Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение марганца в присутствии алюминия

    Во всех описанных выше случаях можно проводить титрование пользуясь двумя индикаторными электродами (платиновыми). Для того чтобы увеличить резкость конечной точки, в титруемый раствор добавляют несколько капель раствора феррицианида калия. Тогда в конечной точке создается хорошо обратимая пара феррицианид — ферроцианид и ток возрастает очень резко (см. гл. IV). Преимуществом метода с двумя электродами при определении цинка описанным выше методом является возможность проводить титрование в присутствии несколько больших количеств марганца вследствие того что при соответственно подобранном внешнем напряжении можно создать такие условия, при которых марганец (П) не будет окисляться на аноде. Наиболее подходящим напряжением оказывается 0,4 в, тем более что при таком напряжении в электродном процессе после конечной точки участвует медь, являющаяся в данном случае амперометрическим индикатором, — конечная точка становится резкой и без добавления феррицианида. Кроме того, при титровании по методу с двумя индикаторными электродами ослабляются помехи со стороны алюминия, если вести титрование при наложении напряжения 0,8 в в отсутствие феррицианида или 0,4 в в его присутствии. По-видимому, пассивация электрода в присутствии алюминия в этих случаях не наступает потому, что при указанном напряжении анодным процессом после конечной точки является уже не только окисление ферроцианида, но и окисление НгО. При окислении НгО анодное пространство, как известно, подкисляется за счет преобладания ионов Н+ (поскольку ОН" разряжается), что, естественно, предотвращает отложение гидроокиси алюминия на аноде, имеющее место, как было указано выше, при титровании с одним электродом при наложении напряжения примерно 1 в (МИЭ). [c.348]


    Молибден, хром и ванадий восстанавливаются свинцом, и так как продукты, их восстановления титруются иодом, то для олова получаются повышенные результаты. Присутствие этих элементов обнаруживается по изменению окраски раствора при восстановлении олова. Молибден, например, после восстановления окрашивает раствор в коричневый цвет, а ванадий — в пурпуровый. Малые количества мышьяка не мешают определению Из остальных веществ, не мешающих титрованию, можно отметить сульфаты, фосфаты, иодиды, бромиды, фториды, железо, никель, кобальт, цинк, марганец, уран, алюминий, свинец, висмут, магний и щелочноземельные металлы. [c.339]

    Ход определения. К раствору, содержащему 0,5—1 миллимоль марганца, прибавляют в достаточном количестве 5%-ный раствор комплексона, разбавляют водой до 70 мл и подкисляют 20 мл ледяной уксусной кислоты. В качестве индикатора применяют 4 капли 1 %-ного раствора феррицианида калия и 4 капли свежеприготовленного раствора дифениламина (в ледяной уксусной кислоте). Титруют 0,05 н. раствором ферроцианида калия до исчезновения фиолетовой окраски раствора или до перехода ее в слабо-желтую. При обратном титровании солью двухвалентного марганца концом титрования является появление фиолетовой окраски раствора. Этим способом автор провел несколько определений марганца в присутствии алюминия, железа, никеля, евин- ца, вольфрама и щелочноземельных металлов и получил удовлетворительные результаты. Определение цинка в аналогичных условиях оказалось невозможным вследствие полной непригодности указанного индикатора. Автор объясняет это следующим образом чтобы произошло окисление дифениламина феррицианидом, требуется определенная концентрация ионов цинка. При pH 2,5 цинк еще слишком прочно связан комплексоном в комплексное соединение, и поэтому в начале титрования не происходит окрашивания индикатора. Нефелометрические измерения показали, что цинк количественно осаждается ферроцианидом даже при pH 1—3. При высокочастотном титровании смеси, содержащей цинк и марганец, автор получил два перегиба на кривой титрования. Первый перегиб соответствует содержанию цинка, второй — содержанию марганца. Согласно автору, необходимо более подробно исследовать последний метод. [c.181]

