Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Влияние нейтральных катионов и анионов

    Как известно, комплексные соли диссоциируют в водных растворах, образуя комплексные ионы. Комплексные катионы и анионы имеют сложную структуру, включая в свой состав элементарные ионы и нейтральные молекулы, тесно связанные друг с другом. Последним обусловлено то, что комплексные ионы в водных растворах ведут себя как единое целое и, как правило, не отщепляют входящих в их состав элементарных ионов и нейтральных молекул. Во многих случаях, однако, устойчивость комплексных ионов не безгранична и могут быть подобраны условия, при которых они в водных растворах в большей или меньшей степени диссоциируют. Одним из условий, вызывающих диссоциацию комплексных ионов, является разбавление водного раствора. Так, например, концентрированный раствор тетра-родано-(П)кобальтата имеет синюю окраску, обусловленную присутствием ионов [Со(СЫ5)4] -, в этом растворе нельзя обнаружить присутствия ионов кобальта (И). При разбавлении раствора водой синяя окраска сменяется розовой. Это объясняется тем, что под влиянием избытка воды происходит превращение [c.69]


    Влияние электролитов (нейтральных солей) своеобразно прежде всего тем, что главным образом на набухание влияют анионы и лишь в значительной степени катионы. Причем одни анионы усиливают набухание, а другие ослабляют. По влиянию анионов на набухание последние можно расположить в лиотропный ряд. Анионы, расположенные до хлорид-иона, усиливают набухание в нисходящем порядке. Хлорид занимает близкое к нейтральному положение, а последующие анионы не только не усиливают набухание, а, наоборот, все больше его задерживают  [c.366]

    Влияние нейтральных катионов и анионов [c.338]

    Полное описание теории дано Вервеем и Овербеком (1948). Предполагается, что двойной слой возникает благодаря равновесию между ионами в растворе и ионами на поверхности частиц. Хотя система является электрически нейтральной, катионы и анионы не одинаково распределяются ме/1 ду межфазной поверхностью и раствором. В дополнение к ионам, возникающим из растворителя (Н+ и ОН ), в растворе могут быть ионы эмульгатора (например, П" из карбоксильной кислотной группы) и ионы, полученные в результате диссоциации растворенных электролитов. Природа поверхностного заряда будет зависеть от адсорбции и концентрации присутствующих ионов. Обычно преобладает один вид ионов, который становится потенциалопределяющим ионом для системы, в то время как другие присутствующие электролиты не оказывают особого влияния на поверхность и могут считаться индифферентными. [c.96]

    Чаще всего адсорбция необратима. Если внести адсорбент в раствор электролита, то либо анион и катион соли адсорбируются в одинаковых количествах, либо один ион поглощается больше другого, либо, наконец, адсорбируется избирательно только катион или только анион. В последнем случае первоначально нейтральный раствор после адсорбции становится кислым или щелочным, что опять-таки является специфической особенностью реагирующих веществ например, гели двуокиси марганца или двуокиси кремния поглощают избирательно только катионы, анионы же остаются в растворе, и раствор делается кислым гели гидроокиси хрома или железа, наоборот, поглощают избирательно анионы, а катионы остаются в растворе, и раствор делается щелочным. Способ приготовления геля оказывает сильное влияние на величину поглощения. [c.47]

    Поэтому выбор эмульгатора, оказывающего положительное влияние на протекание межфазной поликонденеации, для разных полимеров весьма индивидуален и определяется экспериментально. В ряде работ указывается на применение эмульгаторов катионного, анионного или нейтрального характера, которые могут быть растворимы в воде или в органическом растворителе [3-5, 7-10, 12, 18, 20, 36, 37, 45, 46, 48, 54, 58-64, 67, 82, 116, 123-127]. [c.500]


    Влияние pH значительно сильнее выражено для заряженных субстратов, чем для нейтральных. В общем случае понижение pH вызывает уменьшение удерживания катионных сорбатов и увеличение удерживания анионных. Влияние на а обычно очень значительно, но трудно поддается предсказанию или систематизации. [c.140]

