Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции обмена атом молекула

    Молекула Н. — типичная гомеополярная молекула. Водный раствор водорода не проводит электрического тока. Реакции обменного разложения для него не известны. Атом водорода может образовать ионы Н и ионы Н+. [c.617]

    Это—солеобразное вещество, способное обменивать один атом иода по типу реакции обменного разложения. При нагревании он распадается на две молекулы иод-бензола. Соединения дифенилиодония напоминают по свойствам соединения закиси таллия [c.247]


    ДНК сосредоточена в хромосомах, и одной из замечательных черт этой кислоты является ее устойчивость в процессах обмена. Природа словно боится затронуть это важнейшее соединение, и реакции обмена веществ (метаболизма) как будто и не касаются драгоценной молекулы ДНК, в которой на таинственном языке записан весь план строительства будущего организма. В сложных молекулах биологически активных соединений часто наблюдается обмен групп или крупных фрагментов, если молекула находится в среде, содержащей эти группы. Так, белки, помещенные в среду, содержащую определенные аминокислоты, обменивают свои аминокислотные остатки на остатки аминокислот, имеющихся в окружающей среде. Это явление изучается с помощью изотопных методов. В вещества среды вводится какой-либо радиоактивный атом — молекула метится, и ее включение в состав белка удается зарегистрировать по появлению радиоактивности у белковых молекул. В молекуле ДНК содержится аденин. Если поместить ДНК в среду, содержащую меченый аденин, то можно убедиться, что аденин из среды не включается в молекулу ДНК— обмен не происходит. Если клетки начинают делиться, то меченая молекула входит в состав ДНК, но в дальнейшем остается в ней п не в какие обменные процессы не вступает. [c.78]

    Методика анализа, имевшаяся в распоряжении в то время, не позволяла установить, замещается ли один атом водорода на атом дейтерия или происходит более глубокий обмен, когда молекула углеводорода находится на поверхности катализатора. Получение сведений подобного рода стало возможным лишь только после применения масс-спектроскопического метода для изучения реакций обмена. [c.248]

    По способности к водородному обмену в растворах многочисленные изученные соединения [2, 3] образуют две резко обособленные группы. В первой группе обмен протекает практически мгновенно при любой температуре, не требуя катализаторов. Так протекает обмен в связях К—И, О—И, 3—Н, С1—Н и других соединений с кислотно-основными донорами дейтерия, например с В О, СгНаОВ. Этот тип обмена мы будем в дальнейшем называть быстрым. Во второй группе соединений обмен или вовсе не идет, или протекает более или менее замедленно. Возможность и скорость его определяются строением молекул и природой заместителей в них, реакцией среды и свойствами донора дейтерия. Обмен этого типа, который в дальнейшем называется медленным, сильно зависит от температуры и присутствия катализаторов протолитических реакций. Обмен медленного типа характерен для связей С —Н в органических соединениях. Из таблицы видно, что тип обмена не определяется ни свойствами отдельных связей, в которых происходит обмен, ни природой атома, с которым непосредственно связан обменивающийся атом водорода. В частности, вопреки распространенным представлениям он не характеризуется энергией, поляризацией или ионной долей связи. [c.53]


    Алкоголиз ж. протекает намного легче, чем гидролиз, поскольку в снирте Ж. более растворимы, чем в воде, п реакция в атом случае идет в гомогенной среде. Алкоголиз, так же как и гидролиз, ускоряется катализаторами (газообразный НС1). Триглицериды способны также к реакциям ацидолиза (замена одного кислотного остатка в молекуле триглицерида на другой при нагревании в присутствии соответствующей свободной жирной к-ты) и переэтерификации (взаимный обмен кислотными остатками между двумя сложными эфирами). Переэтерификации может происходить между различными триглицеридами, между триглицеридом и к.-л. другим сложным эфиром, а также внутри молекулы одного и того же триглицерида, напр.  [c.32]