    Для определения магния и кальция в золах растений и почвах авторами работы [22] на базе монохроматора F-4 сконструирован двухлучевой спектрофотометр второй пучок проходит под пламенем через горизонтальную трубку, входящую в конструкцию удлиненной горелки прибор дает возможность измерить поглощение 0,3% чувствительность обнаружения магния и кальция сравнительно невысока — 0,005 и 0,8 мкг/мл соответственно. Исследование влияния различных катионов на атомно-абсорбционное определение натрия (интервал концентраций 1 — 100 мкг/мл) проведено в [23] установлено, что калий, магний, марганец и алюминий не мешают определению, но кальций и железо мешают отмечают также влияние со стороны марганца и алюминия при их совместном присутствии. Определение Na при избытке Са описано в [84]. Опубликованы атомно-абсорбционные методы определения Сг и Си в железе и сталях [24, 83] Fe в карбиде вольфра-228 [c.228]


    Осаждение гидроокиси магния избытком едкого натра в присутствии алюминия, олова, цинка и других амфотерных металлов более пригодно для повышения концентрации магния в растворе, чем для отделения его от этих металлов, поскольку они соосаждаются вместе с гидроокисью магния. Метод отделения магния от таких металлов, как железо, марганец, медь, цинк, свинец и никель, основан на осаждении гидроокиси магния едким натром в присутствии тартрата или цианида, которые предотвращают осаждение указанных металлов . Этот метод выделения магния был применен для определения его в сплавах алюминия. Для отделения магния от больших количеств титана применяют осаждение магния в виде гидроокиси из растворов, содержащих перекись водорода . [c.528]

    Отложения с наружной стороны низкотемпературных поверхностей нагрева мазутных парогенераторов, например с пластин регенеративных воздухоподогревателей, с трубок водяных экономайзеров, содержат сернокислые соли железа, никеля, ванадия, меди и свободную серную кислоту. Коррозионные образования в трубках пароперегревателей кроме окислов железа содержат хром, марганец, молибден и другие вещества. Эти материалы отличаются исключительной стойкостью, и обычно их удается перевести в раствор лишь нагреванием в смеси серной и фосфорной кислот. Сплавление с содой, едкими щелочами, пирофосфатом или гексаметафосфатом натрня практически не приводит к разложению этого материала. Отложения из парогенераторов высокого давления содержат в различных соотношениях окислы железа и алюминия, кремниевую кислоту, фосфаты железа, алюминия и кальция, металлическую медь, а иногда соединения цинка и магния. В качестве менее существенных примесей, а иногда и следов в накипи присутствуют марганец, хром, олово, свинец, никель, молибден, титан, вольфрам, стронций, барий, сурьма, бор, ванадий и некоторые другие элементы. При обычном анализе ограничиваются определением фосфатов, кремниевой кислоты, железа, меди, алюминия, натрия, кальция, магния и сульфатов. [c.411]

    Купферон реагирует со многими катионами, образуя труднорастворимые комплексы. Растворимость купферона-тов металлов зависит от кислотности растворов регулируя кислотность, можно провести разделение катионов. Например, в сильнокислом растворе (5—10 %-ной соляной или серной) купфероном осаждаются железо, галлий, гафний, ниобий, палладий, полоний, олово, тантал и титан частично осаждаются висмут, молибден, сурьма, вольфрам. В слабокислом растворе осаждаются висмут, медь, ртуть, молибден, олово, торий, вольфрам. В нейтральной среде осаждаются (в присутствии ацетатного буфера) серебро, алюминий, бериллий, кобальт, хром, марганец, никель, свинец, РЗЭ, таллий и цинк. Купферон дает возможность отделить железо, титан, ванадий и цирконий от алюминия, кобальта, меди, арсенита и фосфата. Его часто используют для отделения мешающих катионов, например железа при определении алюминия, а также железа и ванадия при определении фосфора в феррованадии. [c.165]