    Форма электрокапиллярной кривой и потенциал пулевого заряда в значительной степени определяются составом раствора, в который погружена ртуть, особенно наличием в нем ионов или нейтральных молекул органических веществ, способных адсорбироваться поверхностью электрода. При этом адсорбированные частицы вызывают изменение структуры двойного электрического слоя, что оказывает влияние на величину поверхностного натяжения на границе ртуть — раствор и потенциал нулевого заряда. За счет специфической адсорбции при отсутствии па электроде заряда образуется двойной электрический слой, лежащий в растворе вплотную к поверхности электрода. Схемы таких двойных слоев, образующихся при адсорбции катионов, анионов или молекул, изображены на рис. 144. [c.326]

    Если катионы и анионы имеют небольшие заряды и значительные размеры, то их поляризующее влияние на молекулы воды невелико, т. с. взаимодействия соли с НаО практически не происходит. Это относится к таким катионам, как К+ и Са +, и к таким анионам, как С1 и N0 . Следовательно, соли сильного основания и сильной кислоты гидролизу не подвергаются. В этом случае равновесие диссоциации воды в присутствии ионов соли почти не нарушается. Поэтому растворы таких солей практически нейтральны (рН 7). [c.266]

    Механизм мицеллярного катализа сложен, зависит от специфики реагентов и ПАВ и выяснен далеко не в полной мере. Влияние мицелл на химические реакции определяется двумя основными факторами — изменением реакционной способности веществ при переходе их из воды в мицеллярную фазу и эффектом концентрирования реагентов в мицеллах, причем второй фактор во многих случаях является единственным источником мицеллярного катализа. Изменение реакционной способности вещества в мицеллах обусловлено совокупностью электростатических и гидрофобных взаимодействий между молекулами реагента и мицеллами, что приводит к изменению энергий основного и переходного состояний реагентов На роль электростатических взаимодействий указывает, в частности, тот факт, что обычно реакции нуклеофильных анионов с нейтральными молекулами ускоряются катионными мицеллами, замедляются анионными, а мицеллы НПАВ практически не оказывают на них влияния. Во многих случаях мицеллы влияют не только на кинетику, но и на равновесие реакций, что не свойственно истинным катализаторам. [c.86]

    Как следует из уравнения (50.2), влияние двойного электрического слоя на кинетику стадии разряда — ионизации должно существенно зависеть от заряда реагирующей частицы Zq. Поэтому кроме разряда катионов следует рассмотреть также закономерности влияния состава раствора на рязряд нейтральных молекул и анионов. Удобным примером реакции разряда нейтральных молекул является выделение водорода из щелочных растворов, где из-за низкой концентрации ионов НзО+ разряду подвергаются молекулы воды  [c.257]

    Как следует из уравнения (50.2), влияние двойного электрического слоя на кинетику стадии разряда — ионизации должно существенно зависеть от заряда реагирующей частицы zq. Поэтому кроме разряда катионов следует рассмотреть также закономерности влияния состава раствора на разряд нейтральных молекул и анионов. [c.273]

    Если наряду с натрием в больших количествах присутствует калий, то он также ионизируется. В связи с этим повышается парциальное давление электронов и равновесие ионизации натрия смеш,ается. Вследствие увеличиваю-ш,егося по этой причине числа нейтральных атомов натрия при одном и том же общем содержании натрия наблюдается возрастание интенсивности. Такое изменение интенсивности под влиянием других присутствуюш,их элементов называют эффектом матрицы. В общем анионы влияют преимущественно на реакции испарения и диссоциации, а катионы — на процессы ионизации и возбуждения. Особенно заметным становится влия ше анионов при более низких температурах, а помехи со стороны катионов — при более высоких. Однако разграничение различных факторов, влияющих на интенсивность, провести трудно, поскольку положение линии при изменении состава пробы изменяется незначительно, а интенсивность линии, помимо содержания соответствующего элемента, зависит еще и от остальных компонентов пробы. По этой причине интенсивность линии в количественном анализе можно рассматривать как достоверную меру только для проб приблизительно одинакового состава. [c.186]

    Если в раствор электролита внести два электрода, один из которых соединен с положительным полюсом внешнего источника постоянного тока (батареи), другой — с отрицательным, то наблюдается следующая картина под влиянием электрических полей электродов положительные ионы двигаются к отрицательному электроду (катоду), отрицательные ионы — к положительному электроду (аноду). Столкнувшись с катодом, положительные ионы получают от него электроны, переходя в нейтральное состояние отрицательные ионы, столкнувшись с анодом, отдают ему свои электроны, переходя также в нейтральное состояние. Таким образом, в растворе устанавливается движение ионов — положительных (катионов) к катоду, отрицательных (анионов) к аноду. [c.210]


