое может оказаться больше заряда поверхности электрода. Такое явление называется перезарядкой поверхности. В этом случае потенциал на расстоянии ионного радуса от поверхности электрода (-ф -потенциал) имеет знак, противоположный знаку разности потенциалов между электродом и раствором. Распределение потенциала в двойном электрическом слое в этом случае схематически представлено на рис. XX, 6. [c.538]

    При активации катализатора раствором сернокислого алюминия протекают два процесса — удаление оставшихся примесей и внедрение новых ионов алюминия. При втором процессе происходит не только удаление ионов натрия, но и адсорбция на поверхности ионов алюминия мономолекулярным или полимолекулярным слоем. Во время активации концентрация активирующего раствора сернокислого алюлшния понижается концентрация в объеме резко отличается от концентрации вблизи поверхности, откуда происходит образование новой фазы. Для выравнивания концентраций необходимо энергичное перемешивание. Ввиду малого теплового эффекта реакции температурные условия в процессе активации не имеют существенного значения, но температура не должна быть выше, чем при термообработке. [c.59]

    Теория электроосмоса смачивающих пленок воды была развита применительно к случаю, когда заряд на поверхности пленок, граничащей с газом, отсутствует [45]. Это позволяло использовать известные злектрокинетические решения для плоских щелей с одинаковыми потенциалом и зарядом обеих поверхностей. Электроосмотический поток в пленке получался при этом таким же, как в одной из половин симметричной щели, Возможность такого подхода определялась равенством нулю напряжения сдвига т на поверхности пленки. В действительности же заряд свободной поверхности смачивающих пленок чаще всего отличен от нуля, что связано с адсорбцией ионов или молекул ионогенных ПАВ. При наличии поверхностного заряда пленки Q на ее поверхности возникает тангенциальное напряжение x = QWE, где V — градиент электрического поля. [c.30]

    Штерн также высказал мысль о необходимости учета специфической адсорбции ионов на поверхности металла. Поэтому в растворах, содержащих поверхностно активные ионы, их число в плотной (гельмгольцевой) части двойного слоя может быть не эквивалентно заряду поверхности металла, а превосходить его на некоторую величину, зависящую от свойств ионов и заряда металла, т. е. [c.159]

    Анодный сдвиг потенциала в поверхностном слое металла и пассивность последнего могут быть обусловлены активированной адсорбцией (хемосорбцией) пассивирующих частиц, в первую очередь пассивирующих анионов, в особенности однозарядного атомного иона кислорода 0 (анион радикала ОН, образующегося из НаО или ОН при анодной поляризации). Адсорбция ионов кислорода уменьшает свободную энергикэ поверхностных ионов металла за счет вытеснения эквивалентного количества свободных поверхностных электронов металла, т. е. создает пассива-ционный барьер. Поскольку поверхностный электронный газ вырожден, вытесняются электроны, находящиеся на самых высоких электронных уровнях, и при этом снижается поверхностный уровень Ферми металла. Изменение свободной энергии поверхности при полном ее покрытии адсорбированным монослоем составляет 3,8-10 эрг на один электрон, что соответствует 2,37 эВ, или 54,6 ккал/г-экв. [c.311]

    На границе соприкосновения различных фаз (например, металл -электролит) возникает пространственное распределение электрических зарядов в виде так называемого двойного электрического рлоя. Разделение зарядов может вызываться различными причинами переходом ионов из электрода в раствор (или наоборот) - ионный двойной электрический слой специфической адсорбцией ионов на поверхности электрода - адсорбционный слой ориентацией полярных молекул растворителя и поверхности электрода - ориентационный слой. Во всех случаях двойной слой электронейтрален. [c.36]

    Мультиплетами были названы отдельные небольшие участки поверхности катализатора, состоящие из нескольких атомов или ионов, расположенных закономерно в соответствии со строением кристаллической решетки катализатора. Каталитическая активность имеет место в тех случаях, когда расположение этих атомов или ионов в поверхностном слое катализатора находится в геометрическом соответствии с расположением атомов в молекулах реагирующих веществ. При адсорбции такой молекулы содержащиеся в ней атомы под воз цействием соответствующих атомов или ионов поверхности катализатора и частично связываясь сними могут ослаблять связи между собой. В зависимости от вида атомов или ионов поверхностного слоя, расстояний между ними и геометрической закономерности в их расположении могут ослабляться те или другие связи в реагирующих молекулах. Этим и объясняется специфичность действия катализаторов. [c.497]