    На стадии инициирования цепи, которое происходит, вероятно, на стенке, образуется атом брома (уравнение 18). Последний, реагируя с молекулой третичного углеводорода при относительно низких температурах, атакует исключительно третичный атом водорода, образуя бромистый водород и третичный алкильный радикал (19). Последний может в силу возможной обратимости предыдущей реакции ассоциироваться с кислородом (20) полученный при этом радикал перекиси стабилизируется так же, как молекула гидроперекиси, путем обменной реакции с бромистым водородом (21), подобной реакции (2). Таким образом происходит регенерация атома брома, и далее реакции снова могут повторяться в том же порядке. Реакция (21) отличает окисление в присутствии бромистого водорода от прочих окислительных процессов, так как в отсутствии такого хорошего донора водорода перекисный радикал не может быстро образовать стабильную молекулу, и поэтому разрушается в той или иной степени с разрывом углерод-углеродной связи. Другое и важное отличие заключается в специфике атаки атома брома на углерод. [c.275]

    Протонный обмен представляет собой реакцию, которую можно упрощенно записать так А В. Новых соединений может не возникать, но здесь важно, что каждая конкретная молекула существует лишь короткое время. Такое уравнение можно записать и для 100 %-й уксусной кислоты, но при этом химическое окружение атома Я, которыми обмениваются различные молекулы уксусной кислоты, остается прежним, т. е. атом водорода остается в составе карбоксильной группы. При добавлении воды протон из группы СООН получает возможность перейти в состав молекулы Н О и поменять химическое окружение. В этом случае протон из окружения А переходит в окружение В и, наоборот, протоны из молекулы Н2О легко начинают переходить в молекулы кислоты. [c.117]

    ЧТО по стерическим соображениям адсорбция олефина происходит так, что с поверхностью катализатора оказывается связана менее затрудненная сторона. Тот факт, что присоединение водорода также происходит с менее затрудненной стороны, указывает, что, по-виднмому, водород, прежде чем прореагировать с олефином, тоже адсорбируется на поверхности катализатора. Вероятно, что при адсорбции молекула водорода расщепляется на атомы. Показано, что платина катализирует гомолитический распад молекул водорода [257]. На второй стадии один из адсорбированных атомов водорода соединяется с атомом углерода, в результате чего образуется алкильный радикал (который остается связанным с поверхностью катализатора, но теперь уже только одной связью) и освобождаются два реакционных центра на катализаторе. Наконец, второй атом водорода (необязательно тот, который был ранее связан с первым атомом водорода) взаимодействует с радикалом, давая продукт реакции, освобождающийся с поверхности катализатора, и при этом вакантными становятся еще два реакционных центра на поверхности. С помощью такого процесса можно объяснить все различные побочные реакции, включая водородный обмен и изомеризацию. Например, на приведенной ниже схеме указаны элементарные стадии, которые могут реа- [c.182]

    Приведите пример обменной реакции, в ходе которой из соли А получается соль Б. Молекула А содержит ва 1 атом меньше, чем молекула Б. [c.124]

    При диссоциативном механизме реакция гидрирования и реакция обмена протекают независимо друг от друга. Так, при обмене с дейтерием насыщенный углеводород диссоциирует на поверхности катализатора и соединяется с катализатором в нестойкий промежуточный комплекс, к которому присоединяется атом дейтерия, и образовавшаяся молекула отрывается от катализатора  [c.60]

    Особенности, установленные нри помощи метода молекулярных пучков для реакций атомов щелочных металлов с молекулами Х , НХ и ВХ (X — атом галогена, R — органический радикал), в известной мере, очевидно, относятся и к бимолекулярным обменным реакциям других частиц. Как и в случае реакций атомов, щелочных металлов, здесь также встают вопросы об угловом распределении продуктов реакции и их энергии, о зависимости сечения или константы скорости от формы и распределения энергии реагирующих частиц, о продолжительности жизни промежуточного комплекса. Первый из этих вопросов в настоящее время удалось решить при помощи метода молекулярных пучков Лишь в ограниченном числе реакций (реакции атомов галогенов с молекулами галогенов, атомов Н с галогенами и галогеповодородами и D -f Hj = HD + Н). См. работу [213]. В отношении изучения распределения энергии в продуктах реакции большие возможности содержатся также в методе импульсного фотолиза [1163] и в методе, разработанном Дж. Полани с сотр. [628], заключающихся в исследовании спектров поглощения или испускания молекулярных продуктов обменных реакций атома с молекулой, например, реакций О -f NO2 = 02 + N0 или Н + I2 = НС1 С1. Это позволяет найти распределение внутренней (колебательной) энергии в продуктах реакции (сводку экспериментальных данных см. в [613]). Были также определены вероятности процессов типа Н -j- lj = H l (v) -f- l, F -f Hg = HF (v) - -+ H и некоторых других для различных значений колебательного квантового числа v (см. 411, 1364]). Так, например, относительные значения констант скорости реакции F Hj = HF + Н оказываются равными [c.281]


