Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Особенности регенерации катализаторов

    Условия регенерации катализатора могут изменяться в зависимости от состава катализатора и условий его эксплуатации. Широкое применение би- и полиметаллических катализаторов риформинга, несомненно, внесет много нового в технологию этого процесса, в том числе и в их регенерацию. Особенностью регенерации катализатора риформинга, содержащего металл платиновой группы с добавлением металлических промоторов IV группы Периодической системы элементов Д. И. [c.160]


    Применяемые в настоящее время процессы по технологическим особенностям регенерации катализатора разделяют на три типа  [c.385]

    Особенности регенерации катализаторов [c.401]

    Различные аппараты установки каталитического крекинга работают в широком интервале температур — примерно от 40 до 700°. При нарушениях технологического режима, особенно нри регенерации катализатора, могут развиваться очень высокие температуры — до 1100 (дожиг окиси углерода). [c.109]

    Отличительной особенностью данной системы крекинга является то, что здесь процесс превращения углеводородов осуществляется в слое мелких частиц твердого катализатора, энергично и непрерывно перемешиваемых в реакторе восходящим потоком паров сырья и продуктов реакции. Регенерация катализатора проводится в отдельном аппарате, но также в слое взвешенных в газовом потоке частиц катализатора. [c.122]

    Следует упомянуть о другом технологическом процессе, который, как сообщают, был позднее использован фирмой Копперс [2]. В этом процессе применяется кислотный алюмосиликатный катализатор [18, 22] при условиях реакции, аналогичных режиму, применявшемуся при использовании катализатора иОР сравнимыми получаются и выходы при одинаковом соотношении олефинов ароматический углеводород. Быть может, наиболее интересными особенностями этого катализатора являются его стабильность и легкость регенерации при помощи регулируемого сжигания. Поэтому процесс желателен для реакции деалкилирования тяжелых алкилатов, чтобы образующийся бензол возвращался в систему алкилирования. [c.495]

    Модифицирование алюмоплатинового катализатора хлоридом алюминия имеет ряд особенностей. К числу положительных следует отнести получение катализатора в готовом для эксплуатации виде на катализаторной фабрике, что исключает потери времени на хлорирование катализатора в реакторе изомеризации. К отрицательным сторонам относятся необходимость транспортировки гигроскопичного, отравляемого влагой катализатора и предварительной обработки катализатора в реакторе изомеризации значительным количеством безводного НС1, а также невозможность регенерации катализатора на месте в реакторе установки изомеризации. [c.75]

    Особенности регенерации железоокисных катализаторов [c.76]

    Вместе с тем, снижение давления приводит к увеличению скорости дезактивации катализатора, уменьшению межрегенерационного периода, увеличению числа регенераций вследствие значительного увеличения скорости коксообразования, особенно в области давлений ниже 1,5 МПа. При этом скорость дезактивации растёт тем быстрее, чем выше октановое число получаемого риформата, что хорошо видно из кривых рис. 2.11. Работа при низком давлении требует использования высокостабильных полиметаллических катализаторов, а при давлении 1,0 МПа и ниже - использование технологии с непрерывной регенерацией катализатора. [c.18]


    При организации гетерогенного каталитического процесса очень важен практический вопрос, есть ли в данной реакционной системе предпосылки для саморегулирования Для ответа на этот вопрос могут быть использованы различные экспериментальные методы, с помош,ью которых либо оценивается применимость выводов теории, либо выявляется механизм реакции и устанавливаются такие факты, как суш,ествование воздействий на дезактивацию и регенерацию катализатора в ходе реакции, поведение системы вблизи или вдали от равновесия, особенности кинетики реакций, наличие общей стадии в реакции модификации катализатора и каталитической реакции и т. п. При этом в качестве методов исследования воздействия среды на катализатор могут использоваться комбинация стационарного и нестационарного (например, импульсного) способов воздействия исследование природы промежуточных поверхностных соединений физическими методами идентификация новых состояний, возникающих в ходе каталитического процесса, и т. п. [c.300]

