Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Димеризация высших олефинов

    Полимеризация этилена, ot-олефинов и диенов в высокомолекулярные полимеры часто катализируют соединениями титана, особенно галогенидами, обычно в смесях с соединениями алюминия. На примере соединений титана исследовано большинство механизмов и разработаны теории роста и стереорегулирования цепи, однако условия активации водородных атомов исследованы сравнительно мало. Те же самые каталитические системы на основе титана даже при незначительных изменениях состава каталитической смеси или условий эксперимента дают из а-олефинов димеры и олигомеры. Смесь эфиров титана (или циркония) с триалкилалюминием приводит к образованию из этилена либо полиэтилена, либо н-бутилена [11, 12]. Натта [13] приводит условия образования тех или других продуктов так, полимер получается при молярном соотношении АШз/Т1(ОК)4 > 20, а димер — при соотношении ЛШз/Т1(ОН)4 < 10 [146]. В последнем случае селективность димеризации высока (более 90% [c.178]


    Полагают, что высококипящие олефины должны образовываться в результате ступенчатого присоединения этилена. Этот катализатор показал слабую активность по отношению к димеризации -бутилена, но при полимеризации этилена всегда получается значительно больше гексена, чем октена, даже нри высоких степенях превращения его в бутилен. Добавление к этилену 50 % бутена-2 повысило на 50 % количество образовавшегося гексена на израсходованный этилен. Маловероятно, что этот результат был просто следствием чисто физического подавления десорбции бутилена с катализатора, так как при добавлении пропилена к сырью пентен составлял 30 % полимерного продукта. [c.206]

    Нестабилизованный димерный карбанион в присутствии других олефинов должен обладать малой продолжительностью жизни и не может вырасти в тример и более высокие полимеры. Эта реакция гораздо более чистая , чем соответствующая катализируемая кислотными катализаторами димеризация пропена (разд. IV.5.А). [c.106]

    Хорошее эмульгирование углеводорода во фтористоводородной кислоте является важнейшим условием получения алкилата, богатого триметилпентанами, поскольку этот фактор способствует изомеризации олефинов (в изобутилен), димеризации изобутилена, реакциям переноса водорода и первичному алкилированию. При высокой степени эмульгирования углеводорода, кроме того, снижается выход тяжелых углеводородов, образующихся при полимеризации. [c.60]

    Б. с. могут быть использованы как катализаторы димеризации и полимеризации олефинов, а также для получения металлич. Ве высокой чистоты. [c.282]

    Таким образом, в первой серии опытов абсолютное количество катализатора быстро уменьшалось, но катализатор реакции вытеснения (N1), очевидно, терялся в незначительной степени. Во второй серии, наоборот, количество триэтилалюминия как катализатора хотя и не изменялось, потери никеля были значительными. Только когда реакция вытеснения протекает во много раз быстрее (>10 раз), чем реакция достройки, можио получать высокий (>90%) выход бутилена. Если реакция вытеснения при уменьшении активности сокатализатора протекает медленнее, то в общем количество циклов вытеснения снижается больше, чем количество циклов достройки, и поэтому образуются олефины с большим молекулярным весом, чем бутилен. Изменение поведения катализатора в ходе повторяющихся циклов стало заметным благодаря очистке этилена. При этом из этилена было удалено все, что мешало устойчивости сокатализатора. Лучший технический чистый этилен, употреблявшийся в то время, содержал наряду с другими примесями около 0,3% ацетилена. При очистке этилена по методу, использовавшемуся авторами, ацетилен удалялся, хотя его присутствие необходимо, для получения активного сокатализатора. Таким образом, стало ясно, что при димеризации [c.218]


    Приведенные результаты относятся к димеризации олефинов с концевой двойной связью в соответствующие олефины более высокого молекулярного веса. Однако для данной температуры [c.326]

    Тетрафторэтилен при комнатной температуре метастабилен. При температурах около 200° С он гладко димеризуется в октафторциклобутан [102] обратная реакция происходит при температуре выше 500° С. Энергии активации для прямой и обратной реакций (25,4 и 74,1 ккал) указывают, что эта димеризация сопровождается экзотермическим эффектом примерно в 50 ккал [103], тогда как гипотетическая циклодимеризация этилена в циклобутан должна была бы привести к выделению лишь около 16 ккал. Очевидно, что полифторированные олефины находятся на более высоком энергетическом уровне, чем сам этилен. [c.461]

