Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрохимические цепи без переноса ионов

    В рассмотренном примере электрохимической концентрационной цепи первой группы граница непосредственного контакта растворов отсутствует — растворы соединены через солевой мост (см. 173). Но если эти два раствора привести в соприкосновение, то на границе их раздела происходит прямой перенос ионов из одщ)го раствора в другой, что влияет на величину э. д. с. цепи. Такие электрохимические системы называются концентрационными цепями с переносом. В качестве примера рассмотрим цепь, электроды которой обратимы относительно катиона  [c.490]


    Как видно из рис. 1, для, осуществления электрохимической реакции необходима некоторая система — электрохимическая цепь. Существенные элементы такой цепи — металлические (или полупроводниковые) электроды, проводник второго рода (раствор электролита, его расплав или твердый электролит) и границы раздела фаз между металлом и электролитом, между двумя различными металлами и между двумя различными электролитами. Закономерности протекания тока в электрохимической цепи, а также закономерности электрохимического равновесия определяются свойствами всех этих элементов. Строение металлов и полупроводников, а также их электропроводность служат объектом изучения физики, а не химии. Объекты изучения электрохимии — ионные системы (проводники второго рода) и границы раздела фаз с точки зрения их структуры и механизма переноса заряженных частиц. [c.5]

    Для электрохимических цепей с переносом уравнение Нернста (VI 21) обычно не приводится к виду, содержащему средние активности ионов [как в уравнении ( 1.22)1 . Поэтому при использовании уравнения Нернста для таких систем активности отдельных ионов заменяют средними активностями или просто концентрациями ионов. Вносимая этим ошибка увеличивается с ростом концентрации раствора. [c.113]

    Таким образом, измерив разность потенциалов на концах электрохимических цепей, содержащих границу двух одинаковых по составу растворов разной концентрации, можно определить числа переноса и = 1—/... А зная / =А. /( 1+ + Я, ) и Л = А.+ + 1 , легко найти ионные электропроводности катионов 1.+ и анионов.  [c.87]

    Итак, свойства растворов электролитов как в равновесных, так и в неравновесных условиях определяются двумя типами взаимодействий ион-дипольным и ион-ионным. В свою очередь, как было показано выше, свойства растворов электролитов тесным образом связаны разностью потенциалов Е на концах правильно разомкнутых электрохимических цепей. При этом в случае цепей без переноса на величину Е влияют только равновесные свойства растворов электролитов (с их средней активностью), а в случае цепей с переносом на Е влияют также неравновесные свойства диффузия и миграция ионов. [c.90]

    Понятие электродный потенциал основано на различии в плотностях зарядов или энергии электронов в двух фазах. Избыток ионов или электронов на поверхности одной из фаз (твердой или жидкой) сообщает этой фазе внешний, или вольта-потенциал г]). Этот потенциал определяется работой, достаточной для медленного переноса единичного точечного электрического заряда из бесконечности в данную точку на поверхности фазы. Внутренний или гальва-ни-потенциал фазы ф выражается электрической работой, необходимой для перемещения единичного заряда из бесконечности, в вакууме в данную точку внутри фазы. Гальвани-потенциал представляет собой разность двух внутренних потенциалов между двумя точками в различных фазах, поэтому в противоположность вольта-потенциалу его нельзя определить экспериментально. Условились электродным потенциалом называть э. д. с. электрохимической цепи, в которой справа расположен исследуемый электрод, а слева нормальный водородный электрод. Совокупность потенциалов, установленных таким образом, составляет ряд нормальных потенциалов по водородной шкале (табл. 2). [c.12]


    Электрохимические цепи без переноса ионов [c.187]

    Идеальной селективно проницаемой мембраной можно назвать мембрану, которая при приложении к ней градиента электрического потенциала пропускает сквозь себя катионы и препятствует проникновению анионов или наоборот. Таким образом, в фазе мембраны число переноса проникающего иона равно единице, тогда как для иона противоположного заряда оно обязательно равно нулю. Так обстоит дело с идеальными мембранами вне зависимости от концентрации во внешнем растворе. Чтобы эту мембрану можно было использовать в электрохимических цепях, она должна также иметь электропроводность, сравнимую с электропроводностью растворов обычных электролитов в диапазоне концентраций от 0,1 и. до 1,0 н. Кроме того, мембрана должна быть механически прочной, гибкой и способной подвергаться высушиванию и колебаниям температуры без изменения ее физических или электрохимических свойств. Гидравлическая прочность мембраны должна быть достаточно высокой, чтобы при условии соответствующего ее крепления можно было работать под давлением. [c.147]