    Потенциометрическое определение кобальта в стали после осаждения фенилтиогидантоиновой и тиогликолевой кислотами [921]. Методика рекомендована для определения кобальта в жаропрочных сплавах, содержащих алюминий, углерод, хром, медь, железо, марганец, молибден, никель, ниобий, фосфор, серу, тантал, титан, вольфрам, ванадий и цирконий. Она основана на избирательном осаждении кобальта тиогликолевой и фенилтиогидантоиновой кислотами и последующем титровании кобальта феррицианидом калия в присутствии этилендиамина. 0,05—0,3 г стали, содержащей от 6 до 50 мг Со, растворяют в смеси соляной и азотной кислот (3 1), прибавляют 5 мл 85%-ного раствора фосфорной кислоты, 20 мл серной кислоты (1 1) я 5 мл 70%-ной хлорной кислоты и выпаривают большую часть последней. Остаток растворяют в воде, прибавляют 10 г цитрата аммония и концентрированный раствор гидроокиси аммония до pH 8 и сверх того еще 10 мл и разбавляют водой до 250 мл. При высоком содержании железа прибавляют 4 мл тиогликолевой кислоты (при низком содержании железа этого делать не нужно), далее бумажную массу и вводят при перемешивании 35 мл раствора фенилтиогидантоиновой кислоты (4 г реагента на 100 мл этанола). Раствор кипятят 5 мин., перемешивают до коагуляции осадка и добавляют еще 5 мл раствора фенилтиогидантоиновой кислоты. Осадок отфильтровывают, промывают [c.194]

    Марганец мешает определению, поскольку он осаждается с гидроокисью магния, подавляя впоследствии окраску комплекса магния с солохром цианином Н 200. При анализе проб, содержащих более 0,05% марганца, титан отделяют экстракцией купфероната титана хлороформом, затем перед осаждением гидроокиси магния отделяют марганец в виде перманганата цинка, добавляя окись цинка. Такая модификация метода дает возможность анализировать пробы, содержащие до 1 % марганца. Допускается также присутствие до 10% алюминия и 5% хрома. [c.53]

    Влияние хрома, если его больше 0,02%, аналогично влиянию алюминия. Однако предварительным осаждением гидроокиси хрома из аммиачного раствора в присутствии железа в качестве носителя можно устранить воздействие хрома на результаты анализа. Ионы меди снижают оптическую плотность, но в присутствии цианида калия влияние меди (до 0,03%) не сказывается на результатах анализа. Марганец, никель, ванадий (при содержании каждого из этих злементов до 0,2%) и остаточный титан (до 0,1 %) не мешают определению. Влиянием небольших концентраций гидроокиси натрия можно пренебречь. [c.54]


    Определение алюминия в магниевых сплавах [458]. Не мешают компоненты магниевого сплава — магний и марганец. В присутствии цинка определяют сумму цинка с алюминием титрованием при pH 3 с использованием в качестве индикатора комплексоната меди с ПАН-2 и вводят поправку на цинк, используя пересчетный коэффициент с цинка на алюминий 0,41. [c.169]

    В присутствии ПАН-2 индий можно определять при pH 2,3—2,5 и pH 7—8 [583]. В кислой среде не мешают щелочные, щелочноземельные элементы, алюминий и марганец. Селективность титрования при pH 7—8 повышают введением цианида калия. В этом случае определению индия не мешают Ag, Сс1, Си, Н , N1, 2п и другие катионы, образующие устойчивые цианидные комплексы. Ионы Ре(П1) маскируют фторидом. Мешают В1, Са, РЬ и 5п. [c.171]

    Допустимые количества примесей, не оказывающие влияния на определение цинка описанным методом, следующие кальций — до 15-кратного по отношению к цинку (возможно и больше) алюминий—до 5-кратного (при большем содержании следует добавлять лимонную кислоту) медь —равное количеству цинка железо и кобальт—10-кратное по отношению к цинку в ацетатно-аммиачной среде и большее — в присутствии лимонной кислоты кадмий — до 60 мг/л марганец дол кен содержаться в количествах, примерно в 30 раз меньших, чем цинк. [c.347]

    Определению кадмия не мешают свинец, висмут, мышьяк, сурьма, олово, хром, алюминий, железо, марганец, цианиды, роданиды, фосфаты, сульфиты, тиосульфаты и другие ионы, обычно присутствующие в водах в концентрациях ниже 50 мг/л-. [c.289]

