Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кислотные центры поверхности окиси алюминия

    Пиридин, являясь более слабым основанием, по сравнению с аммиаком, реагирует только с сильными кислотными центрами поверхности. Специфическая адсорбция пиридина на поверхности кремнезема является молекулярной и происходит за счет образования водородных связей с поверхностными гидроксильными группами [41]. Окись алюминия обладает сильными кислотными центрами типа Льюиса и обнаруживает присутствие лишь незначительного количества протонодонорных центров, способных к образованию при адсорбции пиридина ионов пиридиния (см. главу УП1). [c.316]


    Природа активных центров окиси алюминия. Поскольку окись алюминия активирует скелетную изомеризацию (что обычно связывают с кислотными свойствами АЬОз), были исследованы кислотные свойства ее поверхности. При этом было показано, что чистая АЬОз, полученная из изопропилата алюминия или действием аммиака на нитрат алюминия и прокаленная при 600— [c.151]

    Известно, что окись алюминия содержит центры различной кислотной силы [17, 25]. Слабокислотные центры ответственны за дегидратацию спиртов, среднекислотные — за перемещение двойной связи в олефине, сильные — за его скелетную изомеризацию. На 1 см поверхности АЬОз имелось сильнокислотных центров, в то [c.152]

    Наибольшее внимание при изучении кислотно-основного гетерогенного катализа до последнего времени естественно было уделено прежде всего реакциям, которые протекают на таких распространенных катализаторах, как окись алюминия и алюмосиликаты. В результате многочисленных исследований в этом направлении все большее значение теперь приобретает вывод о том, что на поверхности этих катализаторов существует порознь и вместе два рода активных центров кислоты с активными протонами [c.348]

    Таким образом, оказывается, что окись алюминия способствует использованию -электронов платины для образования связи с адсорбированной окисью углерода. Этот вывод трудно примирить с фактом существования на поверхности окиси алюминия сильных кислотных центров Льюиса, которые обсуждались в гл. 7. Можно было ожидать, что электроноакцепторные центры окиси алюминия будут координировать -электроны металла, препятствуя их участию в адсорбции окиси углерода. [c.264]

    При изучении различных реакций органических соединений на алюмосиликатных катализаторах обнаружена специфичность каталитических свойств алюмосиликатов по сравнению со свойствами исходных окислов. Известно, что реакции полимеризации, алкилирования, крекинга и другие, идущие с изменением углеродного скелета, ускоряются алюмосиликатными и другими кислотными катализаторами, но не ускоряются чистыми окислами алюминия и кремния. Для реакции крекинга и перераспределения водорода установлен максимум активности от состава катализаторов. Однако реакция дегидратации спиртов существенно отличается от реакций углеводородов тем, что при дегидратации активность этих катализаторов не обусловлена их кислотностью и не наблюдается максимума активности от состава. Окись алюминия, неактивная для превращения углеводородов, проявляет наибольшую активность в реакции дегидратации спиртов. Это обстоятельство указывает на то, что механизм действия и природа активных центров для реакции дегидратации спиртов отличаются от таковых в случае превращения углеводородов. В связи с этим изучение химических свойств поверхности окисных катализаторов и сопоставление их с каталитическими данными (алюмосиликатов и исходных окислов) представляют большой интерес для теории катализа. [c.905]


    Целью настоящего исследования было выяснение вопроса о том, существует ли зависимость между активностью различных образцов окиси алюминия и алюмосиликатов в реакции обмена водорода па дейтерий в к-нро-пане и активностью их в реакции переноса электрона или кислотностью их поверхности. Наряду с кислотными свойствами, которые были исследованы многими авторами, каталитически активная окись алюминия обладает значительной окислительно-восстановительной активностью [6]. Окислительные и восстановительные процессы протекают на разных местах каталитически активной поверхности, хотя можно показать, что эти активные центры до некоторой степени взаимосвязаны [7]. Сообщаются также ре,зультаты измерений величины поверхности катализаторов и адсорбции пропана на них. [c.361]

