Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрон-ядерное взаимодействие и сверхтонкая структура спектра ЭПР

    Электрон-ядерное взаимодействие и сверхтонкая структура спектра ЭПР [c.59]

    Именно орбитальный вклад в магнитный момент частицы меняет условия резонанса, что проявляется в значении -фактора (Ланде), и это первая характеристика спектра ЭПР. Второй важнейшей чертой, содержащей большую информацию, является сверхтонкая структура спектра, обусловленная электрон-ядерным спин-спиновым взаимодействием. В спектрах ЭПР анизотропных образцов, содержащих парамагнитные центры с 5 1, может наблюдаться также тонкая структура, связанная с расщеплением спиновых уровней энергии в нулевом поле, т. е. без наложения внешнего магнитного поля. Определенную информацию несет ширина сигналов ЭПР. Сам факт наблюдения спектра говорит прежде всего о том, что хотя бы какая-то часть образца содержит парамагнитные частицы или центры, т. е. имеет неспаренные электроны. [c.55]


    Сверхтонкая структура спектра (СТС) хорошо согласуется с теоретически ожидаемым взаимодействием неспаренного электрона с ядерным спином азота 151). В результате детального изучения тонких особенностей спектра ЭПР соли Фреми [52—54] стало воз- южным применять ее для калибровки радиоспектрометров [7]. [c.11]

    Сверхтонкая структура спектров ЭПР. В состав радикала часто входят атомы, обладающие ядерным магнитным моментом, например атомы водорода. Магнитный момент неспаренного электрона взаимодействует с магнитными моментами ядер. В результате такого взаимодействия происходит расщепление линий ЭПР-спектра, т. е. появляется так называемая сверхтонкая структура (СТС) спектра ЭПР. Это позволяет по спектру ЭПР идентифицировать структуру свободного радикала. Например, ЭПР-спектр метильного радикала вследствие взаимодействия магнитного момента электрона с тремя эквивалентными ядерными магнитными моментами атомов водорода [c.298]

    Магнитное сверхтонкое расщепление Ет и магнитная сверхтонкая структура спектра (СТС) возникает в мессбауэровском спектре благодаря взаимодействию магнитного дипольного момента ядра ц в основном и возбужденном состояниях с эффективным магнитным полем Н, создаваемом электронной оболочкой атома. В результате ядерный уровень со спином I расщепляется на 2/ -Ь 1 подуровней с собственными значениями [c.97]

    Сверхтонкое расщепление на ядрах лиганда зависит от контактного взаимодействия Ферми (F. С.), дипольного взаимодействия с ионом металла (DIP), дипольных эффектов, обусловленных электронной плотностью на р-орбитали лиганда (LDP), и псевдоконтактного вклада иона металла (LP ), возникающего за счет взаимодействия орбитального углового момента неспаренного электрона с ядерным спином лиганда. Если сверхтонкая структура, обусловленная лигандом, разрешена, то последний член обычно мал по сравнению с другими. При наличии интенсивного спин-орбитального взаимодействия следует ожидать большого псевдоконтактного вклада, но релаксационные эффекты осложняют наблюдение спектра ЭПР и. следовательно, сверхтонкого расщепления на лиганде. Значения А. и А выражают с помощью уравнений (13.38) и (13.39)  [c.231]

    В том случае, когда ядерные уровни мессбауэровских атомов, рассеивающих у-кванты кристалла, имеют сверхтонкую структуру, обусловленную магнитными или электрическими взаимодействиями ядра с окружающими его электронами, разрешенные мессбауэровские переходы имеют особенность, состоящую в существовании угловых зависимостей интенсивности компонент мессбауэровского спектра относительно направления сверхтонких полей на ядре. В результате, если в рассеивающем объекте имеются ядра с разными направлениями градиента электрического поля или внутреннего эффективного поля, то ядерная амплитуда рассеяния для таких ядер будет различна, что может привести к появлению [c.230]


    Сверхтонкая структура. Если в соединении кроме неспаренных электронов имеются ядра, обладающие спином / и соответствующим магнитным моментом (хл/, то возможно взаимодействие между электронным и ядерным магнитными моментами, которое приводит к расщеплению одиночной линии ЭПР на определенное число компонент. Такое взаимодействие называют сверхтонким, спектр имеет сверхтонкую структуру (СТС). СТС дает сведения о делокализации электрона, характерная СТС используется для идентификации соединений. [c.288]

