Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сложные эфиры алициклических кислот

    Сложные эфиры алициклических кислот [c.244]

    Разложение по Курциусу успешно осуществляют для алифатических, алициклических, ароматических и гетероциклических кислот. Дает ли такой способ получения аминов преимущества по сравнению с разложением по Гофману, зависит от обстоятельств. Если имеется сложный эфир карбоновой кислоты, вероятно, следует предпочесть реакцию Курциуса, поскольку из сложного эфира легко получить гидразид. Если исходить из кислоты, надо, очевидно, отдать предпочтение реакции Гофмана, поскольку она позволяет объединить несколько стадий. Если присутствуют другие функциональные группы, выбор метода иной. Так, например, чтобы разложить обе [c.564]


    Опубликован обзор [11], посвященный этому методу синтеза. Этот метод применим как к алициклическим, так и к циклическим соединениям данного типа, хотя для первых труднее предсказать характер получаемых продуктов, чем для вторых. По этой причине этот метод синтеза находит более широкое применение в ряду циклических кетонов. В случае алициклических соединений с галогеном в а-положении и кетогруппой, являющейся частью циклической системы, в присутствии щелочей происходит перегруппировка, приводящая к образованию карбоновых кислот с сужением кольца. Так, например, а-галогензамещенные цикланоны, содержащие от шести до десяти атомов углерода, дают кислоты с выходом от 40 до 75%. Для осуществления перегруппировки, приводящей к образованию сложных эфиров (гл. 14 Сложные эфиры карбоновых кислот , разд. В.8) или амидов, можно применять другие нуклеофильные основания, такие, например, как алкоголяты или амины соответственно. В одном из примеров [12] применялось мягкое основание бикарбонат натрия [c.279]

    За время с 1961 по 1967 г. при помощи метода ЭХГ получены, идентифицированы и изучены свободные радикал-ионы около четырехсот различных органических соединений, таких, как, например, непредельные ациклические и алициклические углеводороды, конденсированные и неконденсированные многоядерные ароматические углеводороды, гетероциклические соединения, а также хиноны, карбонильные соединения, нитрилы, нитрозо-и нитропроизводные, сложные эфиры карбоновых кислот. [c.29]

    Белое кристаллическое вещество, т. пл. 108,5—109 °С. Растворимость в воде 0,001 мг/л, хорошо растворим во многих органических растворителях (ароматические углеводороды и их галогенопроизводные, кетоны, сложные эфиры карбоновых кислот и другие). Плохо растворим в алифатических и алициклических углеводородах (до 4%). [c.151]

    Одним из лучших способов получения алициклических макросистем является ацилоиновая конденсация сложных эфиров дикарбоновых кислот над мелкораздробленным расплавленным металлическим натрием. Однако-этот способ в применении к синтезированным нами системам типа [c.137]

    Других веществ, которые практически не поглощают в области 250—260 нм и не реагируют с уксусным ангидридом. К таким соединениям относятся различные алифатические и алициклические кислоты, простые и сложные эфиры, углеводороды и, возможно, третичные амины. Амины, в принципе, должны катализировать гидролиз уксусного ангидрида, избавляя таким образом от необходимости добавлять серную кислоту. Однако спектральные характеристики исследуемой системы будут зависеть от природы анализируемого соединения. Поэтому при анализах образцов соединений, отличных от уксусной кислоты, для определения вклада уксусного ангидрида в общее значение поглощения раствора потребуется использовать метод компенсации. Возможно, что проведению анализов будут мешать соединения, обладающие системой сопряженных двойных связей, альдегиды, кетоны, спирты, тиолы, первичные и вторичные амины, а также амиды. [c.368]


    Алициклические соединения > Карбонильные соединения > Неразвет-вленные углеводороды > Простые эфиры > Сложные эфиры > Кислоты > [c.313]