    В течение многих лет считали, что карбониевые ионы играют основную роль в реакциях крекинга и изомеризации углеводородов, происходящих на поверхности твердых катализаторов, подобных окиси алюминия [65]. Все эти реакции требуют в газовой фазе жестких условий, в жидкой фазе — применения сильных кислот в качестве катализаторов, но на поверхности окиси алюминия идут с высокими выходами при умеренных температурах. Окись алюминия имеет ряд центров с собственной кислотностью [68], на что указывает ее типично кислотное поведение, включая появление окраски у индикаторов и адсорбцию триэтиламина. Недавно были получены прямые спектроскопические доказательства существования карбониевых ионов в трифенилкарбиноле, адсорбированном на алюмосили-катном катализаторе [69]. Высушивание системы приводит к появлению окраски иона, в то время как при стоянии на влажном воздухе окраска исчезает. Эту последовательность явлений можно многократно воспроизвести и объяснить следующим равновесием  [c.37]

    Обработанная окись алюминия дает водную суспензию с pH 3, и поэтому ее называют кислой окисью алюминия она является анионным обменником. При осторожной нейтрализации получают нейтральную окись алюминия, не проявляющую ни катионо-, ни анионообменных свойств. На такой окиси алюминия (водные суспензии pH 6,8) не наблюдается эффектов, связанных с кислотными или основными поверхностными реакциями. Нейтральная окись алюминия не адсорбирует из водных растворов ни метиленовый голубой (адсорбируется основными катионными центрами), ни нафтоловый оранжевый (адсорбируется кислотными анионообменными центрами). Нейтральная окись алюминия предпочтительна для разделения чувствительных воцеств в неполярных средах, так как на поверхности окиси алюминия почти всегда находится адсорбированная вода, в которой растворяются удерживающиеся вещества и при этом вступают в контакт с кислотными или основными поверхностными группами в полярной феде. [c.110]

    В большинстве работ по изучению каталитической активности оксида алюминия затрагивается связь ее с поверхностной кислотностью. Обширная дискуссия о природе кислотных центров оксида алюминия в настоящее время решена в пользу утверждения, что кислотность оксида алюминия связана с кислотой типа Льюиса и обусловлена ионами алюминия с координационным числом 4. Некоторые авторы предполагают наличие на поверхности оксида алюминия двух типов кислотных центров до 300 °С имеет место кислотность типа Льюиса, а выше 300 °С - Брен-стеда. В серии рабо т, где высказана эта же точка зрения, одновременно сформулированы требования к химическому составу оксида алюминия, обеспечивающему его максимальную кислотность. Кислотность оксида алюминия зависит также от содержания в нем щелочноземельных и особенно щелочных металлов (натрия). На примере реакций изомеризации олефинов установлена зависимость между содержанием натрия в оксиде алюминия и изомеризующей активностью и кислотностью. Максимальные активность в реакции изомеризации олефинов и кислотность соот-вествуют минимальному содержанию натрия в оксиде алюминия. Каталитическую активность оксида алюминия в реакциях кислотного тлпа можно усилить путем введения в его состав галогенов. Единое мнение о характере взаимодействия оксида алюминия и галогенов заключается в том, что поверхностные гидроксильньге группы оксида алюминия и, возможно часть атомов кислорода замещаются ионами хлора и фтора. Природа ак тивных центров оксида алюминия, возникающих при введении галогена и механизм влияния фтора и хлора на его поверхностную кислотность являются предметом дискуссии. Согласно Ал. А. Петрову [5, с. 72], ок сид алюминия, обработанный хлороводородом, увеличивает кислотность и приобретает каталитическую активность в том случае, когда хлорид-ион замещает одну из парных гидроксильных групп, причем водород другой гидроксильной группы, благодаря соседству электроотрицательного атома хлора, становится подвижным и способным к диссоциации в форме протона. При замещении галогеном одиночной гидроксильной группы активный центр не образуется. Структура активного центра хлорзаме-щенного оксида алюминия может быть представлена формулой [c.44]