    ВЛИЯНИЕ СПЕЦИФИЧЕСКОЙ СОЛЬВАТАЦИИ КАТИОНОВ НА СКОРОСТИ РЕАКЦИИ МЕЖДУ АНИОНАМИ И НЕЙТРАЛЬНЫМИ МОЛЕКУЛАМИ [c.308]

    При пропускании через раствор постоянного электрического тока катионы электролита под влиянием электронов источника тока восстанавливаются на катоде в ионы низшей валентности, нейтральные атомы или атомные группы. Продукты восстановления отлагаются на катоде, вступают в реакции с молекулами растворенных веществ или растворителя или, наконец, реагируют с материалом электрода. В то же время анионы окисляются на аноде. [c.315]

    Существенное влияние на переход прямых красителей из раствора в целлюлозное волокно оказывает введение в красильную ванну нейтрального электролита (рис. 19). Количество электролита в ванне необходимо строго контролировать, так как при его избытке лишенные отрицательного заряда частицы красителя легко ассоциируют в крупные агрегаты, не способные непосредственно принимать участие в процессе крашения. Это приводит к снижению содержания красителя в волокне. Оптимальная концентрация электролита в красильной ванне зависит от температуры крашения, природы электролита, наличия в ванне гидрофильных органических растворителей или текстильно-вспомогательных веществ и некоторых других факторов. При непрерывном способе крашения оптимальные концентрации электролита меньше, чем при периодическом (см. рис. 19). Повышение температуры крашения, введение в красильный раствор органических растворителей или текстильно-вспомогательных веществ противодействуют ассоциации анионов красителя в этих случаях оптимальное значение концентрации нейтрального электролита повышается. Увеличение валентности катиона электролита позволяет снизить оптимальную концентрацию соли. [c.97]

    Коллоидные частицы гидроксидов и оксисолей, выделяющихся при гидролизе солей-коагулянтов, в нейтральной и слабокислой средах вследствие сорбции катионов водорода и алюминия или железа имеют положительный-заряд. Поэтому на кинетику процесса их коагуляции большое влияние оказывает анионный состав среды. [c.613]

    Так как максимумы искажают форму полярографических кривых, то их желательно устранить с помощью поверхностноактивных веществ. В практической полярографии для этой цели чаще всего применяют желатину, однако подобное же действие оказывают и другие высокомолекулярные органические вещества, как, например, различные кислоты и спирты, красители, терпены, стероиды, алкалоиды, катионные, анионные и нейтральные смачивающие вещества (известные иод фирменными названиями ЛЕО, Тритон и т. д.), производные целлюлозы, а также коллоиды агар-агар, гуммиарабик, клей, протеины и т. д. В органических растворителях максимумы на волнах можно подавить элементарной серой и серусодержащими циклическими соединениями [28]. При добавлении этих веществ к полярографируемому раствору максимумы на полярограммах понижаются, а при достаточно большой концентрации адсорбируемого вещества совершенно подавляются (рис. 207, 208). Вещества, находящиеся в растворе в менее дисперсном состоянии, чем коллоиды, т. е. в виде грубых суспензии или эмульсии, не оказывают влияния на высоту полярографического максимума. [c.407]

    Наряду с изучением состава и строения комплексного соединения меди с тиосемикарбазидом в кислых и нейтральных растворах, были изучены устойчивость во времени, в зависимости от температуры и pH среды, влияние различных катионов и анионов кислот, а также некоторых органических растворителей. Наконец, была изучена подчиняемость окраски растворов соединения меди с тиосемикарбазидом закону Бугера—Ламберта—Бера. [c.187]