    Каждый радикал, вообще говоря, имеет свой характеристический -фак-тор, поэтому радикалы имеют разные частоты (Иц. За счет сверхтонкого взаимодействия неспаренных электронов с магнитными ядрами радикала уровни энергии спина неспаренного электрона расщепляются. В результате в спектре ЭПР радикала появляется сверхтонкая структура (СТС). Каждая компонента спектра соответствует определенной конфигурации ядерных спинов. Ядерные спины в разных конфигурациях создают разные локальные поля для спина неспаренного электрона и, как результат, для разных конфигураций ядерных спинов электронный спин радикала имеет разную резонансную частоту. [c.91]

    Спектр ЭПР этого иона более сложен, чем снектр ЭПР серы [16] он имеет сверхтонкую структуру, поскольку магнитный момент электронного спина взаимодействует с ядерными спиновыми моментами протонов. Исходя из числа различных протонных окружений, которое может быть определено из симметрии молекулы, следовало ожидать двадцать пять линий, и все они были разрешены [27] все вместе они занимают около 27 гаусс (рис. 47). [c.213]

    В атомах и молекулах ядра находятся внутри электронных орбиталей, и когда электронное распределение вокруг квадру-польного ядра несферическое, то между электронным и ядерным полями происходит взаимодействие. Следовательно, ядро будет иметь потенциальную энергию, которая зависит от ориентации квадрупольного момента по отношению к внешнему полю, образуемому окружающими электронами и ядрами (ср. с теорией ядерного магнитного резонанса разд. 6,10). Возможные ориентации квантуются, т. е. разрешены только определенные углы, каждый из которых приводит к несколько отличной потенциальной энергии. Таким образом, существует ряд различных энергетических уровней, переходами между которыми объясняется сверхтонкая структура вращательных линий в микроволновом спектре (разд. 6.5). [c.230]

    Вследствие очень малой ширины ядерных переходов эффект Мессбауэра весьма чувствителен даже к небольшим изменениям энергии 7-излучения. Поэтому в 7-резонансных спектрах проявляются сравнительно слабые взаимодействия между ядром и орбитальными электронами. Именно влияние электронного окружения на испускание или поглощение 7-излучения при ядерных переходах определяет сверхтонкую структуру 7-резонансных спектров. Почти все применения эффекта Мессбауэра в химии и физике твердого тела основаны на анализе сверхтонкой структуры спектров. [c.246]

    Ядерный спин был открыт при анализе атомных спектров. Было отмечено, например, что линия нри 3596 А, испускаемая атомом Bi, имеет сверхтонкую структуру, состоящую из шести линий с длиной водны в интервале 3595,952—3596,256 А. В 1924 г. В. Паули высказал предположение, что эти линии могут быть обусловлены взаимодействием момента количества движения электронов J и момента количества движения I ядра. Наблюдаемая сверхтонкая структура, как было установлено, [c.745]

    Все ароматические радикалы, содержащие азот, имеют хорошо разрешенную сверхтонкую структуру, обусловленную взаимодействием неспаренного электрона с ядром если на атоме азота существует какая-либо спиновая плотность я-электрона. Энергия ядерного квадрупольного взаимодействия всегда гораздо меньше, чем энергия сверхтонкого взаимодействия. Поэтому такое уширение, как наблюдается в спектрах ЯМР, отсутствует в спектрах ЭПР. Типичным примером являются катион-радикал красителя голубой Вурстера и анион-радикал нитробензола [c.128]

    С помощью электронно-ядерного двойного резонанса можно измерять константы сверхтонкого взаимодействия. Для этого необходимо медленно изменять частоту радиочастотных импульсов в определенном интервале и наблюдать электронный резонанс. До тех пор пока частота ЯМР не достигнет значения, соответствующего выражению (50), никаких особых явлений не наблюдается. Когда выполняется условие (50), сигнал ЭПР резко возрастает, а затем медленно уменьшается до прежнего низкого значения. Главное достоинство метода заключается в том, что можно измерять очень малые сверхтонкие расщепления при условиях, когда число линий сверхтонкой структуры в спектре ЭПР настолько велико, что все линии сильно перекрываются. [c.308]