    Обладая тремя валентностями, каждый атом Молекулы азота может быть непосредственно связав с железной подкладкой одной или даже двумя валентными связями без того, чтобы происходила диссоциация молекулы. Б присутствии водорода, при адсорбции радикалов NH или NHg, притяжение между атомами в моле1огле азота может быть сильно ослаблено или совершенно нарушено, так что вероятность полного освобождения каждого атома азота от свйи с его партнёром и предоставления ему возможности вступать в реакцию обмена или образовывать аммиак резко возрастает по сравнению со случаем отсутствия какого-либо другого элемента, способного насытить одну из валентностей. Скорость разложения Или синтеза аммиака намного превышает скорость обмена атомов asoTa. На вольфраме этот обмен идбт ещё медленнее, но водород ускоряет его, как и на железе. [c.530]

    Сначала исходные вещества взаимодействуют на холоду при температуре реакционной массы не выше 20°, что достигается охлаждением водой через свинцовые змеевики. Происходит так называемое холодное восстановление, в результате которого две молекулы бисульфита реагируют с молекулой хлористого фенилдиазония таким образом, что одна вступает в реакцию обменного разложения, заменяя хлор при первом атоме азота одновалентным анионом сернистой кислоты, а вторая, теряя два электрона, восстанавливает второй атом азота в аминогруппу. Образующийся при этом бисульфат действует сульфирующе, в результате чего получается натриевая соль сульфаминовой кислоты (см. Сульфирование, 4, и Восстановление, 2). [c.123]

    Особенности, установленные при помощи метода молекулярных пучков для реакций атомов щелочных металлов с молекулами X. , НХ и ВХ (X — атом галогена, R — органический радикал), в известной мере, очевидно, относятся и к бимолекулярным обменным реакциям других частиц. Как и в случае реакций атомов щелочных металлов, здесь также встают вопросы об угловом распределении продуктов реакции и их энергии, о зависимости сечения или константы скорости от формы и распределения энергии реагирующих частиц, о продолжительности жизни промежуточного комплекса. Первый из этих вопросов в настоящее время удалось решить при помощи метода молекулярных пучков лишь в ограниченном числе реакций (реакции атомов галогенов с молекулами галогенов, атомов Н с галогенами и галогеиоводородами и D + Н2 = HD + И). См. работу [213]. В отношении изучения распределения энергии в продуктах реакции больише возможности содержатся также в методе импульсного фотолиза 11163] и в методе, разработанном Дж. Полани с сотр. [6281, заключающихся в исследовании спектров поглощения или испускания молекулярных продуктов обменных реакций атома с молекулой, например, реакций [c.281]

    Результаты, полученные при изучении превращений циклопарафинов в присутствии серной кислоты, полностью согласуются с теми основными положениями, которые обсуждались в разделе о реакциях парафинов на этом катализаторе. Изомеризуются и подвергаются водородному обмену только циклопарафины, в молекуле которых имеется третичный атом углерода кроме того, при этом образуются только продукты, имеющие третичный атом углерода. Наблюдаются следующие реакции цис-транс-изомеризация, миграция метильных групп, присоединенных к циклопарафиновому кольцу, и в случае этилциклопептана — расширение кольца. [c.50]

    Если сталкивающиеся молекулы притягиваются достаточно сильно, то при столкновении возможно образование долгоживущего комплекса, раснад которого, следующий за полным перераспределением энергии, приводит вновь к исходным молекулам, но уже в других колебательных состояниях. За образование комплексов мо кет быть ответственно сильное ван-дер-ваальсово притяжение [253], водородная связь [5171 или обменное взаимодействие [472]. В последнем случае, когда анергия связи комплекса особенно велика, можно ожидать полного статистического перераспределения энергии между степенями свободы комплекса. Что каса( Т1>[ вероятностей колебательных переходов, то они могут быть рассчитаны при атом в рамках статистической теории реакций (см. 21). [c.90]