    В процессе регенерации катализатора в регенераторе и шлемовой трубе регенератора происходит догорание СО и СО, за счет избыточного кислорода в дымовых газах. Прн этом выделяется значительное количество тепла и температура в регенераторе, особенно в верхней его части и котле-утилизаторе, резко повышается, что может привести к деформации внутренних облицовочных листов регенератора, шлемовой трубы и котла-утилизатора. Для устранения этого явления необходимо уменьшить количество воздуха, подаваемого в регенератор, и подать воду или водяной пар над кипящий слой катализатора в регенераторе и в котел-утилизатор.По восстановлении температуры расход воздуха в регенератор довести до нормального и, в зависимости от температуры, уменьшить или полностью прекратить подачу водяного пара или воды в регенератор и котел-утилизатор. [c.181]

    Влияние серосодержащих соединений. Выход и качество риформинг-бензина снижаются при переработке сырья с повышенным содержанием серы кроме того, повышается плотность циркулирующего водородсодержащего газа, увеличиваются газообразование и степень закоксовывания катализатора. Присутствие сероводорода в циркулирующем газе приводит к коррозии аппаратов установки, особенно змеевиков печи. В результате требуется частая регенерация катализатора. [c.21]

    Кроме трубчатых, возможны и другие конструкции аппаратов с неподвижным слоем катализатора и теплообменом в зоне реакции. В процессах, связанных с периодической регенерацией катализатора, конструкции реакторов особенно разнообразны. Это вызвано необходимостью приспособить конструкцию к зачастую резко различным условиям реакции и регенерации. [c.268]

    Кипящий слой катализатора наиболее целесообразно применять в процессах, требующих частой регенерации катализатора. Для проведения реакций с большим тепловым эффектом кипящий слой особенно рационален в аппаратах большой мощности, поскольку в этом случае другие конструкции становятся практически неприемлемы. [c.270]

    Описан процесс гидрокрекинга нефтяных остатков в присутствии разбавителя (большей частью бутана в количестве 35% от массы остатка). Особенностями процесса являются низкий расход водорода и малый выход газа, высокие выходы сырья для каталитического крекинга, отсутствие регенерации катализатора. Расход водорода (в порядке перечисленных катализаторов) 5,5, 7,7 и 10,8 кг/мЗ выход бензина 13,4,14,7 и 20,3%, выход газойля 63,0, 66,8 и 65,5%, выход остатка 28,2, 22,3 и 18,2% выход газа 1,5, 1,8 и 1,9%, баланс бутана — 2,2,—0,2 и +1,1% [c.57]

    Основой для классификации реакторов процессов каталитического риформирования могут являться термодинамические и физические характеристики потоков, проходящих через реактор, направление их движения, материальное исполнение корпуса и внутренних деталей и конструктивные особенности, способы размещения и регенерации катализатора. [c.125]

    Часто, особенно в проектах установок последних лет, практикуется применение циркуляционных водородсодержащих компрессоров также для сжатия и циркуляции инертного газа в периоды регенерации катализатора. В этом случае требуется особая тщательность прн выборе типа и конструкции машины. [c.178]

    Когда регенерация катализатора риформинга уже не может восстановить активность, его заменяют. Отработанный катализатор передают на металлургические предприятия для извлечения платины и других содержащихся в нем металлов, особенно рения. Извлеченные драгоценные металлы обычно возвращают производителю катализатора для введения в новую партию свежего катализатора риформинга. [c.156]

    Следовательно, если процесс газификации основан на каталитических реакциях, сырье должно проходить предварительную очистку до того, как оно вступит в контакт с катализатором. Это особенно важно делать тогда, когда катализатор обладает повышенной чувствительностью к перегреву или термообработке или когда-сернистые соединения осели так прочно, что о простой регенерации катализатора не может быть и речи. [c.92]