    Электрический заряд на коллоидных частицах возникает в результате процесса электролитической диссоциации вещества дис-нерсиой фазы или вследствие избирательной адсорбции ионов из дисперсио1шой среды на поверхности частиц дисперсной фазы. Наличие заряда у коллоидных частиц можно обнаруж1ггь, пропуская через коллоидную систе.му постоянный электрический ток, под действием которого частицы перемещаются к электродам. Перемещение частиц дисперсной фазы под действием электрического тока называется электрофорезом. [c.194]

    Твердые частицы пыли в процессе размола, транспортирования по пылепроводам и движения в воздухе способны электризоваться— на их поверхности возникает заряд статического электричества. Частицы пыли могут заряжаться в результате ударов и трения одна о другую и о воздух, трения о твердую поверхность (например, при размоле на вальцах, при транспортировании по трубам), а также вследствие адсорбции ионов из газовой среды. Потенциал зарядов при электризации пыли во время ее движения зависит от концентрации размеров частиц (дисперсности), скорости движения пылевой смеси, влажности атмосферы и других факторов. [c.188]

    В жидкой фазе формируется двойной электрический слой. Двойной электрический слой может образоваться на поверхностях раздела жидкой и твердой фаз несколькими путями в зависимости от химического состава твердой фазы. Первый путь обусловлен адсорбцией ионов из раствора и наблюдается в том случае, когда на поверхности твердого тела имеется их избыток. При этом создается электростатическое поле, и ионы, находящиеся в жидкой фазе на расстоянии радиуса сферы молекулярного притяжения, адсорбируются твердым телом. При этом адсорбируются прежде всего ионы, способные достраивать кристаллическую решетку. Если таковых нет, то наблюдается избиральная адсорбция ионов большей валентности и меньшего радиуса. Эти ионы образуют на поверхности твердой фазы неподвижный адсорбционный слой. Так, например, в различных цеолитах, [c.111]

    Согласно адсорбционной теории, критический потенциал объясняют с точки зрения конкуренции адсорбции С1" и кислорода на пассивной пленке [32, 37]. Металл имеет большее сродство к кислороду, чем к ионам С1 , но если значение потенциала повышается, концентрация С1 возрастает, так что в конце концов ионы С1 могут заместить адсорбированный кислород. Наблюдаемый индукционный период — это время, которое требуется для успешной конкурирующей адсорбции на благоприятных участках поверхности металла, а также время проникновения С1" в пассивную пленку. Как было показано выше, в отличие от кислорода, адсорбция ионов С1" снижает анодное перенапряжение для растворения металла, чем объясняется более высокая скорость коррозии на участках, где произошло замещение. Другие анионы (например, ЫОз или 80 ), не разрушающие пассивную пленку и не вызывающие питттинг, конкурируют с С1" за места на пассивной поверхности. В связи с этим необходимо сдвигать потенциал до еще более высоких значений, чтобы увеличить концен- [c.87]

    В соответствии с описанным выше механизмом действия пассиваторов, следует ожидать, и это подтвердилось экспериментально, что переходные металлы должны лучше других ингибироваться пассиваторами. Для этих металлов характерна форма анрдной поляризационной кривой, представленной на рис. 16.1. Она сви-детельствует о том, что пассивное состояние их поддерживается при низкой плотности тока. Меньший ингибирующий э ект может быть достигнут на переходных металлах, таких как Mg, u, Zn, Pb, например, с помощью хроматов. Защита этих металлов, по-видимому, обусловлена в основном образованием относительно толстых создающих диффузионный барьер пленок, которые состоят из смеси нерастворимых хроматов и оксидов металлов. Существует также вероятность, что адсорбция ионов СГО4 на металлической поверхности, уменьшая плотность тока обмена для реакции М М + -f 2ё, вносит определенный вклад в понижение скорости реакции. Однако это еще не доказано. [c.266]

    Поскольку теория Штерна учитывает наличие плотного адсорбционного слоя ионов, это позволяет выявить влияние их гидрата-цин на qr, а учет специфической адсорбции ионов дает возможность объяснить перезарядку поверхности ири наличии в растворе иротивоиона, обладающего большим адсорбционным потенциалом. Лучше адсорбируются и ближе подходят к поверхности менее гидратированные ионы, которые по этой причине значительнее компенсируют поверхностный потенциал, и их соответственно меньше будет в диффузном слое. [c.61]


Смотреть страницы где упоминается термин Адсорбция на ионных поверхностях: [c.148]    [c.149]    [c.183]    [c.195]    [c.270]    [c.48]    [c.63]   
Смотреть главы в:

Катализ. Некоторые вопросы теории и технологии органических реакций -> Адсорбция на ионных поверхностях

Катализ новые физические методы исследования 1959 -> Адсорбция на ионных поверхностях




ПОИСК





Смотрите так же термины и статьи:

Адсорбция ионитах,

Адсорбция ионная

Адсорбция ионов



© 2025 chem21.info Реклама на сайте