    Это электричество переносится частично анионами, а частично катионами, движущимися в противоположных направлениях. Доля общего тока, перенесенного ионами данного сорта, называется числом переноса ионов этого сорта и обозначается символом t. Пористая перегородка между правой и левой частью электрохимической цепи препятствует перемешиванию двух растворов, иначе реакция (III) начнет идти в результате непосредственного взаимодействия ионов Си + с цинковым электродом, и в то же время позволяет электричеству проходить за счет ионной электропроводности от одной части цепи к другой. [c.160]

    Электрохимическая цепь с переносом. Преимущество этой разновидности метода состоит в том, что здесь можно использовать только один вид обратимого электрода. Однако для этого метода должны быть известны значения чисел переноса для ионов данного электролита в исследуемом интервале концентраций. [c.186]

    Протекающая в гальваническом элементе окислительно-восста-новительная реакция представляет собой сложный процесс. Она включает собственно электрохимические стадии (превращения атомов, ионов или молекул на электродах), перенос электронов, перенос ионов. Все эти стадии сопряжены между собой и протекают с одной и той же скоростью число электронов, которые за единицу времени отдает цинк, равно числу электронов, принимаемых за это .е время ионами меди. Поэтому скорость реакции, протекающей в гальваническом элементе, пропорциональна количеству электричества, перенесенного по цепи в единицу времени, т. е. силе тока в цепи. [c.266]

    В теории электрохимических цепей переменного тока ставится задача определения импеданса системы, включающей границу электрод—электролит. При этом делаются те или иные предположения о свойствах этой границы и о составе электролита. В дальнейшем всюду будет предполагаться, что электролит содержит два типа ионов — индифферентные ионы фона, участвующие в переносе тока через объем электролита и определяющие его объемное сопротивление, но не принимающие участия в электрохимиче- Гст х реакциях, проходящих на границе электрод—электролит, активные ионы (или молекулы), участвующие в электрохимиче- их реакциях. Предполагается, что концентрация активных ча- с тиц мала по сравнению с концентрацией индифферентных ионов, г 1К что их участием в переносе электрического тока через электроплит можно пренебречь. [c.17]

    В торможении электродных процессов на окрашенном металле важное значение имеет электрическое сопротивление пленки, поскольку в коррозионном электрохимическом элементе лакокрасочная пленка выполняет роль внутренней цепи, где происходит перенос ионов электролита. [c.126]

    Подсчет энергии сольватации протонов и других ионов обычно проводится на.основании измерения э.д.с. соответствующих электрохимических цепей. Данные по энергии сольватации протона в различных растворителях позволяют определять разность теплот сольватации при переносе протона между любой парой растворителей и вычислить разницу в стандартных потенциалах водородного электрода в изучаемых системах. [c.281]

    Среди множества гипотез о механизме сопряжения фосфорилирования АДФ и дыхания заслуживает внимания хемиосмотическая теория, разработанная английским биохимиком П. Митчеллом (1961 г.). По мнению П. Митчелла, энергия переноса электронов и протонов через дыхательную цепь первоначально сосредотачивается в виде протонного потен циала, или электрохимического градиента концентраций ионов Н , возникающего при их переносе через клеточную мембрану компонентами дыхательной цепи. Протонный потенциал А Ян+ создается двумя компонентами осмотическим, возникающим вследствие разности концентраций протонов (АрН) по сторонам мембраны, и электрическим, обусловленным разностью электрических потенциалов (Аф) на поверхностях внутренней мембраны митохондрий  [c.325]


    Различают активный и пассивный перенос (транспорт) нейтральных молекул и ионов через биомембраны. Активный транспорт происходит при затрате химической энергии за счет гидролиза АТФ или переноса электрона по дыхательной цепи митохондрий. Пассивный транспорт не связан с затратой клеткой химической энергии он осуществляется в результате диффузии веществ в сторону меньшего электрохимического потенциала (рис. 48). Примером активного транспорта может служить перенос ионов калия и натрия через цитоплазматические мембраны (К" — внутрь клетки, а Ыа" — из нее), перенос кальция через мембраны саркоплазматического ретикулума скелетных и сердечной мышц внутрь пузырьков ретикулума, перенос ионов водорода через мембраны митохондрий из матрикса наружу. Все эти процессы происходят за счет энергии гидролиза АТФ и осуществляются особыми ферментами — транспортными АТФ-азами (рис. 49). Наиболее известный пример пассивного транспорта — это движение ионов натрия и калия через цитоплазматическую мембрану нервных волокон при распространении потенциала действия. Впрочем, и в покоящейся клетке существует утечка ионов через мембраны, обусловленная их проницаемостью проницаемость обычно возрастает при патологии. [c.122]