    В начале этой г.павы обменные бимолекулярные реакции были разделены на трех- и четырехцентровые реакции. Те и другие реакции можно также разделить на следующие две группы реакций реакции, в которых в обмене участвует атом (или атомы), и реакции, в которых обмениваются радикалы. В первую группу входят реакции отщепления или отрыва атома, в том числе все обменные реакции между атомом или радикалом и двухатомной молекулой, а также реакции диспропорционировапия, например СП,, + С2Н5 = СН4 -Ь [c.148]

    В реагирующей системе А ВСт1АВ С атомы В тл С соединены простой связью, т. е. парой электронов с противоположными спинами, а А имеет неподеленный электрон. При присоединении А к ВС взаимодействие электронов дает снижение обменной энергии, в результате связь ВС ослабевает и нарастает тенденция к разрыву молекулы. При достижении определенного энергетического уровня атом С начинает удаляться из молекулы, а А—внедряться. В некоторый момент силы связей атомов А и С с В будут уравновешены, и система вступает в переходное состояние. Изменение потенциальной энергии системы при этой реакции представлено графически на рис. 27. В точке пересечения барьера образуется активированный [c.131]

    Для получения дополнительных данных о механизме реакции применялся метод меченых атомов [10]. Один из атомов водорода в а-положенни в н-сжтиловом спирте был замещен на атом дейтерия. Последовательность стадий для двух обсуждаемых механизмов синтеза кетопов представлена схемами на стр. 229. Из приведенных схем следует, что если обмен между атомами водорода и дейтерия в молекулах спирта невелик, то присутствие знач ительных количеств дейтерия в газообразных продуктах можно объяснить только механизмом альдольной конденсации. Ниже подробно изложены методика и результаты проведенного исследования. [c.228]

    В координационной теории реакцию между реагирук>щими веществами (водородом и непредельной молекулой при гидрогенизации) можно рассматривать как взаимодействие лигандов, присоединенных к одному и тому же иону или ато му катализатора. Через центральный атом происходит обмен электронами с изменением его степени окисления (комплексы с переносом заряда). [c.172]

    Реакции хлористого метила. Реакционная способность хлористого метила, как и других галоидалкилов, определяется активностью содержащегося в нем хлора. Сущность реакции хлористого метила состоит в обмене атома хлора на радикалы других соединений, причем атом хлора соединяется с атомом металла или водорода, а метильная группа — с остальной частью молекулы реагента. Насыщенный водяным паром хлористый метил гидролизуется с образованием метанола и хлористого водорода. Щелочные гидроокиси металлов и известковое молоко ускоряют гидролиз хлористого метила. При хранении промышленного жидкого хлористого метила, содержащего только следы влаги (0,05% и выше), возможна серьезная коррозия 133]. [c.367]

    Закономерности обмена некоторых элементов. Обмен водорода. Так как самым распространенным соеди-рением дейтерия является тяжеловодородная вода, большая часть обменных реакций водорода изучалась в систе> мах, одним из компонентов которых была 0,0. Общие за кономерности обмена в таких системах были сформулированы А. И. Бродским. Согласно теории А. И. Бродского, обмен водородом между водой и различными водородсодержащими соединениями происходит достаточно легко лишь в тех связях Э—Н, где атом элемента Э содержит свободную электронную пару. Схема обмена при этом выглядит следующим образом дейтерон 0" , точнее ОаО" (всегда имеющийся в воде вследствие процесса автоионизацни), присоединяется к молекуле, содержащей связь Э—Н, по схеме 0+ + Э—Н [О Э—Н1+ ОЭ + Н+. Как следует из схемы, присоединение сопровождается одновременным уходом Н" . Обратимость приведенного процесса и является причиной обмена. [c.135]