    В условиях риформинга и особенно окислительной регенерации катализатора платина постепенно рекристаллизуется, кристаллиты платины укрупняются и число активных центров гидрирования-де- [c.254]

    Главная задача, решаемая при моделировании процесса окисли ной регенерации в слое катализатора,-предсказание зависимости изме> нения основных параметров процесса (температуры газа и слоя, состава газа и среднего содержания кокса на катализаторе) в зависимости от пространственных координат слоя и времени выжига кокса. Особенности регенерации слоя катализатора зависят, естественно, от начальных условий состава газа, входной температуры и массы отложившегося на катализаторе кокса. Скорость выжига кокса в слое катализатора существенным образом зависит также от относительной скорости протекания частных процессов переноса тепла и вещества в слое и на его границах, продольного и радиального смешения в слое. [c.83]

    Теоретическую оптимизацию процесса осуществляют на основе его кинетической модели. Для окислительной регенерации катализатора кинетическая модель процесса задается уравнениями (4.6). Существенная особенность регенерации-зависимость скорости выжига кокса и изменения состава газовой фазы от относительной удельной поверхности коксовых отложений-5 = (4с/9 ) = Методически оптимизация процесса окислительной регенерации идентична решению подобной задачи для нестационарных процессов с изменяющейся активностью катализатора Поэтому в исследованиях были использованы методические подходы, разработанные авторами работы [171] при решении задач теоретической оптимизации конкретных промышленных каталитических процессов, характеризующихся падением во времени активности катализаторов. [c.93]

    К особенностям регенерации биметаллических катализаторов необходимо отнести следующие. Восстановление водородом, подученным на других установках платформинга, не рекомендуется [184] во избежание гидрокрекинга содержащихся в нем углеводородов, в результате которого закоксовывается катализатор. Практика показала, что чисто платиновый катализатор можно восстанавливать водородом риформинга, если в нем нет углеводородов тяжелее пропана [184]. Для восстановления биметаллического катализатора предлагается только электролитический водород, хотя и сообщаются примеры успешного восстановления биметаллического катализатора водородом риформинга [177, 185]. [c.101]

    С. Средняя зона в виде лифт-реактора соединяет нижнюю и верхнюю зоны регенерации. Устройство средней регенерационной зоны в виде транспортной линии способствует обмену теплом между катализатором и газами регенерации. Температура в этой зоне находится в пределах 482-760 °С. После средней регенерационной зоны катализатор проходит циклонные сепараторы и поступает в верхнюю регенерационную зону. Температура в этой зоне может быть в пределах 538-871 С. Затем часть регенерированного катализатора поступает в нижнюю регенерационную зону для поддержания там необходимой температуры. Особенностью процесса является проведение частичной регенерации катализатора в одной из зон реактора. [c.132]

    КИНГОМ заключается не только в повышении скорости процесса, но и в изменении направления процесса, проявлении высокой степени избирательности его. Его основное назначение — получение высококачественного базового бензина с октановым числом до 85. Каталитический крекинг дает керосино-газойлевые фракции — топливо для дизелей и газовых турбин газ, богатый углеводородами Сд—С4. При нем выход кокса больше, чем при термическом. Однако периодическая регенерация катализатора особенно во взвешенном слое позволяет поддерживать содержание кокса в пределах, обеспечивающих достаточно высокий выход продуктов. Каталитический крекинг, несомненно, более гибкий и технологичный процесс по сравнению с термическим. [c.227]

    Различные компоненты кокса выжигаются с различной скоростью. Так, легкие углеводороды быстро удаляются из зерна катализатора при регенерации. Углерод крайне медленно выжигается. Часто, особенно при постановке исследований, скорость регенерации характеризуют содержанием именно углерода, а не общим содержанием кокса в катализаторе. Строго говоря, регенерация не является обычным горением, а представляет собой сложный химико-технологический процесс. Применение термина выжигание в данном случае несколько условное. На регенерацию катализатора в кипящем слое влияют ряд факторов. К основным пз них, определяющим скорость процесса регенерации, относятся  [c.240]