    Согласно одной из гипотез о механизме переноса протонов в дыхательной цепи (модель петель) выброс протонов из матрикса происходит в результате транспорта электронов мевду переносчиками П-атомов и чисто электронными переносчиками. К атомным переносчикам относят ФМП, убихинон, цитохром с- оксидазу. По теории Митчелла электрохимический трансмембранный потенциал ионов водорода является источником энергии для синтеза АТФ за счет обратного тока протонов через канал мембранной АТФ-синтетазы (Скулачев, 1989). [c.136]

    В металлических проводниках любой замкнутой цепи электрический ток переносится электронами, а в электролите — ионами. Для того чтобы ток непрерывно циркулировал в цепи на границе раздела металл — электролит, должны протекать электрохимические процессы прием электронов на катоде и [c.358]

    Следовательно, при потенциале рабочего электрода Е можно количественно определить комплексон 111, так как электрохимическая реакция окисления Hg при этом потенциале ограничивается скоростью переноса из раствора к электроду молекул комплексона III. Поэтому при полном связывании НгУ в комплекс HgY ток в цепи стремится к нулю. На этом же принципе основано, например, определение С1 -ионов на А g-электроде. [c.196]

    Простейшим примером цепи с переносом может служить электрохимическая система с двумя медными электродами, погруженными в два раствора одного и того же электролита (медного купороса) разной концентрации. В такой цепи источником электродвижущей силы является выравнивание концентраций ионов в различных зонах раствора вследствие диффузии вещества из более концентрированного раствора в менее концентрированный (в соответствии со вторым законом термодинамики). [c.179]

    Поскольку — химические частицы, несущие положительный заряд, неравномерное их накопление по обе стороны мембраны приводит к возникновению не только химического (концентрационного) градиента этих частиц, но и ориентированного поперек мембраны электрического поля (суммарный положительный заряд, где происходит накопление Н , и отрицательный заряд по другую сторону мембраны). Таким образом, при переносе электронов на ЦПМ возникает трансмембранный электрохимический градиент ионов водорода, обозначаемый символом АЦн+ и измеряемый в вольтах (В, мВ), который состоит из электрического (трансмембранная разность электрических потенциалов A jr) и химического (концентрационного) компонентов (фадиент концентраций — АрН). Измерения показали, что на сопрягающих мембранах прокариот при работе дыхательных и фотосинтетических электронтранспортных цепей Арн+ достигает 200—250 мВ, при этом вклад каждого компонента непостоянен. Он зависит от физиологических особенностей организма и условий его культивирования. [c.101]

    Электрический ток способны проводить следующие группы веществ 1) газы, 2) металлы и 3) электролиты. В кулонометрическом анализе, как правило, имеют дело с металлическими проводниками, используемыми для подачи электроэнергии от источников тока к электродам, и с электролитическими проводниками, или растворами электролитов, в которых обычно осуществляется реакция, положенная в основу того или иного метода определения. Прохождение электрического тока через раствор электролита сопровождается переносом вещества, что обнаруживается либо по изменению концентрации раствора, либо по выделению веществ на электродах. Этот процесс электрохимического окисления или восстановления веществ на электродах, происходящий с потерей или присоединением электронов, называется электролизом. Для осуществления электрохимической реакции в растворе должны находиться частицы, которые, достигнув поверхности электрода, смогли бы принять или отдать какое-то число электронов. К электродам перемещаются ионы разного заряда, причем положительно заряженные ионы (катионы) направляются к катоду, а отрицательные (анионы) — к аноду. Таким образом, при прохождении тока через цепь, состоящую из металлического проводника и электролита, на поверхности электродов происходит передача электронов от частицы электроду или наоборот. [c.5]