    Для олефинов (рис. 6, кривая /) склонность к расщеплению проявляется при более высокой температуре, чем для парафинов. В системе обратимых реакций крекинга олефина и его димеризации (полимеризации) [c.34]

    В электросинтезе органических соединений ОРТА начали использовать в первую очередь в процессах, связанных с выделением хлора и других галогенов, — в эпоксидировании и гипохлорировании олефинов, синтезе хлороформа и йодоформа. Достаточную коррозионную стойкость проявляет ОРТА в процессах электросинтеза органических соединений при электролизе метанольных растворов, содержащих не более 0,5 моль/л воды. При высоких положительных потенциалах на ОРТА идут реакции анодной конденсации и аддитивной димеризации. Отсутствие эффекта запирания при поляризации до 3,0—3,5 В в спиртовых растворах связывается с адсорбцией исходных веществ [5]. [c.56]

    Это было подтверждено экспериментально. С другой стороны, отсюда следует, что реакции димеризации способствуют высокие концентрации олефина. [c.238]

    Первые термодинамические расчеты были посвящены выявлению термодинамической вероятности осуществления олигомеризации олефинов при различных температурах. В этих расчетах было показано, что до 500 К константы равновесия димеризации олефинов с получением а-димера достаточно высоки, но при дальнейшем повышении температуры они быстро уменьшаются. По мере роста молекулярной массы мономера от этилена к пентеиу значения констант уменьшаются, а далее остаются постоянными. Рис. 1.1 демонстрирует изменение стандартной энергии Гиббса (AG ) олигомеризации, а в табл. 1,1 приведены значения AG° димеризации а-олефинов в а-димеры в зависимости от температуры. [c.9]

    В ходе димеризации а-олефинов появлялись (в особенности при высокой температуре, < 200°) значительные количества олефинов с двойными связями в середине цепи, образовывающихся в результате перегруппировки исходных олефинов. Таким образом, алюминийалкилы способны катализировать перемещение двойной связи через обратимую реакцию присоединение—отщепление, причем в первой стадии играют роль продукты, полученные не по правилу Марковникова. Это можно было показать путем нагревания чистого додецена-6 с эфиратом триэтилалюминия при 240°. Додецен был получен обратно почти количественно, а расщепление озоном дало в мол. % С кислота 9,4 s-кислота 22,6 Се-кислота 35,0 Су-кислота 20,2 Са-кислота 12,4. Таким образом выделены почти одинаковые количества додс-цена-5 и додецена-6 и около половины этого количества доде цена-4. Из более поздних опытов стало известно, что выбранный для этого опыта катализатор (эфират триэтилалюминия) не выдерживает высокой температуры опыта в течение продолжительного времени. С продуктом, не содержащим эфира, следовало ожидать такого же эффекта уже при значительно более низкой температуре. Если бы имели место другие реакции, то в результате должна была бы образоваться термодинамически равновесная смесь всех н-додеценов или при любых олефинах всех н-оле-финов, включая а-олефины. [c.178]

    К настоящему времени признано, что комплексы никеля, образующиеся при взаимодействии его солей с алкилалюминийгалоге-нидами, являются наиболее активными катализаторами димеризации низших олефинов [42]. Этилен и пропилен проявляют весьма высокую реакционную способность в димеризации под влиянием катализаторов этого типа (димеры могут быть получены с выходами более 90% при 20°С и атмосферном давлении), причем у этилена реакционная способность несколько более высокая [173]. Так, при совместной димеризации этилена и пропилена, взяты,х в мольном отнощении 1 1, степень конверсии пропилена на 5—20% ниже (в зависимости от состава катализатора и условий реакции). Бутилены также димеризуются под влиянием катализаторов этого типа, но реакция протекает медленнее (выход октенов при оптимальных условиях доходит только до 70%). Пентен-1 при тех же условиях образует димер с выходом не более 40%, а гексен-1 практически не димеризуется. [c.38]