    Можно надеяться, что мы придем к лучшему пониманию характера и параметров волновых функций электронов редкоземельных элементов, определяющих природу сверхтонких структур в изучаемых веществах, а также природы обменного взаимодействия в магнитно-упорядоченных материалах. В последнем вопросе точные измерения сверхтонкой структуры спектров сплавов и соединений с примесями замещения позволят нам детально определить вклады в обменное взаимодействие различных ближайших соседей, как это было успешно продемонстрировано на соединениях железа. Такие эксперименты могут стать решающей проверкой различных моделей суперобменного взаимодействия. Более подробное изучение квадрупольного взаимодействия приведет к более полному пониманию и лучшей систематизации различных экранирующих факторов. Огромные возможности для дальнейших исследований предоставляет нам область изучения изомерных сдвигов, где нужна более широкая систематизация. Прогресс в этом направлении должен сочетаться с глубоким пониманием интересующих нас проблем ядерной физики. Особенно перспективным, как мы полагаем, должно быть изучение изомерных сдвигов у-лучей при переходах внутри одного семейства вращательных уровней. И наконец, из настоящего обзора должно быть ясно, что работы по релаксационным явлениям в парамагнитных соединениях редкоземельных элементов только начинаются и обещают быть очень интересными во многих аспектах. [c.394]

    Ядерные спины и магнитные моменты иногда могут быть определены на основании изучения сверхтонкой структуры атомных спектров. Сверхтонкая структура обусловлена тем обстоятельством, что вследствие взаимодействия между магнитным моментом ядра и магнитными моментами электронов энергия атома несколько различна для различных квантованных взаимных ориентаций векторов спина ядра и вращательных моментов электронов. Таким образом, при соответствующих условиях ядерный спин I может быть определен по числу линий в спектроскопических гипер-мультиплетах . Этим методом были определены спины многих ядер, например спины В (/ = /г) и (/ = /г). [c.44]

    Ядерные эффекты в спектре урана. В атомных спектрах наблюдаются два типа ядерных эффектов 1) смещение линий и 2) их расщепление (так называемая сверхтонкая структура ), вызванное взаимодействием между ядерным спиновым моментом и вращательными моментами валентных электронов. [c.27]

    Электронная структура и физические свойства ряда стабильных алифатических нитроксильных радикалов исследованы главным образом американскими [34, 35], советскими [41] и французскими [36, 42, 44] исследователями. Как и все радикалы, нитроксильные радикалы можно изучать методом электронного парамагнитного резонанса [45]. Наибольший интерес представляет сверхтонкое расщепление на ядре (рис. 5). Это ядро имеет спин, равный 1, поэтому оно может взаимодействовать со спином электрона, расщепляя сигнал в ЭПР-спектре на три отдельные линии равной интенсивности соответственно трем значениям проекции ядерного спина на направление магнитного поля +1, 0,-1. Каждая линия этого триплета может далее расщепляться из-за слабого взаимодействия с ядром (спин /г) соседней метильной группы [36, 46], а в отдельных случаях даже может наблюдаться слабое расщепление на протонах [35, 42]. Кроме того, в спектре может наблюдаться слабый дублет, разделенный приблизительно на 21 Гс, возникающий из-за взаимодействия с ядром (спин Чг), природное содержание которого, равно 0,36% [42]. [c.18]

    Следует также упомянуть, что существуют другие, менее эффективные механизмы интеркомбинационной конверсии. Наиболее распространенными среди них является сверхтонкое взаимодействие электронных и ядерных спинов. Это есть контактный член Ферми, который отвечает за тонкую структуру как спектров ЯМР, так и спектров ЭПР. [c.506]

    При изменении ориентации Ьпина электрона по отношению к внешнему полю внутреннее магнитное поле изменяет свое направление на обратное, оставаясь тем же самым по величине. Так как проекция ядерного спина на ось квантования при этом не изменяется, то вследствие изменения направления внутреннего поля изменяется энергия взаимодействия ядерного спина с внутренним магнитным полем. Эти изменения энергии и обусловливают сверхтонкую структуру спектра. Величина напряженности внутреннего магнитного поля равна [c.59]