    Определению не мешают свинец, марганец, никель, кобальт, медь, цинк, кадмий, алюминий, щелочноземельные и лантаниды. Мешает определению присутствие железа. Ниже (см. стр. 204) приводится предлагаемый в этом случае ход определения. Мешают хлорид-ионы, если содержание их более чем в 20 раз превышает содержание комплексона. В этом случае рекомендуется проводить титрование с тиомочевиной в качестве индикатора (см. метод Б ). [c.203]

    Определение кальция в известняке. Важным косвенным окислительно-восстановительным методом анализа является определение кальция в известняке. Компонентами доломитного известняка являются карбонаты кальция и магния, но обычно присутствуют еще в небольших количествах силикаты кальция и магния, а также карбонаты и силикаты таких элементов, как алюминий, железо и марганец. Кроме того, большинство образцов содержит также в небольших количествах титан, натрий и калий. [c.325]

    Определению не мешают палладий, ртуть, кадмий, медь, олово, сурьма, алюминий, никель, кобальт, марганец, цинк, барий, кальций, натрий, калий. Железо (1П) образуете реактивом желтый комплекс, поэтому в присутствии железа добавляют фосфорную кислоту. [c.187]

    При приготовлении содовой вытяжки в раствор могут частично перейти ионы алюминия, цинка, никеля, меди и олова. Однако открытию анионов мешают только ионы никеля и меди. Их удаляют, нагревая раствор, нейтрализованный уксусной кислотой до слабощелочной реакции, для создания определенной щелочности раствора добавляют еще две капли 2 н. щелочи. После нагревания выпадает осадок гидроокисей никеля и меди, который отделяют центрифугированием. Если нужно открыть ацетат-ион, то его необходимо открывать до введения уксусной кислоты в этот раствор. Можно также испытуемый раствор, содержащий окрашенные ионы, например хроматы или перманганаты, восстановить, пропуская в подкисленный раствор сероводород. При этом хромат-ион переходит в хром (HI), а перманганат-ион переходит в марганец (И) и выделяется элементарная сера. Если присутствуют арсениты, то выделяется желтый осадок сульфида мышьяка. Если присутствует арсенит-ион, то пятисернистый мышьяк можно выделить только в сильнокислом растворе, соответствующем 6н. НС1. [c.303]

    Никкель и кобальт осаждают одновременно сернистым аммонием из не содержащих железа и алюминия фильтратов, полученных после осаждения цинком [см. далее, 14]. Если присутствует марганец, он тоже осаждается. При обработке осадка сильно разбавленной соляной кислотой (1 6) сернистый марганец растворяется, а сернистый кобальт и никкель остаются в осадке. Их фильтруют, промывают, прокаливают и взвешивают в виде закиси или осаждают электролизом и взвешивают в виде металлов. Во всяком случае прокаленный осадок следует проверить на железо и марганец. Отделение никкеля от кобальта требуется очень редко, тем более, что кобальт не часто встречается в железных рудах в количествах, поддающихся определению. Если разделение необходимо, его производят [c.41]

    Примечание. Определению мешают марганец, магний и трехвалентные хром и железо, если они присутствуют в молекулярном отношении к алюминию, превышающем 0,01. Даже меньшие количества сульфата и, особенно силиката, приводят к повышенным результатам в присутствии фосфата получаются пониженные результаты. Кальций, медь и цинк мешают, если пх молярные отношения к алюминию превышают 0,5. [c.230]

    Влияние различных элементов на определение галлия методом амперометрического титрования Ы-бензоилфенилгидроксил-амином было изучено Галлай и Алимариным [132]. Определения проводились с 0,4—6 мг Оа в 10 мл раствора на фоне соляная кислота — бифталат калия. В присутствии алюминия удовлетворительные результаты были получены при pH 2,4—3,0 до соотношения А1 Оа = 65 1. Цинк и марганец не осаждаются БФГУ и не мешают определению до соотношения 500 1. При pH 2,4 100-кратные количества индия не влияют на результаты определения галлия. В 1присутств1ии свинца определение проводят при pH 3,0—4,0 на ацетатно-аммиачном фоне, во избежание осаждения хлорида свинца. Удовлетворительные результаты получены до содержания 500-кратных количеств свинца. [c.107]