    В гл. 2 было показано, что многие электрохимические ячейки содержат области контактов, где состав раствора неоднороден, и поэтому происходит диффузия. Для вычисления потенциалов разомкнутой цепи в этих ячейках, а также для вычисления изменения электрохимических потенциалов ионов в жидкостных соединениях необходимо рассмотреть процессы переноса. [c.280]

    Механизм переноса электричества в разных участках электрической цепи различен (рис. FV.l). В металлических проводниках электричество переносят электроны, в растворе — ионы, а на поверхности электродов цепь замыкается за счет перехода от ионной проводимости к электронной в результате электрохимической реакции. [c.309]

    Электролиз. Через проводники первого рода электричество переносится электронами, а через проводники второго рода — ионами. В тех местах электрической цепи, где проводник первого рода граничит с проводником второго рода, электроны вступают во взаимодействие с ионами—происходят электрохимические процессы. Если эти процессы протекают самопроизвольно, то система-называется химическим источником электрической энергии. Если же их протекание обусловлено подводом электрической энергии извне, то происходит электролиз. [c.290]

    Среди многообразия электрохимических методов исследования свойств растворов электролитов (метод ЭДС цепей без переноса и с переносом, электропроводности и т.д.) метод вольтовых разностей потенциалов занимает особое место. Главной и исключительной особенностью этого метода, в отличие от других, является возможность определения различных характеристик (коэффициентов активности, термодинамических характеристик сольватации и т.д.) индивидуальных ионов. [c.187]

    Электродный потенциал - один из основных электрохимичесз-ких параметров, измерение которого составляет суть метода потенциометрии, - был предметом многочисленных исследований. Впервые в 1889 г. В. Нернст вывел термодинамическую зависимость э.д.с. от концентрации ионов в растворе. В настоящее время под термином "электродный потенциал" понимают э.д.с. электрохимической цепи ( ), составленной из стандартного водородного электрода и электрода, представляющего любую другую окислительно-восстановительную полуреакцию. Таким образом, данная формулировка включает два основных типа электродов электроды, функционирующие на основе а) электронного и б) электронно-ионного равновесия, иными словами, электроды, обладающие электронной и смешанной (электронноионной) проводимостью. Однако необходимо принять также во внимание третий тип, а именно электроды, перенос зарядов в которых осуществляется за счет ионов, т.е. электроды с ионной проводимостью. По этому принципу функционируют так называемые мембранные электроды, которые рассматриваются в разделе "Ионометрия". [c.20]

    Числа переноса, рассчитанные по формуле (IV.42) в методе движущейся границы, строго говоря, не равны числам переноса тех же ионов, но определенных методом Гитторфа или по разности потенциалов на концах электрохимической цепи, содержащей границу двух растворов Это различие обусловлено некоторым изменением объема V, регистри руемого в методе движущейся границы, из-за электродных реакций Так, например, в рассмотренном примере при пропускании электри ческого тока происходит не только движение катионов, но также пе ремещение анионов и электродный процесс превращения металличе ского серебра в хлорид серебра Ag+ h—ё Л С1. В результате возникает дополнительное изменение объема, равное [c.64]

    В гальваническом элементе сами по себе равновесные электроды образуют неравновесную систему. Причиной неравнрвесности является разница плотностей электронов в металлах и, следовательно, стремление их переходить от одного металла к другому по внешней цепи. Одновременно во внутренней цепи происходит перенос ионов. Например, если во внешней цепи (рис. 11.2) электроны перемещаются слева направо, то на левом электроде протекает реакция окисления Mi -> +ze , а на правом — реакция восстановления - -ze -> М2. Катионы во внутренней цепи движутся от М к М2. Перенос катионов происходит до тех пор, пока не создается определенное (равновесное) для каждой температуры соотношение концентраций (активностей) электролитов в двух растворах. В качестве примера может служить цинковый элемент Якоби — Даниэля (рис. 11.3). Разомкнутый элемент находится в затормо женном неравновесном состоянии и может пребывать в этом состоянии как угодно длительно. Замыкание электродов металлическим проводником снимает торможение. На Zn-электроде (электрохимически более активном) протекает термодинамически необратимый процесс [c.168]