    Только синтез, дающий продукт с точно известным положением атома-метки, введенного в молекулу в процессе синтеза, позволяет говорить о строго определенной или специфической метке соединений. Обменные реакции можно использовать для специфической метки соединений только в том случае, когда в молекуле отсутствует другой атом, способный к обменной реакции или когда допустим обмен нескольких равноценных атомов в большинстве случаев обменные реакции приводят только к неспецифически меченым соединениям, поскольку обмен происходит до определенной степени со всеми или с большей частью присутствующих в молекуле атомов данного вида. Подобным же образом биосинтезы дают, за редкими исключениями, неспецифически меченные соединения. Возможности выбора радиоизотопов для синтеза меченых соединений достаточно велики. Большая группа радиоизотопов, используемых для этой цели, описана в разд. 4.2. [c.660]

    Одинарная связь С—О менее поляризована, чем связь С—S+ yS-аде-нозилметионина, поэтому простые эфиры нелегко расщепляются в реакциях замещения. Однако гликозиды, у которых имеется атом углерода, соединенный с двумя атомами кислорода, вступают в реакции замещения. приводящие к фосфоролизу, гидролизу или обмену гликозильной группы, в уравнении (7-4) показана реакция замещения в гликозиде (в остатке глюкозы, находящемся на конце цепи молекулы крахмала) фосфатом, выступающим в роли замещающего агента. Как видно из [c.95]

    Несколько по-иному складывается положение при работе с Н. Как уже отмечалось выше, в этом случае изотопные эффекты могут быть очень значительными. Кроме того, многие атомы водорода в органических молекулах с большей или меньшей скоростью обмениваются с атомами водорода воды. Вероятность химического обмена как способа введения метки или ее потери обычно очевидна. Если введенный (иногда в довольно жестких условиях) меченый атом стабилен в последующих превращениях, эта реакция, очевидно, может использоваться как важный способ получения соединений, меченных Н. Кроме того, существует несколько Довольно обычных катализируемых ферментами процессов, осуществления которых трудно ожидать в мягких условиях химических реакций, но которые in vivo приводят к обмену атомов водорода. Выбор меченных Н соединений гораздо более узок, чем в случае С, но некоторые из них, в том числе НгО и Нг, до- [c.471]

    Атом хлора в молекуле 4-хлор-6-метил-2-фенил-3-пиридазона относительно реакционноспособен и обменивается на амино-[75, 120] и на замещенную аминогруппу [75, 168], а также на этоксильную группу [4, 121]. Аналогично ведут себя другие 4-хлорпиридазоны [168]. Обмен атома хлора в 5-хлор-2,6-диме-тил-З-пиридазоне на аминогруппу происходит при несколько более высоких температурах [74], что, однако, не может служить указанием на меньшую реакционную способность атома галогена в положении 5 по сравнению с реакционной способностью атома галогена в положении 4. Имеются данные относительно обмена на алкоксильную и замещенную аминогруппы [184] замещение на нитрильную группу в присутствии солей закиси меди было проведено в жестких условиях 178]. Атом брома, находящийся в молекуле 4,5-дибром-2-фенил-3-пиридазона в положении 5, является более реакционноспособным и может быть заменен на алкоксильную и аминогруппы [173, 186]. Реакции этого соединения важны для доказательства структуры циклических гидразидов, полученных из ангидрида хлормалеиновой кислоты, и подробно изображены на схеме, приведенной на стр. 108. На этой схеме, как и на двух других, предшествующих ей (стр. 106 и 107), представлены некоторые реакции 6-хлор-2-фенил-3-пиридазонов. Изучен также 6-бром-2-фенил-3-пиридазон- [187]. [c.103]

    Гидроксид-ион как нуклеофильный реагент присоединяется к атому углерода карбонильной группы молекулы сложного эфира. Образовавшийся промежуточный анион стабилизируется путем выброса алкоксид-иона и превращается в молекулу карбоновой кислоты. Затем происходит обменная реакция между карбоновой кислотой и ал-коксид-ионом (сильное основание). [c.267]

    В начале этой главы обменные бимолекулярные реакции были разделены на трех- и четырехцентровые реакции. Те и другие реакции можно также разделить на следующие две группы реакций реакции, в которых в обмене участвует атом (или атомы), и реакции, в которых обмениваются радикалы. В первую группу входят реакции отщ пления или отрыва атома, в том числе все обменные реакции между атомом или.радикалом и двухатомной молекулой, а также реакции диспропорционирования, например, СНз + С2Н5 = СН4 + С2Н4 или N0 + N03 = 2 N02. Вторую группу составляют реакции, которые можно назвать реакциями отщепления или отрыва радикала, какими, в частности, являются реакции замещения или вытеснения, например, О -р СОЗ = СО2 - - 8 или реакции изотопного обмена типа б + СО2 = СОб + О или Ь + Н2О = НВО + Н. [c.286]