    При добавлении пиридина к слабокислому анализируемому раствору в нем, создается pH, приблизительно равный 6,5. В этих условиях осаждаются железо (III), алюминий, хром, уран, индий, галлий, титан,, цирконий, тОрий и скандий. В то же время марганец, кобальт, никель и цинк (а также и металлй сероводородной группы — медь и кадмий) образуют с пиридином ко мплексные ионы состава Me( 5HgN)2 , остающиеся в растворе. Для создания в растворе указанного значения pH при определении металлов, присутствующих в обычных аналитических концентрациях, требуется добавление пиридина в избытке около 8 эквивалентов. [c.111]

    Определению алюминия посредством эриохромцианина К мешает Ре(П1). После восстановления (при помощи тиогликолевой или аскорбиновой кислоты) до Ре(П) оно не мешает определению, даже если его содержится в растворе в 50 раз больше, чем алюминия. При стократном избытке железа результаты определения алюминия завышаются на 7%. Результаты определения алюминия также бывают завышены, если содержание титана в анализируемом растворе превышает содержание алюминия (например, если титана в два раза больше, результаты завышены примерно на 20%). Лантан и индий не мешают определению алюминия. Избыток хрома(1П) мешает появлению окраски. Прп иятидесятпкратном избытке хрома степень окрашивания системы А1 — ЕН уменьшается в два раза. Медь, образующая окрашенный комплекс с эриохромцианипом, маскируется гипосульфитом [37]. Цинк, свинец, никель, олово и марганец не мешают определению алюминия [55]. Бериллий, ванадий и цирконий следует отделять от алюминия до проведения определения. В присутствии комплексона И эриохромцианин образует окрашенные комплексы только с бериллием и цирконием, в присутствии же фторидов комплекс с эриохромцианипом дает только ванадий. Тартраты и цитраты мешают реакции эриохромцианина с алюминием. [c.106]

    Применяют для определения алюминия при pH 7—8 методом обратного титрования солью цинка в присутствии пиридина. Барий, кальций и ртуть титруют при pH 10 в присутствии комплексоната магния. Кадмий и кобальт при pH 10 определяют прямым титрованием. Магний, цинк, железо (III) и титан (IV)—методом обратного титрования солью цинка в присутствии пиридина. Галлий (III) при pH 6,5—9,5 определяют обратным титрованием солью цинка. Индий определяют при pH 8—10 в присутствии сегнетовой соли марганец при pH 10 —с добавлением гидроксиламина. Никель и свинец при pH 10—методом обратного титрования солью магния или цинка. Титан (IV) определяют при pH 10 обратным титрованием солью магния или с добавлением комплексоната магния. Ванадий (V) определяют при pH 10 методом обратного титрования солью марганца. Переход окраски от винно-красной к синей. [c.279]

    Чжен Гуан-лу [304] разработал быстрый и точный прямой метод определения небольших количеств индия титрованием раствором динатриевой соли этилендиаминтетрауксусной кислоты при pH 2,3—2,5 или при pH 7—8 в присутствия 1-(2-пиридил-азо)-2-нафтола. Пря pH 2,3—2,5 не мешают щелочные и щелочно-гемельные металлы, алюминий и марганец. При pH 7—8 не мешают медь, цинк, кадмяй, никель, серебро, ртуть и некоторые другие элементы, если к титруемому раствору добавить достаточное количество цианида калия. Трехвалентное железо связывают фторидом калия в присутствии тартрата и небольших количеств цианида. Не мешают хлориды, сульфаты, нитраты, перхлораты, фториды, тартраты и цитраты. Мешают свинец, висмут, галлий и олово. [c.107]

    Шестивлентный вольфрам не дает с 8-оксихинолин-5-суль-фокислотой каких-либо окрашенных соединений и при условиях Определения молибдена не восстанавливается, а поэтому не влияет на результаты определения молибдена. Однако в присутствии больших количеств вольфрама (больше 10 мг) нужно увеличить количество добавляемого реагента. Определению молибдена мешают ванадий, двухвалентное железо, кобальт, цинк, большие количества меди, комплексон III и винная кислота. Кальций, магний, барий, никель, кадмий, двухвалентный марганец, трехвалентный хром, алюминий, торий, небольшие количества висмута и урана, цианид, щавелевая кислота не мешают определению молибдена. [c.228]