    Большинства этих превращений мы уже касались в главах 1, 3 и 5. В настоящей главе рассматриваются общие закономерности реакций замещения атомов водорода при углеродных атомах кольца на электрофильные группы. Эти реакции обычно классифицируют как гетероароматическое электрофильное замещение , имея в виду не только аналогию, но и значительную специфику по сравнению с такими же реакциями в ароматическом ряду. Эта специфика всецело определяется гетероатомом, который оказывает ориентирующее влияние на направление реакции, в зависимости от условий изменяет свое валентное состояние (катион, анион или нейтральная форма), а также пассивирует или активирует кольцо по отношению к электрофилам. Последнее обстоятельство особенно важно, так как существует явная зависимость между природой гетероатома и легкостью, с которой соединение подвергается электрофильному замещению. Наиболее активны я-избыточные гетероциклы, содержащие гетероатом пиррольного типа, наиболее инертны— я-дефицитные системы. Промежуточное положение по реакционной способности занимают азолы. [c.164]

    По влиянию на pH почвенного р-ра различают физиологически кислые, щелочные и нейтральные М. у. В кислых удобрениях (напр., аммиачная селитра, суперфосфаты) катионы поглощаются растениями ллчше, чем анионы, подкисляющие почвенный р-р длительное применение таких удобрений вызывает повышение кислотности почвы и необходимость ес известкования (см. Известковые удобрения) илн перехода к щелочным удобрениям. К последним относят удобрения, анионы к-рых лучше ассимилируются с.-х. [c.90]

    Знак и величина каталитического эффекта катионных, анионных и нейтральных мицелл в реакциях аминолиза п-нитрофенилацетата и д-нитрофенилгексаноата лейцином и морфолином существенно отличаются от каталитического влияния на гидролиз тех же соединений (табл. 5). Скорость гидролиза п-нитрофенилгексаноата уменьщается всеми тремя типами ПАВ, тогда как аминолиз лейцином сильно ускоряется катионными ПАВ, но замедляется анионными и нейтральными детергентами [137]. [c.259]

    Реакция среды также оказывает свое влияние на величину поглощения анионов почвой. Как правило, подкисление способствует большему поглощению анионов, подщелачивание почвы, наоборот, способствует ослаблению поглощения ею анионов. Например, поглощение фосфат-ионов в подзолистых почвах увеличивается в шесть раз при подкислении почвенного раствора с pH 7,3 до pH 3,5. В сла-бокислы.х, нейтральных и щелочных почвах адсорбция анионов Р04 происходит с образованием нерастворимых или малорастворимых соединений, таких, как фосфат кальция, фосфат алюминия, фосфат железа. Таким образом, процесс поглощения почвой анионов в отличие от процесса поглощения катионов происходит с образованием в ряде случаев химических соединений, в силу чего он зачастую носит необратимый характер. [c.401]

    Влияние адсорбции ПАОВ на кинетику электрохимических реакций наиболее ярко выражено в случае органических катионов и анионов. В этих условиях к эффекту, связанному с изменением заряда электрода при адсорбции нейтральных ПАОВ, присоединяется влияние, обусловленное наличием заряда у адсорбированной органической частицы. В настоящее время экспериментальные данные в этой области носят качественный характер. Тем не менее они позволяют установить механизм действия ионных органических добавок. В самом деле, при исследовании [c.173]

    Органические анионы, например анионы алкилсульфокислот предельного ряда, при адсорбции на электроде увеличивают отрицательное значение -потенциала, что приводит к ингибированию реакции восстановления анионов первой группы. Поскольку органические анионы уменьшают скорость разряда анионов, подобно нейтральным ПАОВ, то для установления механизма действия органических анионов представляют интерес данные по влиянию органических анионов на скорость реакции окисления катионов Eu2+ (рис. 5.9). В соответствии с уравнением (5.46) органические анионы ускоряют реакцию окисления европия, что указывает на электростатический характер их действия. [c.175]

    Однако механизм возникновения катионной функции у мембран с нейтральными переносчиками до конца не выяснен. Заметим также, что такие электроды в большей степени подвержены воздействию посторонних веществ, чем электроды с кристаллическими мембранами, поскольку липофильные анионы из анализируемого раствора могут экстрагироваться в объем мембраны. Этот процесс протекает медленнее, чем межфазный, и приводит к изменениям в составе мембраны. Соответственно может замедлиться установление равновесия и будет наблюдаться дрейф потенциала электрода. Кроме того, липофильные анионы вносят свой вклад в межфазный потенциал и создают помехи при измерениях. Их влияние нейтрализуют введением в состав мембран солей, содержащих липофильные анионы, которые компенсируют заряд комплексных катионов с нейтральными переносчиками, например тет-ракис-( -хлорфенил)борат-ионы. Такие соли называют анионоподавляющими реагентами. [c.208]