    Функция кислотности Гаммета На для ЗЮг составляет от +4 до -+-6,8, окись алюминия также имеет очень слабые кислотные свойства (Яо -[-4), а алюмосиликаты имеют Яо —8,2, их кислотность близка к кислотности серной кислоты, нанесенной на силикагель. Сила кислотных центров на поверхности алюмосиликатов различна, часть центров обладает очень высокой кислотностью (Яо —12,5). С изменением соотнощения ЗЮа А Оз в алюмосиликатах изменяется кислотность и по Бренстеду, и по Льюису. Кислотность по Льюису максимальна для чистой окиси алюминия и с увеличением содержания 5102 уменьшается, для чистой двуокиси кремния они приблизительно равна нулю. Кислотность по Бренстеду в расчете на единицу поверхности алюмосиликата максимальна при содержании 30—40% АЬОз и 70—60 /о 5Юг. Аморфные синтетические алюмосиликаты такогв" состава имеют максимальную активность при каталитическом крекинге (при одинаковой технологии приготовления). Из нижеприведенных данных видно, что при нагревании алюмосиликатов протонная кислотность [c.210]

    Платиновый катализатор относится кбифункциональным активный носитель (окись алюминия или алюмосиликат) обладает кислотными центрами, на которых протекают реакции изомеризации нафтеновых колец, гидрокрекинг парафинов и незначительная изомеризация образующихся при гидрокрекинге парафинов и олефинов (с последующим насыщением олефинов водородом). Платина, тонко диспергированная и нанесенная равномерно на поверхности носителя, обладает гидрирую- [c.126]

    Гидрообессеривание остаточного сырья обычно протекает при более высоких температурах, при которых значительную роль играют термические превращения, в отличие от гидрообессеривания дистиллятного сырья, где преобладающее значение имеют каталитические процессы. В результате термических реакций и образования более легких ненасыщенных соединений расход водорода иа очистку остаточного сырья в несколько раз выше, чем на очистку вакуумных газойлей. Для сокращения расхода водорода и предотвращения полимеризации образующихся свободных радикалов катализатор для гидрообессеривания остаточного сырья должен, с одной стороны, минимально ускорять процессы крекинга и, с другой стороны, содержать в своем составе металлы, усиливающие их гидрирующие свойства. Носителями таких катализаторов служат материалы, имеющие слабые кислотные центры, которые в рабочих условиях нейтрализуются соединениями азота при их высокой концентрации в исходном сырье, например окись алюминия (А1аОз) и окись крем-лия (3]02). Катализаторы, применяемые для гидрообессеривания остаточного сырья, имеют значительно большую удельную поверхность, объем и радиус пор, чем катализаторы для гидрообессеривания дистиллятного сырья. Хорошие показатели в промышленных условиях показал микросферический катализатор. По данным [40, с. 31], при обессеривании атмосферного остатка пефти Западного Техаса в трехфазном слое на катализаторе с гранулами размером 1,6 мм содержание серы снижалось с 2,54 до 0,79%. В этом же сырье и при тех же условиях на катализаторе, но с гранулами размером 0,8 мм, содержание серы было снижено до 0,5%. [c.109]

    Указанные выше причины неоднородности поверхности ионных и молекулярных кристаллов относятся также и к кри - ллическим окисным адсорбентам, таким, как окись магния, .яатаз, рутил, кварц и др. В этом случае часто возникают дополнительные осложнения из-за химической неоднородности поверхности, так как дегидроксилированные окислы легко хемосорбируют воду, в результате чего на поверхности образуются гидроксилированные участки, которые при дальнейшей откачке перед опытами по адсорбции частично снова дегидроксилируются. Очень большое значение в этих случаях имеют примеси. В частности, примеси алюминия или бора на поверхности кремнезема создают сильные кислотные центры, вызывающие хемосорбцию многих органических оснований (см. обзоры (333— 335]).  [c.70]