    Образование альдегидов было подтверждено экспериментом, и в этом случае наблюдалось образование продуктов восстановления. Если же исходный сложный эфир образован третичным спиртом, или если брать дифениловый эфир щавелевой кислоты, то отщепление алкоксила в виде альдегида или кетона невозможно и образуются нормальные продукты реакции. Реакция такого типа была использована также для синтеза сложных эфиров вторичных а-оксикислот алифатического и алициклического рядов. В случае алифатических радикалов промежуточное комплексное соединение [c.221]

    Интенсивный пик содержится в спектре только в том случае, если в результате электронного эффекта молекулярный ион стабилизирован. Так, в спектре ароматических соединений наблюдают большой молекулярный пик, в то время как в спектрах соединений алифатического ряда интенсивность этого пика часто очень мала. Для алифатических углеводородов интенсивность молекулярного пика уменьшается от первичных к вторичным и далее третичным углеводородам такой последовательности благоприятствуют реакции фрагментации (см. ниже). В соответствии с увеличением стабильности молекулярные ионы можно приблизительно расположить в следующий ряд спирты < кислоты < амины < сложные эфиры < простые эфиры < углеводороды с неразветвленной цепью < карбонильные соединения < алициклические соединения < олефины < олефины с сопряженными связями < ароматические соединения. [c.161]

    Класс Нг — нейтральные соединения, не растворимые в воде и в сиропообразной фосфорной кислоте, но растворимые в серной кислоте. Кроме спиртов, альдегидов, алициклических кетонов, метилкетонов и сложных эфиров, содержащих более 9 атомов углерода, к этому классу относятся многие хиноны, простые эфиры и непредельные углеводороды. Ангидриды, лактоны и ацетали могут находиться как в этом классе, так и в классах Р1 и Нь [c.64]

    Было подробно исследовано влияние растворителя на реакцию гидроформилирования кроме перечисленных изучены также алифатические, алициклические и ароматические эфиры, нитрилы, ангидриды органических кислот, кетоны, сложные эфиры, лактоны, лактамы и т. д. Полученные данные, к сожалению, весьма разноречивы. [c.75]

    Пестициды могут быть классифицированы но химическому составу хлорорганические - галоидонроизводные алициклических и ароматических углеводородов, углеводородов алифатического ряда фосфорорганические - сложные эфиры фосфорных кислот карбаматы - производные карбаминовой кислоты МП, - СООП азотсодержащие - производные мочевины, гуанидина, фенола. Хлороорганические инсектициды (т.е. яды для борьбы с вредными насекомыми) - гексахлоран, ДДТ и др. - обычно слабо растворимы в воде, очень устойчивы ко всем видам разложения и могут сохраняться в ночве десятилетиями, аккумулируясь нри систематическом ирименении. [c.52]

    Из сказанного следует важный вывод р и р° для одной и той же реакционной серии эквивалентны и численно равны друг другу . Это положение легко поддается экспериментальной проверке. Соответствующие данные приведены в табл. IV. 7. Очевидно, что равенство р° = р соблюдается далеко не всегда . Несомненно, что несоответствие не обусловлено неточностью при калибровке масштаба величин а, поскольку такая неточность должна привести только к появлению систематического отклонения, выражаемого в виде постоянства отношения р /р° 1. На самом же деле это отношение колеблется в довольно широких пределах, как это видно из приведенных в табл. IV. 7 данных. При этом бросается в глаза некая закономерность. Отношение р /р° близко к единице для реакционных серий, значение гц к.ч которых у алициклических фрагментов существенно больше расчетного (см. табл. IV. 6). Такими сериями являются щелочной гидролиз сложных эфиров карбоновых кислот в снирто-водной среде (р = р° согласно условию стандартизации), метанолиз -метиловых эфиров карбоновых кислот и диссоциация карбоновых кислот в 50%-ном (об.) водном этаноле. В случае же реакционных серий диссоциации карбоновых кислот в воде и их взаимодействия с ди- [c.174]