    Информация об электронном строении соединения, имеющего неспаренные электроны, содержится в положении линий ЭПР, тонкой, сверхтонкой и супер-сверхтонкой структуре, ширине линий и др. По отличию g -фактора от 2 можно судить об орбитальном вкладе в магнитный момент, о характере спин-орбитального взаимодействия, знаке (и величине) константы Я, расщеплении в кристаллическом поле Л, а по анизотропии г-фактора — о строении окружения парамагнитного центра и прежде всего о его симметрии. Сверхтонкая и супер-сверхтонкая структуры спектров ЭПР представляют труднопереоценимую информацию о химическом строении соединения, о локализации неспаренных электронов, о ковалентности связей, о характере участия лигандов дифференцированно в а- и я-связях [305—307]. Дополнительные данные удается получить при исследовании так называемого двойного электронно-ядерного резонанса [308] и влияния электрического поля на спектры ЭПР [309]. [c.172]

    Мы обсудили наиболее важные особенности, возникающие в спектрах ЭПР для ионов со спином больше 1. Мультинлетность линий, которые возникают вследствие расщепления в нулевом поле, называют тонкой структурой спектра очень часто наблюдается также дополнительная сверхтонкая структура, обусловленная электронно-ядерным взаимодействием. Наиболее важно отметить, что для ионов с нечетным числом неспаренных электронов расщепление в нулевом поле приводит к образованию набора крамерсовых дублетов, и, так как самое нижнее состояние по крайней мере дважды вырождено по спину, то всегда возможно резонансное поглощение. [c.218]

    Рассмотрим теперь вкратце влияние нестационарных магнитных полей на относительную интенсивность спектральных линий в случае комбинированного магнитного и электрического сверхтонких взаимодействий [119, 123]. Пусть, например, из-за релаксационных процессов величина магнитного поля на ядре скачком меняется с +/г на —Н. Если предположить, что направление магнитного поля с точностью до знака совпадает с направлением оси градиента электрического поля, то такие флуктуации не вызовут переходов между ядерными подуровнями [123]. Если частота флуктуации магнитного поля мала по сравнению с частотой прецессии ядерного спина в поле /г , то картина расщепления будет соответствовать рис. 1.30,а, а относительные интенсивности компонент для изотропных поликристаллических образцов определятся выражением (1.147). С другой стороны, если частота флуктуаций поля Л много больше частоты прецессии ядерного спина, то ядра чувствуют некоторое среднее значение поля ко, которое равно нулю в случае вырожденного состояния электронной оболочки иона. При этом сверхтонкая структура спектра обнаруживает чистый дублет (переход /г -> /г), т. е. спектр становится квадрупольным (рис. 1.30, ), с равной интенсивностью обеих линий. Как уже указывалось выше (рис. 1.29), в мессбауэровском спектре поглощения одна из линий квадрупольного дублета соответствует переходам /г -> V2, а вторая — переходам /г -> V2, TV2 -> V2. Частота прецессии ядерного спина I = /г с /и = /г втрое больше частоты прецессии ядерного спина / = /2 с т = /г. Отсюда следует, что при уменьшении среднего значения поля Ъо на ядре скорость группировки линий магнитной структуры, соответствующей переходам /г и /2 2, +V2 -> /2, около положений двух линий чисто квадрупольного спектра будет различной. Учитывая конечную ширину спектральных линий, получаем, что в некотором интервале величин средних полей йо (а следовательно, частот флуктуаций поля Н) интенсивности линий в наблюдаемом спектре перестанут подчиняться выражениям (1.147) и (1.148). При этом линии, соответствующие переходам dьV2 V2, -> Уг, быстрее, чем для перехода /2 V2, группируются с уменьшением ко около их центра тяжести (положение которого определяет одну из линий квадрупольного спектра). В результате возникает различие в пиковой величине двух компонент квадрупольного расщепления при равенстве площадей под обеими пиками. Поскольку флуктуирующие [c.80]