    Давление оказывает следующее влияние на процесс. Выше 150—200 ат реакции уплотнения молекул и коксообразования, сопровождающиеся блокированием активной поверхности катализаторов углистыми отложениями, термодинамически подавляются и практически почти полностью устраняются при давлениях выше 300 ат они обычно прекращаются. Поэтому окислительной регенерации катализаторов не требуется, а необходима лишь их замена через 2—3 года из-за рекристаллизации. При высоком давлении все реакции, харак терные для гидрокрекинга, протекают стабильно с неизменной интенсивностью, присущей применяемым катализаторам в течение длительного времени. Особенно сильно интенсифицируется при высоких давлениях гидрирование ароматических углеводородов вследствие устранения химико-термодинамических ограничений и облегчения подвода водорода к активной поверхности катализатора. [c.52]

    Влияние температуры и действие водяного пара на утомляемость катализаторов, применяемых в процессах крекинга, непрерывно изучаются эти явления можно исследовать непосредственно путем измерения физических свойств катализаторов независимо от химических процессов, происходящих на его поверхности. Например, как это будет показано ниже, значительное увеличение радиуса пор, сопровождаемое уменьшением поверхности, повидимому, указывает на дезактивизацию катализатора водяным паром. Кроме того, как было установлено на основании измерения адсорбции, структура пор, несомненно, связана со степенью доступности катализатора проникновению в него 1Молекул реагирующих веществ и с легкостью диффузии из него молекул продуктов реакции, так же как с особенностями регенерации катализатора при удалении образовавшихся на нем углистых отложений. [c.38]

    Многозонные термопары служат для контроля температуры по высоте слоя катализатора. Этот контроль особенно важен при регенерации катализатора. Объг но симметрично располагают три вертикальные термопары на 10 точек с шагом 400 мм, В секционном реакторе дополнительно предусмотрена горизонтальная многоточечная термопара, рг.-змещаемая в слое катализатора под вводом хладагента. Штуцер для термопары на корпусе реактора располагается на стороне, противоположной штуцеру ввода хладагента. [c.83]

    Крекинг нефтяных фракхщй сопровождается отложением кокса на развитой поверхности катализатора. Кокс, образующийся в неконцентрировапном и неудобном для извлечения виде, является единственным продуктом процесса, который не выводится с установки, а сжигается при контролируемых условиях в потоке воздуха в регенераторе. Газы регенерации — продукты сгорания кокса, легко отделяемые от массы твердых частиц катализатора, отводятся в атмосферу. Регенерированный, в значительной степени освобожденный от кокса катализатор снова используют в процессе крекинга. Характерной особенностью каталитического крекинг-процесса являются часгая регенерация катализатора и многократное его использование для превращения сырья. [c.6]

    На стадии регенерации из катализатора удаляются углеродистые вещества л, кроме того, катализатор, потерявший при частичной регенерации и осернении свою активность, особенно, при использовании в качестве исходного сырья лигроинов с высоким содергканием серы, подвергается окислению. Регенерация катализатора производится под давлением от 18 до 20 ати. Для предотвращения возможных нри этом взрывов установки оборудованы соответствующими нриснособленийми. [c.177]

    Разбавление сырья паром препятствует быстрому коксообразованию. До недавнего времени подача сырья прекращалась примерно после часа работы для регенерации катализатора пропариванием, хотя вполне допустимы и более длительные периоды работы, особенно в случае большого разбавления сырья паром. В последнее время нрименение различных катализаторов типа Шелл 105 и 205 дало возможность значительно сократить периоды регенерации. Рабочий период мон-гет длиться одну неделю нри использовании катализатора 105 и больше при использовании катализатора 205 [66]. Недавно на двух установках был применен катализатор, разработанный фирмой Доу Кемик.и Ко , но применение его требует регенерации паром и воздухом через каждый час работы [66]. Более подробно всо эти катализаторы рассмотрены ниже. [c.201]