    Примечания. 1. Нафтеновые кислоты являются смесью монокар-боновых кислот пяти- и шестичленных алициклических соединений. Состав смеси и ее свойства зависят от исходного продукта и метода получения. Кроме свободных кислот, в смеси находится некоторое количество примесей сложных эфиров нафтеновых кислот. [c.132]

    Фактически вся липидная часть растительного мира сводится к веществам двух основных классов 1) соединения, состоящие из молекул, имеющих в основе неразветвленную (или слаборазветвлен-ную) цепь, и 2) соединения, имеющие в основе изопреноидные звенья алифатического и алициклического типов. Возможны также соединения, составленные из частей, принадлежащих к различным классам, например Bo Ka, молекулы которых являются сложными эфирами высших жирных кислот и полициклических изопреноидных спиртов — стеролов. [c.180]


    Термическая стойкость комплексного соединения зависит от характера входящих в него радикалов. Если К — арильный или алициклический радикал, то комплексное соединение распадается при сравнительао низкой температуре (40—42 °С) если же Н — алкильный радикал, то для распада более стойкого в этом случае комплексного соединения требуется и более высокая температура (110—120 °С). Термическая стойкость комплексного соединения, содержащего а-тиенильный радикал, несмотря на его ярко выраженный ароматический характер, также высока, поэтому в обычных условиях проведения магнийорганических реакций комплексное соединение не распадается, и после гидролиза вместо сложных эфиров а-тиенилгликолевой кислоты (вторичной а-оксикислоты) образуются с выходом от 30 до 50% сложные эфиры а-тиенилглиоксалевой кислоты. [c.162]

    Сложная смесь алифатических, алициклических и ароматических углеводородов Аниезон-Ь -//- Барбитураты, спирты, углеводороды, алкалоиды, эфиры жирных кислот, азотсодержащие соединения 50-300 гексан, толуол, ацетон [c.39]

    Из производных циклопропанкарбоновой кислоты наибольшее практическое значение имеют природные соединения — пиретрины и их синтетические аналоги. Природные пиретрины в виде порошка из размолотых цветков далмацкой ромашки применяли еще в глубокой древности. Природный пиретрин состоит из смеси шести продуктов [2], являющихся сложными эфирами хризантемовой (1) или пиретриновой (2) кислот (по карбоксил ЧОЙ группе при С-атоме цикла) и алициклических кетоспиртов пиретролона (3), жасмолона (4) и цине-ролона (5). [c.170]

    Эпоксидирование непредельных алициклических сложных эфиров приводит к образованию эпоксидных смол другого типа. Так, 6-метил-З-циклогексенилальдегид (XI) но реакции Тищенко дает 6-метил-З-циклогексенил-1-метиловый эфир 6-метил-З-циклогексенилкарбоновой кислоты (XII) [c.333]

    С рядом карбонильных соединений реакции присоединения осуществлены в присутствии щелочных катализаторов, преимущественно с алкоголятами сииршв. Во многих, а возможно и во всех случаях, они протекают и в отсутствие катализаторов, при длительном выдерживании реакционных смесей при комнатной температуре или нагревании. Иногда реакции сопровождаются экзотермическим эффектом. Имеются данные о проведении реакций присоединения в присутствии перекисных соединений или облучении ультрафиолетовым светом . С помощью этих методов простейшие диалкилфосфористые кислоты были присоединены к альдегидам и кетонам алифатического - , алициклического - , ароматического и гете-роциклического рядов, а также по карбонильной группе непредельных альдегидов Выход продуктов присоединения — эфиров а-оксифосфиновых кислот в большинстве случаев почти количественный. Довольно подробно к настоящему времени изучено присоединение к альдегидам и кетонам неполных эфиров фосфористой кислоты, содержащих алкильные, аралкильные, арильные и более сложные радикалы в эфирных группах, диалкил- и диарилтиофосфористых кислот, кислых эфиров фосфинистых кислот и диалкилфосфинистых кислот. [c.46]