    Спектры ЭПР-поглощения соединений переходных металлов более трудны для интерпретации, чем спектры радикалов, так как для переходных металлов нужно учитывать также орбитальные магнитные моменты. Однако эти спектры могут дать очень много ценной информации относительно тонких деталей уровней энергии. Сверхтонкая структура, обусловленная ядерными спинами, дает возможность судить о том, как распределены неспаренные электроны. Измерения часто проводятся на магнитно-разбавленных кристаллах. Это означает, что парамагнитные ионы включены в небольших количествах в сходную кристаллическую решетку из диамагнитных ионов. Таким образом, можно свести к минимуму возмущающее влияние соседних ионов. Так, например, кристалл Ыа2Р1С1е 6Н2О, содержащий 0,5% 1гС1б , дает пик, отнесенный к единственному неспаренному -электрону иридия. Этот пик имеет сверхтонкую структуру, которую можно объяснить только взаимодействием с ядерными спинами окружающих атомов хлора. Количественная интерпретация показывает, что электрон проводит 70% времени около иридия и 5% времени около каждого из хлоров (см. стр. 169). [c.364]

    Поскольку взаимодействие Ферми проявляется часто в спектрах ЭПР в виде сверхтонкой структуры (например, в спектрах свободных радикалов), то иногда его еще называют сверхтонким (СТ) взаимодействием. Наблюдение и анализ его могут быть очень важны для выяснения электронной структуры различных молекул и комплексов, для исследования характера химической связи в соединениях, так как константа А позволяет оценить спиновую плотность Qj, а следовательно, и в различных частях соединения [180]. Например, если в соединении имеется магнитный электрон (за счет входящего в соединение парамагнитного иона — наиболее интересный для нас случай), то ни химические сдвиги, характерные ддя данных функциальных групп, ни спин-сшшовые мультипйеты наблюдать не удается. Это обусловлено влиянием электронно-ядерных релаксационных механизмов, которое приводит к уширению линий спектра, к их размазыванию . Часто в таких случаях наблюдается просто одна широкая линия. Мак-Конелл указывает, что если тГ > и тГ > то изотропный сверхтонкий сдвиг перекроет величину обычного химического сдвига. При выполнении одного из этих условий тот сдвиг, обусловленный усредненным во времени изотропным взаимодействием, дается следующим выражением [181, 182]  [c.246]

    ПервыЗ путь — использование явления, обнаруженного Стевен-сом [215] и Оуэном [216]. Оно состоит в том, что орбитальный магнитный момент непарного -электрона восстанавливается, если магнитный электрон распространяется по орбитам всей молекулы. Второй путь — это наблюдение сверхтонкой структуры в спектрах ЭПР оно позволяет оценить волновые функции магнитных электронов. Найденная Гриффитом и др. [217] аномальная сверхтонкая структура, обусловленная взаимодействием типа А1 3 электронного спина с ядерным (в спектре 1гС1 ), также может быть использована для оценки а и р. [c.256]

    В большинстве свободных радикалов неспаренный электрон находится на орбитали, охватывающей несколько атолгав. Если хотя бы один из этих атолюБ имеет ядерный магнитный момент, то в результате взаимодействия люжду ядерным и электронным спинами энергетические уровни неспаренного электрона дополнительно расщепляются, и в спектре ЭПР возникает сверхтонкая структура <СТС). [c.113]

    Кроме обычной ЯКР-спектроскопии существует ряд других экспериментальных методов исследования, которые позволяют получить сведения о ядерном квадрупольном взаимодействии. К их числу следует отнести ЯМР-спектроскопию, которая дает возможность измерять константу ядерного квадрупольного взаимодействия e Qq в твердых телах (см. разд. II, Б, 2). В благоприятных случаях величину удается определить и для жидких образцов по времени ядерной магнитной релаксации [27, 28]. Гартман и Ган [29] использовали для определения величины ядер с очень низким естественным содержанием двойной ядерный резонанс при этом в исследуемом образце одновременно присутствуют ядра того же элемента с высоким естественным содержанием, от которых получают сильный сигнал (например, в случае ядер К в КСЮз). Иногда удается определить величину и даже знак e Qq по сверхтонкой структуре спектров ЭПР [30]. Метод двойного электронно-ядерного резонанса (Еп(1ог) [30] дает возможность лучше разрешить и точнее измерить сверхтонкое расщепление, а следовательно, и получить более точное значение e Qq. Для свободных молекул величину e Qq можнс определить по вращательным спектрам газообразных веществ [31]. В случае легких атомов и молекул с малым молекулярным весом для определения величины e Qq применяется метод молекулярных или атомных пучков [32]. Следует отметить, что сам эффект ядерного квадрупольного взаимодействия был открыт Шюлером и Шмидтом [33 при исследовании очень малых сдвигов в сверхтонкой структуре оптических спектров. Существует еще несколько методов экспериментального исследования ядерного квадрупольного взаимодействия, которые относятся к области ядерной физики. Широко известным примером такого рода является -(-резонансная, или мес- [c.220]