    Основная проблема создания систем конверсии энергии биомассы в водород связана с превращением этих метаболитов в топливную форму. Для биотехнологии можно было бы воспользоваться и другими механизмами превращения энергии, вьывленными у микроорганизмов. Например, галофильная бактерия На1оЬас1епит каЬЫит способна использовать световую энергию, улавливаемую пурпурным пигментом (бактериородопсином), вмонтированным в мембрану клетки. Молекула пигмента состоит из одной поли-пептидной цепи, к которой прикреплена молекула ретиналя, являющегося светочувствительной частью пигмента. Под влиянием солнечного света изменяется конформация пигмента, приводящая к переносу ионов водорода (Н ) через мембрану. Пигмент является как бы протонным насосом. Молекулы бактериородопси-на располагаются в мембране триадами, и перекачивание протонов через мембрану обеспечивает градиент концентрации Н (АН ), вследствие чего они движутся к наружной стенке, у которой пространство подкисляется и возникает электрохимический градиент (Ац н)- [c.27]

    Энергия, выделяемая при переносе электронов по дыхательной цепи от субстрата на кислород, может при определенных условиях вызвать перенос ионов Н из митохондриального матрикса в среду. В результате pH митохондриального матрикса повышается, а pH среды понижается, т.е. матрикс становится более щелочным, а среда, окружающая митохондрии, более кислой. Во внутренней митохондриальной мембране имеются, следовательно, какие-то насосы для ионов Н эти насосы используют свободную энергию потока электронов для перекачивания ионов Н наружу против градиента концентращад. Выкачивание ионов Н из митохондрий приводит к появлению мембранного электрического потенциала, потому что вследствие выхода этих ионов из матрикса в среду наружная сторона мембраны становится более электроположительной, а внутренняя-более электроотрицательной. Таким образом, перенос электронов создает электрохимический градиент ионов Н, включающий два компонента мембранный потенциал вносит больший вклад в энергию этого градиента  [c.530]

Рис. 17-19. Сопряжение переноса электронов с синтезом АТР в свете хемиосмотической гипотезы. Согласно этой гипотезе, цепь переноса электронов можно представить себе как насос, перекачивающий ионы Н" . Энергия, высвобождаемая при переносе электронов, используется для перемещения ионов Н" из митохондриального матрикса наружу, что приводит к возникновению электрохимического Н -градиента с более высокой концентращ1вй ионов Н в наружной водной фазе. Этот же процесс ведет к появлению трансмембранного электрического потенциала - наружная сторона мембраны оказывается электроположительной. Рис. 17-19. <a href="/info/1548504">Сопряжение переноса</a> электронов с синтезом АТР в свете <a href="/info/284640">хемиосмотической гипотезы</a>. Согласно этой гипотезе, <a href="/info/511072">цепь переноса электронов</a> можно представить себе как насос, перекачивающий ионы Н" . Энергия, высвобождаемая при <a href="/info/482">переносе электронов</a>, используется для <a href="/info/869216">перемещения ионов</a> Н" из <a href="/info/1350648">митохондриального матрикса</a> наружу, что приводит к <a href="/info/1720768">возникновению электрохимического</a> Н -градиента с <a href="/info/1456069">более высокой</a> концентращ1вй ионов Н в наружной <a href="/info/1899027">водной фазе</a>. Этот же процесс ведет к появлению трансмембранного <a href="/info/15838">электрического потенциала</a> - наружная <a href="/info/1388494">сторона мембраны</a> оказывается электроположительной.
    В 1961 г. английский биохимик П. Митчел выдвинул хемиосмо-тическую (электрохимическую) гипотезу энергетического сопряжения окисления и фосфорилирования, которая в дальнейшем получила подтверждение и развитие во многом благодаря работам советских ученых (В. П. Скулачев, Е. А. Либерман). Принцип хемиосмотического сопряжения иллюстрирует рис. VI. 14. Субстрат АНг —донор водорода — окисляется на активном центре фермента, встроенного на внешней стороне мембраны митохондрии. При этом 2Н+ и А выбрасываются в окружающую среду, а два электрона переносятся на внутреннюю сторону мембраны по так называемой дыхательной цепи, ориентированной поперек мембраны. Локализованный на внутренней стороне переносчик электронов передает электроны акцептору водорода В (например, кислороду), который присоединяет 2Н+ из внутримитохондриального матрикса. Таким образом, окисление одной молекулы АНг приводит к возникновению 2Н+ во внешнем пространстве и исчезновению 2Н+ из внутреннего пространства митохондрии. Возникший градиент ионов водорода генерирует трансмембранный потенциал, который оказывается достаточным по величине для осуществления реакции фосфорилирования. Последняя состоит во взаимодействии АДФ с фосфатом Ф и приводит к образованию АТФ с поглощением 2Н+ из внешнего пространства и выделением 2Н+ в матрикс. Величина трансмембранного потенциала сравнительно 160 [c.160]