    Простейшие олефины так же действуют, как диенофилы, по требуют сравнительно более высоких температур. Например этилен и бутадиен при 200° дают циклогексен с выходом 18% [31]. С другими диенами были получены лучшие выходы, например с 2,3-диметилбутадиеном (50%) и циклопентадиеном (74%) [31]. При более высокой температуре такие реакции обратимы и пиролиз циклогексена является одним иа хороших лабораторных методов получения бутадиена. Винилацетат, хлористый винил, другие хлорзамещенные этилены и различные аллильные производные такн е вступают в реакцию конденсации с реакционноспособными диенами при 100—200°, однако известно, что все эти реакции должны проводиться при сравнительно высоких давлениях [27]. Стирол и другие фенилзамещенные этилены, по-видимому, в некоторых случаях вступают в реакцию, и, как будет показано ниже, молекулы диенов могут конденсироваться одна с другой, например, при димеризации бутадиена в ви-нилциклогексен [35]. Эта специфическая реакция весьма услон няет работу с бутадиеном. Конденсации такого рода в качестве побочной реакции возможны при любой из реакций Дильса-Альдера  [c.177]


    Кромо гексанов, жидкий продукт содержал 8,2 % пентанов, 4,5% гептанов, 9,6% октанов и около 14% олефиновых углеводородов. Необходимость добавления этилена небольшими порциями очевидна из рассмотрения результатов опыта, который проводился практически в тех же условиях, что описанный вышо (505° и 330 ат), с той лишь разницей, что здесь осуществлялся однократный проход изобутан-этиленовой смсси (молярное отношение 2,5) вместо рециркуляции углеводородного потока и добавки этилена 32 порциями в первом случае [13]. Жидкий продукт (124 % вес. на этилен) содержал только 17,5% гексанов (7% от теоретического), из которых только 30% составлял 2,2-диметилбутан. Октаны, образование которых проходило, по-видимому, через реакцию с 2 молями этилена, были получены с выходом 10% от теоретического. Наибольшую часть жидкого продукта (24%) составляли пентаны, из которых 86% приходилось на долю н-пентана. Но менее 12% жидкого продукта реакции составляли олефины. Для проведения реакции между изобутаном и изобутиленом при 486° потребовалось весьма высокое давление — 562 ат [32]. Жидкий продукт составлял только 35% вес. на изобутилен. Он содержал не только 34% октанов (выход 6%), но также 32,7% октенов. Присутствие последних,- кажется, скорее подтверждает предположение, что образование олефинов включает как стадию реакции диспропорционирование промежуточных радикалов, а ие полимеризацию исходного олефина. При димеризации изобутилена при 370—460° и давлении 38 — 376 ат образуется 1,1,3-триметилциклопентан, но не октен [30]. [c.307]

    Первые термодинамические расчеты [36, 47, 48] были посвящены выявлению термодинамическо й вероятности осуществления димеризации олефинов при различных температурах. Было установлено, что при температурах до приблизительно 500 К константы равновесия димеризации олефинов с получением а-димера значительны, но при более высоких температурах быстро уменьшаются. По мере роста молекулярной массы мономера эти константы уменьшаются — при переходе от этилена к пентену-1, а далее остаются постоянными. Рис. 19 демонстрирует -изменение величины АС° полимеризации с температурой, в табл. 60 и 61 приведены А0° и константы равновесия димеризации -олефинов в а-олефины в зависимости от температуры. [c.246]

    Содержание фракции Су (продукт прямого взаимодействия изобутана с пропиленом) снижается с 55,11 до 40,49%, в то время как выход фракции Се (образующейся при реакциях переноса водорода) увеличивается от 19,52 до 54,1%. Одновременно концентрация углеводородов Сэ и выше снижается с 15,69 до 2,06%, свидетельствуя об уменьшении полимеризации при увеличении разбавления олефина изобутаном. Анализ фракции Са, принятой за 100% (приведенные значения), показывает возрастание концентрации триметилпентанов с 86,5 до 95,9% при увеличении соотношения изобутаи олефин. При высокой концентрации изобутана подавляется образование изопентана и изогексанов, обусловленное, вероятно, диспропорционированием или расщеплением высокомолекулярных полимерных ионов и частично димеризацией пропилена. [c.47]