    Среди алициклических соединений, так же, как и среди алифатических, имеются спирты, кислоты, простые и сложные эфиры и т. д. Единственное отличие заключается в том, что в их мачекуле всегда имеется кольцо, образованное атомами углерода, которое в некоторых случах может быть намного больше, чем представленные выше. Известны даже углеводороды этого ряда, кольцо которых образовано 30 атомами углерода. [c.75]

    Наиболее важным методом синтеза сульфинов является окисление тиокарбонильных соединений под действием пероксикислот, таких как Л1-хлорпербензойная кислота и моноперокси-фталевая кислота (уравнение 93). Этот метод пригоден для получения 5-оксидов некоторых алифатических и алициклических тиокетонов 198—200], ароматических тиокетонов [193, 201], тиофосгена [202], тиобензоилхлорида [203], сложных эфиров ароматических дитиокарбоновых кислот [204, 205], фенилхлор- [c.611]

    При действии надкислот на кетоны, в молекуле которых карбонильная группа связана хотя бы с одним вторичным атомом углерода, образуются сложные эфиры. Вторичная группа перегруппировывается преимущественно по сравнению с первичной. В ряду алициклических метилкетонов, от метилцикло-бутилкетона до метилциклогептилкетона, при окислении надбензойной кислотой получаются ацетаты с выходами от 58 до 78% [23]. [c.85]

    Активные вещества найдены в различных классах ацетиленовых производных. Встречаются галогензамещенные, спирты, гликоли, кислоты и их производные, сульфиды, а также элементо- рганические соединения [906], Среди хлор- и бромпроизводных несопряженных полиацетиленов найдены активные инсектициды и нематоциды [1116]. К числу наиболее активных гербицидов относятся, в частности, ацетиленовые спирты алициклического ряда ж их простые и сложные эфиры [1111]. 1-Этинилциклогексанол, кроме того, обладает избирательностью он подавляет рост широколистных растений, не оказывая влияния на травы. Третичные ацетиленовые спирты алифатического ряда применяются в качестве стабилизаторов некоторых активных нематоцидов и гербицидов, которые неустойчивы к действию тепла и света [1113]. Стабилизация достигается добавкой 0,5—1,5%, например, З-метил-З-окси-бутина-1 или З-метил-З-оксипентина-1. Некоторые ацетиленовые гликоли, содержащие циклические и гетероциклические заместители, обладают гербицидной [1098, 1118] и пестицидной [1118] активностью, а также используются как промежуточные продукты для синтеза таких веществ [1098]. [c.346]

    По интенсивности рассматриваемой полосы 720 сж много лет проводилась приблизительная оценка длины цепей или степени разветвления. Этот способ хорошо применим для углеводородов с концевыми алициклическими группами, так как метиленовые группы циклов в этой области не поглощают [51, 52]. Однако интерес к этой полосе обусловлен тем, что у кристаллических углеводородов происходит ее расщепление на дублет в результате взаимодействия метиленовых групп соседних цепей. Эта особенность использовалась, например, для оценки степени кристалличности полиэтилена и изучалась весьма интенсивно. Изучение отдельных кристаллических парафинов показывает, что у очень немногих соединений с четным числом СНг-групн имеется только одна полоса. Это относится к парафинам je, С22 и С24 и обусловлено тем, что именно эти соединения кристаллизуются, не давая обычной ромбической структуры, в которой соседние метиленовые цепи бывают расположены подходящим образом для специфического межмолекулярного взаимодействия [53, 54, 55]. Однако парафин С24 может быть получен также и в ромбической форме, тогда будет происходить расщепление полосы [55]. Одиночные полосы были найдены у таких веществ с длинной цепью, содержащих заместители, как сложные эфиры, 1-моноглицериды и триглицериды [54]. Эти соединения образуют гексагональные кристаллы, в которых цепи в каждой ячейке эквивалентны, в результате чего на элементарную ячейку приходится как бы одна цепь, и в спектре образуется только одна полоса поглощения. Аналогичные особенности кристаллической структуры определяют возможность расщепления полосы у карбоновых кислот и соединений с другими полярными заместителями. Эти эффекты следует принимать во внимание при рассмотрении надежности результатов по оценке кристалличности на основании расщепления полосы 720 Вообще ромбические и моноклинные кристаллические парафины содержат две цепи на элементарную ячейку и дают дублетную полосу, тогда как триклинные кристаллы содержат только одну цепь в элементарной ячейке и поэтому имеют только одну полосу. Более сложная [c.24]