    Таким способом, по нашему мнению, может явиться экстраполяция сумм и разностей химических энергий сольватации одного и того же иона с рядом ионов со все возрастающими радиусами. При г оо величина С/с этих ионов стремится к нулю. Например, можно построить графики зависимости величины ( /сы+ + от Иг соответствующих галогенов и ве.ли-чины — сц1е+) соответствующих металлов. Обе эти величины с возрастанием г будут стремиться к одной величине г7сд+, так как С/сме+ и —с возрастанием г будут стремиться к нулю. Этот путь расчета особенно удобен при использовании электрохимических данных, так как непосредственно по э. д. с. цепей без переноса получаются суммы свободных химических энергий сольватации, а из цепей с переносом — разности этих анергий. [c.169]

    Химический механизм сопряжения переноса электронов с образованием АТФ неизвестен. Наибольшее признание в последние годы получила гипотеза П. Митчелла об электрохимическом (хемиосмотиче-ском) сопряжении окислительных реакций в дыхательной цепи с синтезом АТФ, катализируемым АТФ-синтетазным комплексом. Согласно этой гипотезе вне- и внутримитохондриальные пространства (левая и правая часть рисунка соответственно) разделены мембраной М, непроницаемой для ионов водорода — Н+. Дыхательная цепь организована в мембране таким образом, что окисление субстрата (SH2) кислородом приводит к разделению зарядов (группа реакций — I). Энергия окисления запасается в виде электрохимического потенциала Н+ [c.471]

    Протекающие на ХМЭ процессы весьма разнообразны здесь проявляются транспортные стадии и редокс-реакции, любая из которых может лимитировать скорость электрохимического процесса. Следует заметить, что скорость переноса электрона через границу раздела поверхность электрода/слой модификатора достаточно велика и определяется величиной потенциала, В переносе электронов от электрода к депол изатору внутри модифицирующего слоя участвуют центры А и А, Частично скорость переноса заряда связана также с диффузией молекул субстрата S внутри слоя или с движением ионов, если в состав модифицирующего слоя входит ионообменник. Перенос электронов может происходить и по проводящей цепи полимера, например поливинилферроцена. Коэффициент диффузии De характеризует суммарную скорость движения электрона в слое модификатора. [c.488]

    Транспорт аминокислот через клеточные мембраны осуществляется в основном по механизму вторично-активного транспорта. В этом случае система активного транспорта приводится в действие не путем прямого гидролиза АТФ, а за счет энергии, запасенной в ионных градиентах. Перенос аминокислот внутрь клеток осуществляется чаще всего как симпорт аминокислот и ионов натрия, подобно механизму симпорта сахаров и ионов натрия. Энергия АТФ затрачивается на выкачивание Ка /К -АТФ-азой ионов натрия из клетки, создания электрохимического градиента на мембране, энергия которого опосредованно обеспечивает транспорт аминокислот в клетку. Известен ряд сходных по строению транспортных систем (транслоказ), специфичных к транспорту аминокислот нейтральных аминокислот с небольшой боковой цепью, нейтральных аминокислот с объемным боковым радикалом кислых аминокислот, основных аминокислот, пролина. Эти системы, связывая ионы натрия, индуцируют переход белка-переносчика в состояние с сильно увеличенным сродством к аминокислоте Ка" стремится к транспорту в клетку по градиенту концентрации и одновременно переносит внутрь клетки молекулы аминокислоты. Чем выще градиент Na , тем выше скорость всасывания аминокислот, которые конкурируют друг с другом за соответствующие участки связывания в транслоказе. [c.366]


Смотреть страницы где упоминается термин Электрохимические цепи без переноса ионов: [c.16]    [c.36]    [c.191]    [c.51]    [c.289]    [c.76]   
Смотреть главы в:

Теоретические основы электрохимии 1972 -> Электрохимические цепи без переноса ионов




ПОИСК





Смотрите так же термины и статьи:

Ионное без переноса

Цепи с переносом

Электрохимическая цепь



© 2025 chem21.info Реклама на сайте