    Имеются основания полагать, что изомеризация и димеризация олефина происходят в кислотной фазе, а алкилирование — в углеводородной. При низкой степени эмульгирования углеводорода, т. е. если размер его капелек велик, наблюдается торможение процесса, обусловленное плохим массопереносом, и замедляются реакции изомеризации и димеризации. Полученный при этом алкилат содержит значительное количество остатка ( Сэ), образование которого, по-видимому, связано с реакциями вторичного алкилирования. Например, молекулы изобутилена алкилируют изооктилкарбониевые ионы, а возникающие в результате додецил-карбониевые ионы могут затем вступать в реакцию переноса водорода или подвергаться расщеплению. При условиях, обеспечивающих высокую диспергируемость реагирующих углеводородов (мелкие капельки с высокоразвитой поверхностью), в продуктах алкилирования повышается содержание желаемых триметилпента- [c.49]

    Производство стооктановых компонентов моторных топлив в США до войны основывалось псключительно на пзопарафпно-вых углеводородах. Добавление последних к рядовому бензину (с октановым числом 55—60) в количестве 25—35 % давало смеси с октановым числс м 82—84. Прп добавлении тетраэтилсвинца к этим смесям получался 100-октановый бензин. Вначале синтез технического изооктапа производился лишь двухстадийно. Исходные олефины (обычно использовались олефины не только состава i, но и j) подвергались димеризации над серной кислотой [28] 63—72%-НОЙ, фосфорной кислотой [29], пирофосфатом меди [30]. Температуры полимеризации в первом случае 75—100°, во втором 180—260 и в третьем 200—220 . Давления для второго и третьего случаев были соответственно 35—40 и 30—60 атм. Полученные димеры гидрировались при низких давлениях (1—5 кг/см и температуре 150—200") над никелем [31], пли под высоким давлением (200 кг/см ) над сульфидом молибдена [32]. [c.469]

    Как известно, в зависимости от условий полимеризации из одного и того же олефина могут быть получены различные вещества. Как упомянуто выше, газообразные при нормальных условиях олефины при каталитических процессах при определенной температуре и давлении склонны к ди- и тримери-зацпи. Эту реакцию широко псиользуют для промышленного получения моторных топлив с высоким октаповым числом. В частности, изобутилен с успехом используется для реакции димеризации в диизобутилен. Если применить другой катализатор и иные рабочие условия, тот же изобутилен, как уже было упомянуто, может полимеризоваться в высокомолекулярные твердые каучукоподобные вещества (оппанол, вистанекс). При воздействии безводным хлористым алюминием на жидкий изобутилен при комнатной температуре или на растворенный в инертном растворителе изобутилен протекает медленная реакция, в результате которой получается маловязкое масло с хорошим выходом. Оно обладает плохим индексом вязкости (вязкостно-температурной, характеристикой — ВТХ). [c.588]

    Элементарный фтор был применен для фторирования Сполна фторированных и хлорфторированных олефинов с целью получения насыщенных фторуглеродов. Прямое фторирование-ЖИДКИХ моноолефинов при низкой температуре дает в основном простое присоединение фтора и димерные продукты присоединения. С олефинами, содержащими больше чем одну двойную связь, реакция димеризации может продолжаться и после первой стадии, давая ряд полимерных продуктов. Низкие температуры способствуют реакции димеризации, в то время как при более высоких температурах в паровой фазе можно избежать получения полимерных продуктов и осуществить простое присоединение как непрерывный процесс. Показано, что трехфтористый кобальт является эс х 5ектив-ным фторирующим агентом для сполна фторированных олефинов. [c.228]

    Цео шты типа фожазит, морденит, бета, ZSM-5, МСМ-22, а также перфторированная сульфатированная смола Nafion-H, хотя и имеют высокую начальную активность в реакции алкилирования изобутана бутиленами, но быстро дезактивируются из-за олигомеризации олефинов. Образцы сульфатированных оксидов (S0 /РегОз, SO /А Оз, ЗО /ТЮг, SOf/8пОг, ЗО Юг), обладающие функцией кислотности Гаммета Но от -13 до -18, могут проявлять как высокзто активность в образовании изооктана, так и катализировать димеризацию бутиленов. [c.880]