    Эти сравнительно сильные химические силы вызывают появление изотерм Я-типа и обычно ведут к плохому разделению в элютивной хроматографии. Хемосорбция часто используется для селективного удерживания соединений некоторых типов. Примерами могут служить адсорбция аминов катионообменными смолами, адсорбция олефинов двуокисью кремния, пропитанной нитратом серебра. Изотермы Я-типа часто наблюдаются в высокоэффективной элютивной хроматографии. Они могут быть вызваны хемосорбцией некоторых растворенных веществ на тех активных центрах поверхности адсорбента, которые не были полностью дезактивированы. Например, поверхность двуокиси кремния может содержать некоторые остаточные кислотные центры, которые адсорбируют основания. Аналогично окись алюминия содержит центры основного характера, которые сильно хемосорбируют кислоты. Флорисип (сипикат магния) также содержит сильные кислотные центры и, как было отмечено, хемосорбирует ряд соединений, включая ароматические углеводороды, азотсодержащие соединения, обладающие основным характером, и эфиры, в то же время окись магния хемосорбирует полиядерные ароматические углеводороды. Следствием хемосорбции в колонках является появление полос, имеющих сильно растянутые "хвосты", что ведет к неполному разрешению и извлечению образца. В ТСХ в этих случаях часть образца, очевидно, должна оставаться сзади в виде пятна в точке введения пробы. В конце этой главы приведен список дополнительной литературы, где подробно рассматривается хемосорбция. [c.55]

    Вполне определенного объяснения этого явления еще нет. Франкенбург [148] считает, что окись алюминия создает на поверхности железа активные центры кислотного типа, способные прочно хемосорбйровать частицы,, атомы [c.182]

    Мы видим, что, с одной стороны, окись алюминия создает активные центры кислотного типа на поверхности SiOg, с другой стороны,— это промотор для никеля, стабилизирующий окись NiO. [c.183]

    Качественная информация об относительной силе этих центров получа.лась путем изучения способности поверхности хемосор-бировать основания различной силы. Информация относительно концентрации кислотных центров различных типов была получена путем измерений количеств адсорбированных оснований. Например, Пайне и Хааг (1960) считали, что окись алюминия имеет слабокислотные центры, которые способны хемосорбировать амины и которые могут дегидратировать спирты до олефинов. На поверхности окиси алюминия суш,ествуют сильно кислотные центры, способные давать окраску с кислотными индикаторами и изоме-ризовать циклогексен в метилциклопентен. Было найдено, что введенпе ш,елочи в окись алюминия отравляет сильные кислотные центры, в результате чего изомеризация циклогексена становится невозможной. Слабокислотные центры еще способны адсорбировать амины и дегидратировать спирты. Установлено, что на 1 см имелось 1-10 сильнокислотных центров, в то время как общее число кислотных центров составляло 10-10 центров на 1 см . Исследование хемосорбцип с использованием триметпламипа дало значение 2,5 центров па 1 см . Холл (1960) установил величину 5-10 льюисовских кислотных центров па 1 см поверхности алю-мосиликатного катализатора крекинга. Представляет интерес сравнить эту величину с пределом обнаружения методом инфракрасной спектроскопии. Пери (1960) полагал, что в случае используемого им образца окиси алюминия поверхностная кислотная [c.231]

    Исследование адсорбции аммиака и пиридина на поверхности твердого тела методом инфракрасной спектроскопии позволяет различать оба типа кислотных центров и оценивать их концентрацию. Первой работой в этом направлении было исследование ИК-спектров аммиака, адсорбированного на алюмосиликатах, выполненное Мейпсом и Эйшен-сом [84]. Они нащли, что в ИК-спектрах имеются две характерные полосы поглощения, одна из которых указывает на взаимодействие молекул NHз с льюисовскими кислотными центрами, а другая соответствует образованию ионов МН+ на бренстедовских центрах. Позднее Базила и Кентнер [85] показали, что существует три типа адсорбции аммиака на алюмосиликате физически адсорбированные молекулы, координационно-связанные молекулы и ион NH4. Каждый тип адсорбции может быть охарактеризован специфической полосой поглощения (табл.7). По данным этих авторов, относительная интенсивность полос поглощения соответствует отнощению Ь В-кислотных центров, равному 4. Различие в спектрах пиридина, координационно-связанного с поверхностью, и иона пиридиния (табл. 8) также позволяет различать природу кислотности на поверхности твердого тела [86]. По сдвигу полосы поглощения координационно-связанного пиридина относительно жидкой фазы и по интенсивности такой поло сы после вакуумирования и нагревания можно приблизительно оценить поверхностную льюисовскую кислотность. Перри [86] показал, что окись алюминия является сильной льюисовской кислотой и не имеет кислотных центров Бренстеда, в то время как алюмосиликат проявляет оба типа кислотности. Не так давно для раздельного определения бренстедовских и льюисовских центров на поверхности цеолитных катализаторов использовались ИК-спектры пиперидина, имеющего более высокое рК [87]. [c.38]