    Процесс разработан с целью получения высококачественных дизельных топлив [137. 138] и был реализован на дооборудованной типовой установке гидроочистки дизельного топлива Л-24н6 Рязанского НПЗ. В качестве катализатора использован сероустойчивый модифицированный галогеном катализатор гидроочистки. Эта особенность катализатора обусловила наличие в технологической схеме установки (рис. 4.12) узлов осушки сырья и циркулирующего газа, а также обработки катализатора галогенсодержащими соединениями с целью поддержания его каталитической активности на постоянном уровне. Унос галогена из катализатора связан с наличием в системе паров воды, попадающих преимущественно с сырьем. Жесткие условия процесса гидроизомеризации температура проведения процесса 420 °С и проведение периодической окислительной регенерации катализатора при 550 °С способствуют удалению галогена из катализатора в виде НС1, в результате чего снижается изомеризующая активность и усиливается коррозия технологического оборудования. [c.125]

    По конструктивным особенностям реакторы риформинга различаются напраапением движения газосырьевых потоков, материальным исполнением корпуса и внутренних устройств, формой аппарата, а также способом размещения и регенерации катализатора. [c.43]

    Температура регенерации катализатора при пеосторо5кном регулировании этого процесса может быстро достигнуть 1000 ио и при соблюдении осторожности нередко повышается до 600—700 °С в тех зонах камеры, где особенно затруднен отвод тепла. Если бы катализаторы не были достаточно термоустойчивы, то регенерация оказалась бы невозможной либо потребовала б1.[ значительного времени для полного удаления всех углистых веществ с поверхности катализатора. Природные катализаторЕ>1 — различные глиньс и другие алюмосиликатные минералы, предварительно не обработанные кислотами с целью удаления щелочей, быстро и безвозь ратно теряют свою активность после первой же высокотемпературной регенерации. [c.58]

    В качестве примера перемещения зоны реакции можно привести процесс получения извести из известняка в вертикальных печах и сжигания угля в непрерывно действующих топках. К таким системам следует также отнести регенерацию катализатора процесса крекинга углеводородов, изученную Джонсоном, Фроументом и Уотсоном [29] и др. В результате крекинга углеводородов на частицах катализатора отлагается углерод. Поскольку при этом происходит непрерывное снижение активности катализатора, углерод необходимо периодически выжигать, пропуская через нагретый катализатор поток воздуха. В одном хорошо известном процессе крекинг и регенерацию проводят одновременно в двух аппаратах с псевдоожиженным слоем при непрерывной циркуляции катализатора из одного слоя в другой. В другом процессе обе реакции проводят в неподвижном слое, т. е. катализатор, не выгружая из аппарата, периодически регенерируют пропусканием горячего воздуха. Поскольку реакция сильно экзотермична, реакционная зона проходит через слой катализатора в том же направлении, что и поток воздуха, аналогично рассмотренному выше процессу обжига сульфида цинка. Одной существенной особенностью крекинг-процесса является необходимость поддержания максимальной температуры ниже определенного значения во избежание нарушения структуры катализатора и потери активности. [c.177]

    В тех случаях, когда циркуляционные компрессоры участвуют при операциях регенерации катализатора, они проверяются нз условий обеспечения подачи инертных или дымовых газов в требуемом количестве на различных ступенях регенерации катализатора и заданного давления. Кратность циркуляции при операциях выжига кокса обычно рекомендуется выбирать в пределах 500—1000 м /ч на 1 м регенерируемого катализатора. Особое внимание следует обращать также на наличие в циркулирующих дымовых газах компоиеитоз, вызывающих нарушение прочностных характеристик компрессоров, таких как сернистый ангидрид, хлористый водород, особенно в присутствии влаги. В последних случаях в проектах закладываются мероприятия по очистке и осушке циркулирующих дымовых газов. [c.179]