    Добавление нейтральных веществ к водной фазе также является очень эффективным средством влияния на селективность. Добавки циклодекстринов (ЦД) повышают вероятность нахождения вещества пробы в подвижной фазе, поскольку молекулы пробы могут диффундировать в полости ЦД. Если добавлять к подвижной фазе вещества-образователи ионных пар, можно очень сильно влиять на селективность, особенно по ионным соединениям. Если, например, к раствору ДДСН добавить тетраалкиламмонийную соль, вследствие образования ионных пар увеличивается время миграции анионных молекул пробы. Кроме того, уменьшается электростатическое отталкивание от мицелл. Напротив, времена миграции катионных компонентов пробы уменьшаются, т.к. образователь ионных пар проявляет себя как конкурент во взаимодействии с мицеллами. Высокие концентрации мочевины могут увеличить растворимость гидрофобных веществ пробы в воде. [c.86]

    В поисках хорошо сбалансированных равновесных смесей свободных ионов (или ионных пар) и нейтральных ковалентных продуктов с образованием С—С-связи в растворе было изучено множество сочетаний карбениевых ионов (с делокализованным зарядом) с карбанионом [179]. В конце концов наиболее показательным оказалось равновесие между анионом (4-нитрофенил) малононитрила и катионами трианизилметила [179] или трифенилциклопропения [180]. Равновесие между анионом (4-нитрофенил) малононитрила и катионом трифенилциклопропения обсуждалось в разд. 2j6 в качестве примера влияния растворителя на реакции ионизации. Первую из упомянутых реакций можно описать следующим уравнением  [c.166]

    Гальбан [41] исследовал условия, при которых применимо уравнение (48а), и показал, что эти условия выполнялись в-его опытах. Он сделал предположение, что поглощение света анионом кислоты ие зависит от природы присутствующего катиона. Это допущение создает некоторую неопределенность, однако замена одной добавляемой нейтральной соли на другую очень мало влияет на величину поглощения в разбавленных растворах, а концентрация водородных ионов настолько мала, что специфическим влиянием этих ионов можно пренебречь. [c.468]

    Множество примеров, иллюстрирующих влияние строения двойного слоя на кинетику электродных процессов, можно привести также из области полярографии органических соединений. В частности, второе из широко известных эмпирических правил Шика-та — Тати, гласящее, что при прочих равных условиях катион восстанавливается на ртутном электроде легче, а анион — труднее, чем незаряженная молекула [585], является отражением влияния строения двойного слоя. Выше (см. стр. 105) уже отмечалось, что предшествующая протонизация, увеличивающая заряд частиц, облегчает их восстановление. Точно так же образование тетразамещенного аммониевого катиона при взаимодействии производных аминов с галоидалкилами приводит к облегчению их восстановления. Например, Еу, волн N-метилпроизводных пиридинальдокси-мов, особенно в нейтральных и щелочных растворах, положительнее, чем Ei волн незамещенных по азоту пиридина этих альдо-ксимов [586] подобное же явление наблюдается у производных имидазолов [509], алкалоида протопина [587] и во многих других случаях. [c.141]

    В. Д. Безуглый, Л. А. Мельник и В. Н. Дмитриева [579] наблюдали повышение волны восстановления р-ацетилтетралина на фоне нейтральных 0,05 М растворов галогенидов в 60%-ном этиловом спирте при изменении природы катионов в ряду Ма" , К , (СНз)4К , (С2Нб)4К , Сз" . Влияние катионов в этом случае можно, по-видимому, объяснить ускорением второй стадии процесса — восстановления промежуточно образовавшегося анион-радикала, включающей, по-видимому, приэлектродную химическую реакцию. [c.152]


Смотреть страницы где упоминается термин Влияние нейтральных катионов и анионов: [c.308]    [c.137]    [c.13]    [c.38]    [c.38]    [c.171]    [c.170]    [c.130]    [c.75]   
Смотреть главы в:

Курс теоретической электрохимии -> Влияние нейтральных катионов и анионов




ПОИСК





Смотрите так же термины и статьи:

Анионы, их влияние

Нейтральности



© 2024 chem21.info Реклама на сайте