    Таким образом, природа окислов и химическая активность их поверхности, зависящая от методов активации окислов, оказывает решающее влияние на механизм инициирования полимеризации. Так, окись алюминия, термообработанная или. активированная кислотами, инициирует полимеризацию по ионному или ионно-координационному механизму, что связано с наличием на ее поверхности кислотных центров и коорди-национно-ненасыщенных атомов металлов. Почти все окислы металлов в зависимости от условий могут катализировать процесс полимеризации как по ионному, так и по радикальному механизмам. [c.158]

    В дополнение к сказанному Милликен, Миле и Облед предложили новую, однако чисто гипотетическую, концепцию природы и происхождения кислотных центров крекинг-катализаторов. Они высказали предположение, что при температуре крекинга фактически вся окись алюминия катализатора имеет структуру с координационным числом 6, иначе говоря, что структура кислоты Льюиса имеется лишь в потенциальном виде. Ионы алюминия, наиболее близкие к тетраэдрическому иону кремния, находятся в напряженном состоянии и испытывают индуцированное координационное смещение , т. е. вынуждены приобрести тетраэдрическую структуру (координационное число 4) при приближении молекулы даже со слабыми основными свойствами, например молекулы парафинового углеводорода. Другими словами, кислотные центры катализатора в действительности создаются только в момент приближения основания. Доля поверхности катализатора, ставшей кислотной, зависит от количества ионов кислорода на поверхности, соединенных одновременно с кремнием и с алюминием, то есть от степени дисперсности окиси алюминия в окиси кремния, от содержания гидроксила в окиси алюминия и от поляризующей способности основания, приближающегося к потенциальному кислотному центру. Слабо основные молекулы (слабые основания по Льюису — например парафины), хотя и обладают лишь слабой спосо бностью поляризовать другие молекулы, однако, по мнению Милликеиа и др., способны изменить координационное число ионов алюминия, наиболее близко расположенных к тетраэдрическим ионам кремния. Более сильные основания, например хинолин, могут индуцировать координационное смещение ионов алюминия, более удаленных от окиси кремния. Таким образом, кислотность катализатора становится функцией основности вещества, применяемого для измерения этой кислотности. [c.22]

    Таким образом, фторированную окись алюминия, гидроксофториды и их смеси с фтористым алюминием можно отнести к классу катализаторов, активность которых в реакциях превращения углеводородов обусловливается кислотными свойствами их поверхности, т. е. наличием апротонных и протонных центров. Поэтому определение поверхностной кислотности различными методами и сопоставление активности катализаторов с их кислотными свойствами интересно и необходимо. Полученные результаты могут быть использованы при обсуждении и создании основ предвидения каталитического действия подобных катализаторов. [c.349]

    Алюмоплатиновые катализаторы [336] нашли широкое применение в производстве высокооктановых топлив и ароматических углеводородов на основе фракций прямогонного бензина. Превращения углеводородов на этих катализаторах определяются совместным действием дегидрирующих (платина) и кислотных (промотированная фтором или хлором окись алюминия) активных центров. Содержание платины в катализаторе составляет 0,3—0,6 вес.%, кроме того, некоторые марки катализатора содержат 0,3—0,5 вес.% га.чоидов (хлор, фтор). Общая удельная поверхность для разных марок катализатора меняется от 180 до 300 м /г. Дисперсность платины оценивается удельной хемосорбцией водорода на атомах платины (Н/Р1) и составляет от 0,5 для катализаторов среднего качества до 0,8—1 для лучших марок. Отдельные марки катализатора наряду с тонкими порами содержат некоторое количество крупных пор. [c.78]


Смотреть страницы где упоминается термин Кислотные центры поверхности окиси алюминия: [c.88]    [c.62]    [c.88]    [c.272]    [c.910]    [c.146]    [c.365]   
Смотреть главы в:

Инфракрасные спектры поверхностных соединений -> Кислотные центры поверхности окиси алюминия




ПОИСК





Смотрите так же термины и статьи:

Алюминий кислотная



© 2024 chem21.info Реклама на сайте