    Самую большую группу соединений с известными структурами образуют соединения типа МО (ОН), где М — алюминий, скандий, иттрий, ванадий, хром, марганец, железо, кобальт, галлий и индий. Ряд соединений МО (ОН), так же как гидроксиды трехвалентных металлов и оксиды М2О3 алюминия и железа, имеют а- и у-модификации. Так называемый p-FeO(OH), строго говоря, не является гидроксид-оксидом он имеет структуру а-МпОг и устойчив только в присутствии определенных ионов, таких, как С1 , внедренных в пустоты каркаса [3J. Темно-коричневый б-FeO (ОН), обладающий ярко выраженными магнитными свойствами, получают быстрым окислением Ре (ОН) 2 в растворе NaOH он имеет очень простую структуру, в основе которой лежит гексагональная плотнейшая упаковка О (ОН), а ионы РеЗ+ заселяют определенные пустоты. Результаты исследования магнитных свойств лучше согласуются со статистическим распределением ионов металла по всем октаэдрическим позициям, чем с частичной заселенностью некоторых тетраэдрических позиций, как предполагали ранее [4]. Структура Е-РеО(ОН) рассматривается ниже. [c.366]

    Перекись водорода и перекись натрия препятствуют полному осаждению циркония на холоду при кипячении в их присутствии цирконий полностью осаждается. При осаждении гидроокиси циркония щелочами отделяются следующие элементы мюминий, галлий, цинк, молибден, вольфрам, ванадий, бериллий, мышьяк и Сурьма. В присутствии карбонатов отделяется уран. Для этой цели к щелочи прибавляют I—2 г Na Og. Прибавление перекиси водорода улучшает отделение. В осадке с цирконием находятся железо, титан, марганец, хром, кобальт, никель, медь, кадмий, серебро, индий, таллий, торий и редкоземельные элементы. Магний и щелочноземельные металлы при достаточном содержании карбонатов также полностью осаждаются. Этот метод может иметь некоторое значение для отделения циркония от молибдена, вольфрама, ванадия, алюминия и бериллия. По данным Руффа [700], бериллий не отделяется щелочью количественно, так же как и алюминий, особенно в присутствии больших количеств аммонийных солей. Осаждение гидроокиси циркония аммиаком может применяться при гравиметрическом определении циркония. Но этот метод используется лишь в случае отсутствия примесей, осаждаемых аммиаком. [c.53]

    Медь, цинк, олово, свинец, а также большинство других составляющих, присутствующих в небольших количествах в сплавах цветных металлов, определяют атомно-абсорбционным методом, хотя результаты публикуются довольно редко. Сплавы на основе меди анализировали на содержание цинка [53], свинца [319] и марганца [31]. Саттур [160] определял в таких сплавах марганец, никель и железо, а кроме того медь, присутствующую в качестве основного элемента в различных материалах NBS, и незначительные примеси меди в олове, цинке, алюминии и свинце. Погрешность при определении основного элемента методом атомной абсорбции составляла всего 0,7% от общего количества меди. [c.179]

    Зависимость образования лимонной кислоты от состава среды особенно четко выражена у Aspergillus niger. В этом легко убедиться, изменяя содержание одного из компонентов среды при сохранении всех прочих условий. Если к простой среде с глюкозой после удаления микроэлементов (их осаждают гидроокисью алюминия) прибавлять определенные компоненты в известных концентрациях, а затем инокулировать среду и после 9-дневной инкубации в колбах со встряхиванием определять массу мицелия, остаточное количество сахара и количество образовавшейся лимонной кислоты, то можно установить ряд интересных соотношений (рис. 10.1). Приведенные кривые позволяют сделать следующие выводы а) нитрат аммония и сульфат магния не оказывают какого-либо специфического влияния на выход лимонной кислоты-они влияют только на рост мицелия б) кривые для цинка, железа и фосфора характеризуются четким пиком. При концентрациях, обеспечивающих лишь субоптимальный рост мицелия, отмечается более высокий выход лимонной кислоты однако при дальнейшем снижении концентрации этих трех элементов торможение роста мицелия ограничивает и выработку кислоты в) особенно высокие выходы можно получить в тех случаях, когда два компонента-железо и цинк-присутствуют в лимитирующих количествах. Марганец оказывает отчетливое подавляющее действие 3 мкг Мп на 1 л среды уже снижают выход кислоты (между тем при использовании очищенной продажной [c.330]