    Технологические схемы. Технологические схемы установок гидроочистки, как правило, включают блоки реакторный, стабилизации, очистки газов от сероводорода, компрессорную. Блоки установок, перерабатывающих различное сырье, имеют свои особенности. Схемы установок различаются вариантом подачн водородсодержащего газа (с циркуляцией или на проток ), схемой узла стабилизации (с обычной отпаркой при низком давлении с помощью печи или рибойлера с поддувом водяного пара или нагретого водородсодержащего газа прн повышенном давлении с дополнительной разгонкой под вакуумом), вариантом регенерации раствора моноэтаноламина (непосредственно на установке гидроочистки или централизованно — в общезаводском узле), способом регенерации катализатора (газовоздушный или паровоздушный). [c.140]

    На блоках риформинга с непрерывной регенерацией катализатора установки предварительной гидроочистки работают при более высоких объемных скоростях (6-8 ч 1) на более эффективном катализаторе (8-12). Между установками каталитического риформинга, работающими под низким давлением, и гидроочистки необходимо установить дожимные компрессоры для повышения общего и парциального давлений и циркуляции ВСГ. Дело в том, что прямогонные и особенно вторичные бензины растворяк1т кислород при контакте с атмосферой в негерметичных резервуарах. При поступлении бензинов с растворенным кислородом воздуха на горячую поверхность легированных теплообменников бензины окисляются с образованием оксикислот и смол. Частичная циркуляция ВСГ на блоке гидроочистки увеличивает содержание в нем сероводорода, который, окислясь до ЗОг, уничтожает пероксидные соединения бензина и предотвращает осмоление теплообменной аппаратуры, и печей. [c.183]

    В процессе фирмы Houdry дегидрирование алканов С4 и С5 осуществляется в стационарном слое таблетированного алюмохромового катализатора, с периодической регенерацией последнего нагретым воздухом. Катализатор содержит около 20% СГ2О3 и до начала работы активируется путем обработки водяным паром при 760 °С в течение 10—20 ч. Характерной особенностью метода является сбалансированный тепловой режим циклов контактирования и регенерации, поддерживаемый на заданном уровне практически без всякого притока теплоты извне . Количество теплоты, выделяемое при окислительной регенерации катализатора и затраченное на его нагрев, точно соответствует расходу теплоты, требующейся для обеспечения протекания дегидрирования. Для более полной взаимной компенсации экзо- и эндотер.мического тепловых эффектов катализатор разбавляется инертным теплоносителем, также аккумулирующим теплоту. Описанный прием позднее был использован в целом ряде процессов. [c.356]

    Расщепление ДМД-ректификата, по данным ФИН, проводится в вертикальном туннельном реакторе с движущимся сверху вниз плотным слоем зериеного катализатора фосфорная кислота на носителе при 250—300 °С и разбавлении сырья водяным паром при массовом отношении пар сырье, равном 0,5. По методу фирмы Bayer для получения изопрена применяется катализатор того же типа, однако процесс осуществляется в псевдоожиженном слое (входящий поток). Характерной особенностью последнего метода является совместное разложение ДМД и ВПП, причем теплота, выделяющаяся при выжиге кокса, образующегося преимущественно из ВПП, расходуется на компенсацию эндотермического теплового эффекта. Другая важная черта метода — это использование для разбавления сырья не чистого водяного пара, а части погона от упаривания водного слоя, образующегося при синтезе ДМД. Разложение ДМД ведется при 200—300 °С, а регенерация катализатора — при 600—700 °С. [c.367]


Смотреть страницы где упоминается термин Особенности регенерации катализаторов: [c.59]    [c.58]    [c.126]    [c.129]    [c.127]    [c.487]    [c.180]   
Смотреть главы в:

Теоретические основы ведения синтезов жидких топлив -> Особенности регенерации катализаторов




ПОИСК





Смотрите так же термины и статьи:

Особенности катализаторов



© 2024 chem21.info Реклама на сайте