    Кроме энергетического разветвления цецей, обусловленного межмоле-кулярным обменом энергии (Н Ег = Н НГ -1- Г), Шиловым с сотр. [145, 299] на примере реакции фтора с СНдТ были открыты разветвления, осуществляющиеся в результате внутримолекулярного обмена энергии. В этой реакции радикалы СНа , образующиеся в процессе Г СНд = = НГ -Ь СНа , взаимодействуя со фтором СНа -Ь Га = СНа Г + Г 4- 78 ккал, превращаются в богатую энергией молекулу СНа Г, которая в результате перераспределения энергии, не успев стабилизоваться, может распасться по схеме СНа Г СНаГ -Н Образующийся при этом радикал СНаГ, взаимодействуя с молекулой фтора, дает атом фтора (СНаГ + Га = СНаГа + Г), который инициирует новую цепь (разветвление). В соответствии с этим механизмом в продуктах реакции были обнаружены молекулярный иод, образующийся при рекомбинации атомов иода, и фтористый метилен СНаГа- По спектру ЭПР были обнаружены атомы иода. [c.445]

    В действительности указанный поворот вокруг углерод-углеродной связи происходит при одновременном приближении атома Н, взаимодействие которого с ближайшим к нему атомом С снижает энергию системы. Энергетич( ски наиболее выгодной, очевидно, будет такая конфигурация активированного комплекса, при которой атом Н расположен на прямой, перпендикулярной к связи С = С и проходящей через один из атомов углерода, что обеспечивает наибольшее перекрывание р-электронной орбиты последнего с орбитой атома Н (рис. 55). Если в качестве параметра, определяющего потенциальную энергию системы, вместо расстояния С = С ввести угол ф между направле-пнем осей р-орбит атомов углерода (рис. 55), то для оценки энергии активации присоединения атома к двойной связи можно воспользоваться уравнением Лондона (10.2), рассматривая эту задачу как трех-электронную. Полагая, что в уравнении Лондона а обозначает обменный интеграл связи Н—С, (3 — зависящий от угла ф обменный интеграл -связи С = С и — обменный интеграл взаимодействия непосредственно не связанных атомов Н и С, легко показать, что одновременное увеличение угла ф (приводящее к уменьшению интегралов р и Т) и приближение атома Н (приводящее к увеличению а) требует значительно меньшей затраты энергии, чем поворот р-облаков на 90° в изолированной молекуле (в принятых обозначениях интегралов энергия такого поворота равна 3). Это значит, это энергия активации процесса П р1ИСоединения атома Н к двойной связи должна быть сравнительно малой. Следует также ожидать, что при втором механизме присоединения к двойной связи предэкспоненциальный множитель в выражигаи константы скоростн реакции по порядку величины не должен сильно отличаться от величины 2, т. е. от величины порядка 10 молей сек . [c.212]

    Здесь индексы A, ВС ii относятся, соответственио, к атому А, молекуле ВС и активированному комплексу АВС. Хотя значение энергии активации, получаемое при помощи полуэмпиричес.юго метода (см. гл. III, 10), нельзя рассматривать как строго теоретическое, поскольку при этом отношение кулоновского и обменного интегралов подбирается эмпирически, в данном случае воспользуемся результатом такого расчета. Это дает представление о том, как можно было бы рассчитать константу скорости элементарной реакции, если бы энергия и другие характеристики активированного комплекса были вычислены теоретически. [c.219]


Смотреть страницы где упоминается термин Реакции обмена атом молекула: [c.215]    [c.6]    [c.26]    [c.22]    [c.422]    [c.227]    [c.139]    [c.233]    [c.119]    [c.290]    [c.463]    [c.212]    [c.293]    [c.91]    [c.119]    [c.199]    [c.13]   
Смотреть главы в:

Физическая химия быстрых реакций -> Реакции обмена атом молекула




ПОИСК





Смотрите так же термины и статьи:

Реакции обмена

Реакции обменные



© 2024 chem21.info Реклама на сайте