    I. Валентность ионов. В изученных ранее аналитических группах мы имели дело с катионами элементов I и II групп периодической системы. Указанные элементы образуют по одному солеобразующему окислу и потому присутствуют в растворах в виде ионов всегда одной определенной валентности. В отличие от этого, катионы III аналитической группы образованы элементами, относящимися к самым различным (II,III,VI,VII и VIII) группам периодической системы. Из них постоянную валентность имеют только элементы низших (II и III) групп ее—цинк и алюминий, образующие катионы Zn++ и А1+++. Наоборот, элементы высших групп периодической системы, именно хром (VI группа), марганец (VII группа), железо, кобальт и никель (VIII группа), образуют несколько степеней окисления и могут, следовательно, присутствовать в растворах в виде ионов различной валентности. Так, все указанные элементы (за исключением никеля и кобальта) образуют двухвалентные катионы (в солях закиси) и трехвалентные катионы (в солях окиси). Как известно, ионы разной валентности показывают и различные реакции. Однако не все эти ионы достаточно устойчивы. Ионы Мп+++ и Сг++ весьма неустойчивы и в условиях анализа легко превращаются в Мп++ и Сг+++. Поэтому мы изучать их не будем. Наоборот, оба катиона железа Fe++ и Fe+++достаточно устойчивы. Таким образом, мы будем изучать катионы А1+++, Сг+++, Fe+++, Fe++, Мп++, Zn++, Со++ и NI++. [c.276]

    Заряд ионов. В изученных ранее группах рассматривались катионы элементов I и II групп периодической системы, образующие по одному солеобразуюшему окислу и потому присутствующие в растворах всегда в виде ионов одного определенного заряда. Катионы III аналитической группы образованы элементами, относящимися к самым различным (II, III, IV, VI, VII и VIII) группам периодической системы . Из них постоянный заряд имеют только элементы низших (II и III) групп ее, именно цинк с законченным 18-электронным слоем и алюминий с законченным 8-электронным слоем. Они образуют катионы Zn и А1 +. Элементы высших групп периодической системы титан (IV группа), хром (VI группа), марганец (VII группа), железо, кобальт и никель (VIII группа), имеющие недостроенные 18-электронные слои, существуют в нескольких степенях окисления и могут, следовательно, присутствовать в растворах в виде ионов различного заряда. [c.307]

    Хром и марганец, комплексы которых с ОДФПК экстрагируются совместно с комплексом алюминия, отделяют окислением до Сг + и Мп +. Присутствие в органической фазе ОДФПК не мешает определению алюминия с ксиленоловым оранжевым. В этанольно-хлороформном растворе комплекс окрашен в краснофиолетовый цвет (Лшах = 575 нм, 65,5 = 3,15-10 ). [c.546]


Смотреть страницы где упоминается термин Определение марганца в присутствии алюминия: [c.76]    [c.443]    [c.90]    [c.495]    [c.20]    [c.58]    [c.57]    [c.366]    [c.140]    [c.169]    [c.248]    [c.68]    [c.365]    [c.301]    [c.267]   
Смотреть главы в:

Комплексоны в химическом анализе -> Определение марганца в присутствии алюминия




ПОИСК





Смотрите так же термины и статьи:

Алюминий от марганца

Марганец определение

Определение марганца в присутствии цинка, алюминия и магния

Определение цинка в присутствии алюминия, никеля, магния и марганца

Раздельное определение аэрозолей окислов алюминия, магния, марганца, железа, цинка и меди при их совместном присутствии



© 2025 chem21.info Реклама на сайте