    Так как огромное большинство органических соединений не пахнет, наличие запаха может служить характерным признаком. К соединениям, обладающим характерным запахом даже пр комнатной температуре, относятся соединения различных классов спирты и фенолы меркаптаны низшие жирные кислоты и алициклические монокарбоновые кислоты нафтеновые кислоты и их амиды и эфиры альдегиды сложные эфиры нафтолов амины, индол и его замещенные нитрилы и изонитрилы ку.марин аллилсодержащие соединения. Запахи могут быть более или менее сильными, приятными или неприятными, что также является характерным признаком. [c.92]

    Вещества в таблицах размещены по классам в следующем порядке спирты фенолы простые эфиры кетоны амины карбоновые кислоты сложные эфиры амиды сульфоксиды оксикислоты аминокислоты сахара углеводороды и их галогенпроизводные. Соответствующая рубрика имеется в таблице только при наличии не менее трех соединений — представителей данного класса. Остальные вещества объединяются под рубрикой Другие неэлектролиты в конце каждой таблицы. Углеводороды нетрадиционно поставлены после полярных веществ, поскольку погрешность данных для них значительно выше. Некоторые типы соединений со смешанными функциями не выделялись в отдельные рубрики. Спирто-эфиры помещены в конце Спиртов , аминоспирты и аминоэфиры — вместе с Аминами . Названия классов даны в широком смысле — под ними понимаются (если это возможно) соединения с алифатическими, алициклическими, ароматическими группами, а в случае эфиров и аминов — также и гетероциклы. В этом же порядке вещества стоят в пределах рубрики. Спирты расположены по возрастанию атомности, кислоты — основности. [c.188]

    Значительный интерес представляет окисление кетонов надкислотамитакже сопровождающееся расщеплением углеродного скелета и позволяющее переходить от кетонов к сложным эфирам. Эта реакция была открыта Байером и Виллигером и изучена сначала на кетонах алициклического ряда (ментоне и камфаре), которые при действии надкислот превращаются в лактоны со-оксикислот. Реакция обычно проводится при комнатной температуре в полярных органических растворителях (хлороформ, уксусная кислота, уксусный ангидрид), устойчивых к действию надкислот. Иногда в реакционную смесь добавляют каталитические количества серной кислоты или л-толуолсульфокислоты. [c.222]

    К настоящему времени изучено окисление алифатических, алициклических и ароматических углеводородов, терпенов, спиртов, альдегидов, кетонов, сложных эфиров различных карбоновых кислот, иитрило1В, гетероциклических соединений азота, гидразинов, сульфидов, элементоорганических соединений ртути, мышьяка, сурьмы и фосфора и многих других классов органических соединений. [c.102]


Смотреть страницы где упоминается термин Сложные эфиры алициклических кислот: [c.10]    [c.268]    [c.235]    [c.220]    [c.85]    [c.342]    [c.362]    [c.27]    [c.118]    [c.379]    [c.99]    [c.244]   
Смотреть главы в:

Масс-спектроскопия органических соединений -> Сложные эфиры алициклических кислот




ПОИСК







© 2025 chem21.info Реклама на сайте