    Производимые в промышленности углеводородные фракции крекинга и пиролиза нефтепродуктов, а также продукты олигомеризации олефинов Сз—Сз на фосфорно-кислотных катализаторах содержат многокомпонентные смеси изомеров олефинов и парафинов, мало отличающихся по своим физико-химическим свойствам, поэтому из них практически невозможно выделять индивидуальные мономеры высокой чистоты. Наиболее эффективным методом производства этих мономеров являются процессы димеризации пропилена и содимеризации этилена и пропилена в присутствии трегерного щелочно-металлическога [c.116]

    ЮТ рост ДЛИННЫХ полимерных молекул, а какие, вероятно, препятствуют ему. Пытаясь получить высшие олефины реакцией олефинов с гидридом алюминия или с алюминийалкилами, Циглер [90] нашел, что молекулярные веса продуктов изменялись и в целом были ниже, чем следовало ожидать. Открытие [91] того, что этилен в присутствии солей никеля можно почти количественно димеризо-вать в бутен-1, привело к исследованию влияния соединений других переходных металлов. Было установлено, что соединения металлов IV, V и VI групп с триэтилалюминием и диэтилхлоралюминнем дают высокий выход полиэтилена. Позднее Натта [92, 93] показал, что эти катализаторы дают пространственно различаюшиеся полимеры пропилена и других олефинов. Натта [92] предположил, что соединение переходного металла следует рассматривать как катализатор, а металлалкил — как сокатализатор. Он показал, что активность связана с низшим состоянием окисления катализатора, хотя са.м металл часто ведет к димеризации, а не к полимеризации,что и наблюдалось в случае Ni. Кроме того, для пространственного регулирования строения полимера, вероятно, необходимо наличие границы раздела жидкость — твердое тело. О механизме этих замечательных реакций сейчас известно достаточно много для его объяснения предлагались свободнорадикальные, катионные и анионные цепи со стадиями роста, стерически регулируемыми поверхностью или индивидуальными комплексными ионами. Мягкие условия полимеризации указывают на ионный механизм, однако ни одну из приведенных схем нельзя рассматривать как полностью удовлетворительную. [c.436]

    При димеризации и содимеризации низкомолекулярных олефинов и диенов, получающихся в больших количествах при переработке нефти (например, при крекинге), образуется большое число интересных соединений. Димеры олефинов и диолефинов могут найти промышленное применекие в весьма важных реакциях, например для полимеризации, оксосинтеза, алкилирова-ния и т. д. Новым перспективным путем к достижению высокой селективности при димеризации олефинов является использование комплексных катализаторов, что уже доказано широким применением катализаторов Циглера — Натта. [c.158]

    Катализаторы димеризации обладают обычно и высокой изомеризующей активностью. Так, бутены и высшие линейные олефины еще до начала димеризации изомеризуются с образованием смеси олефинов, состав которой соответствует термодинамическому равновесию. Действительно, какой бы изомер бутена не использовался, в димеризации принимает участие равновесная смесь н-бутенов, образующихся при быстрой миграции двойной связи (при 20°С 3,5% бутена-1 23,5% г ис-бутена-2 73% транс-бутеиа-2). В случае н-пентенов дело обстоит еще сложнее. Продукт д-идрирования смеси, полученной при содимеризации этилена с пентеном, оказался смесью трех различных изомеров н-гептана, образовавшегося в результате реакции по первому атому углерода пентена, 1,3-этилпентана, т. е. продукта реакции по третьему атому пентена-2, и 3-метилгексана как продукта взаимодействия по второму углероду пентена-1 или -2 [64а]. Например, в системе Ni(a a )2/AlEt2 l при 0°С состав смеси гидрированных продуктов реакции следующий  [c.191]

    В других условиях может действовать другой механизм. Мелвилл, Робб и Тэттон [104] кинетическим изучением присоединения бромтрихлорметана к циклогексену показали, что при высокой концентрации галогенида (галогенид олефин= 10 1) обрыв цепи обусловливается исключительно димеризацией трихлорметильных радикалов, в то время как при низких концентрациях галогенида (1 10) стадия, определяющая скорость реакции, — дебромирование бромтрихлорметана трихлорметилциклогек-сильным радикалом и стадия обрыва цепи состоит в димеризации этих радикалов. До сих пор не было сделано попыток подтвердить это выделением 2,2 -ди(трихлор-метил)бициклогексила. [c.365]

    Хенне и Ваалкс"7 не смогли воспроизвести результаты, полученные Димротом и Боккехмюллером. Однако они подробно описали взаимодействие смеси безводного фтористого водорода и двуокиси свинца с галогенолефинами и обнаружили, что при этом может происходить присоединение двух атомов фтора к двойной связи" . Данная реакция является значительным достижением, так как высокая реакционная способность элементарного фтора и в значительной степени вызываемая им димеризация продуктов препятствуют его применению в реакциях присоединения фтора к олефинам. [c.462]

    Димеризация пропилена и синтез изопрена из пропилена приобрели технический интерес после открытия Циглером селективной олигомеризации низших олефинов в присутствии алюминийорга-нических катализаторов [5, 6]. В результате этой реакции из пропилена с большим выходом образуется 2-метилпентен-1, который, не будучи сам исходным продуктом для получения изопрена, легко изомеризуется в 2-метилпентен-2. Данные термодинамического рас-,чета показывают, что равновесие изомеризации практически полностью сдвинуто в сторону этого олефина. Таким образом, появилась возможность получить из пропилена в две стадии с высокой селективностью разветвленный гексен, являюпщйся предшественником изопрена  [c.177]

    Комплексные катализаторы Циглера, в отличие от алюминийалкилов, обладают высокой активностью в реакциях изомеризации гексенов [85, 94, 98]. Конечный состав продуктов определяется соотт ношением скоростей реакций димеризации и изомерных превращений олефинов СдН зГ [c.199]

    При этом, очевидно, безызлучательная дезактивация п,п - до я,л -состояния происходит медленнее, чем реакция присоединения. Для успешного протекания реакции нужно, чтобы значение Ег олефина было больше, чем у кетона. В противном случае будет нроисходить перенос энергии к олефину и последующая димеризация его. Так как у моноолефинов энергия триплетов обычно выше 336 кДж/моль (80 ккал/моль), то это требование чаще всего выполняется. Напротив, сопряженные ди- и полиолефины с энергией триплетов ниже 252 кДж/моль (60 ккал/моль) обычно не вступают в реакцию Патерно — Бюхи. Правда, в последнее время было найдено, что 1,3-бутадиены, если они вводятся в очень высоких концентрациях, дают с ацетоном аддукт с четырехчленным циклом. В этих условиях, очевидно, уже п,п -синглетное состояние может быть вовлечено в реакцию, конкурирующую с интеркомбинационной конверсией. 1,4-Хиноны обычно дают сииро-оксетаны, но часто с одновременным образованием по двойной связи С = С цикло-бутановых аддуктов, которые иногда оказываются единственными. Реакции о-хинонов также ведут к оксетанам наряду [c.255]

    При значительно более высокой температуре к олефинам присоединяются даже алкильные производные бериллия, алюминия, галлия и индия [24]. При избытке олефина основной реакцией является димеризация, алкилметаллы регенерируются после каждого цикла. Пропилен в присутствии алкилалюминия, предпочтительно три-н-пропилалюминия, дает с выходом 70—80% 2-метилпентен-1 без примеси изомера. Из бутена-1 образуется 2-этилгексен-1, который особенно интересен как источник получения чистого п-ксилола. Механизм реакции, по-видимому, следующий  [c.308]


Смотреть страницы где упоминается термин Димеризация высших олефинов: [c.178]    [c.442]    [c.442]    [c.290]    [c.210]    [c.586]    [c.847]    [c.178]    [c.200]    [c.326]    [c.278]    [c.210]    [c.359]    [c.165]   
Смотреть главы в:

Промышленные каталитические процессы и эффективные катализаторы -> Димеризация высших олефинов




ПОИСК





Смотрите так же термины и статьи:

Димеризация



© 2025 chem21.info Реклама на сайте