    Спектроскопия ЭПР больше, чем любой другой метод, способствовала выяснению природы молибденсодержащих ферментов [27]. Сигналы ЭПР молибдена характеризуются определенными ё -факторами, сверхтонким расщеплением и параметрами насыщения мощностью сверхвысокочастотного излучения, которые отличают эти сигналы от сигналов, например, флавиновых и железосодержащих центров. Шестикомпонентная сверхтонкая структура, характерная для спектров соединений молибдена, определяется взаимодействием неспаренного электрона с ядерным спином изотопа Мо (I = 5/2), содержание которого в природном молибдене составляет 25%. Остальлые 75% приходятся на изотопы Мо, Мо и Мо(/ = 0). Для усиления вклада шестикомпонентного сигнала ЭПР, обусловленного молибденом, использовалось обогащение изотопом Мо. [c.270]

    Благодаря этому ЭПР внутри молекулы энергетические уровни и, следовательно, резонансный сигнал расщепляются дополнительно, приводя к сверхтонкой структуре спектра (СТС). Число линий при сверхтонком расщеплении зависит от числа взаимодействующих ядер. При взаимодействии с п ядрами оно составляет максимально (2/- -1)", а для п эквивалентных ядер (2п/-(-1), где / — ядерный спин. В последнем случае относительная интенсивность сверхтонких линий для / = /2 пропорциональна биномиальным коэффициентам п-ого порядка и может быть найдена по треугольнику Паскаля. В качестве примера сверхтонкого расщепления на рис. 4.6 приведены спектры хлорнроизводных /г-бензохи-нона. Расстояние между соседними линиями дает константы сверхтонкого взаимодействия (СТВ). Они не зависят от приложенного поля и пропорциональны вероятности пребывания электрона [c.101]

    В растворе обмен ограничен числом столкновений между неспаренными электронами и зависит от вязкости следовательно, его влияние на ширину линии, обусловленную диполь-дипольным взаимодействием, должно быть гораздо меньше. Однако в сверхтонкой структуре происходят интересные изменения. Если ДФПГ растворен в тетрагидрофуране, из которого полностью удален кислород, и концентрация ДФПГ ниже 10 моль л, то в спектре наблюдается хорошо разрешенная сверхтонкая структура с числом линий больше 100. При более высоких концентрациях электроны начинают обмениваться между радикалами с разными наборами ядерных квантовых чисел и линии уширяются. Если Ve — скорость [c.261]

    В некоторых случаях в спектре ЭПР наблюдается сверхтонкая структура, обусловленная дополнительным расщеплением уровней при взаимодействии неспаренных электронов с ядерным магнитным моментом. Так как последний зависит от природы ядра, то появляется возможность непосредственно судить о химическом составе центра. Чаще всего, однако, измеряя ЭПР, можно выяснить лишь, имеются ли в данном образце дефекты, обладающие теми или иными магнитными свойствами. Чтобы убедиться в том, что это и есть те дефекты, которые принимают участие в люминесценции, и установить их химическую природу, нужно параллельно исследовать ЭПР и оптические свойства при варьировании препаративных условий. Так, установление количественной связи между ЭПР, оптическим поглощением и инфракрасным излучением кристаллов КС1 позволило сделать заключение, что наблюдаемый сигнал ЭПР обусловлен F-центрами, а параллельное увеличение интенсивности парамагнитного поглощения ( А-сигнала ) и голубой люминесцен- [c.118]

    В некоторых случаях при изучении структур сложных радикалов метод ЭПР не дает возможности однозначно отнести все линии сверхтонкого взаимодействия (СТВ) и количественно оценить константы СТВ. Для преодоления такого рода трудностей в последние годы стали использовать метод двойного электронно-ядерного резонанса (ДЭЯР). Главное отличие метода "ДЭЯР от ЭПР заключается в том, что на образец, помещенный в магнитное поле, воздействуют излучением двух частот, соответствующих частотам прецессии как электронвв, так и протонов. Спектры ДЭЯР радикалов значительно проще спектров ЭПР каждый тип эквивалентных ядер дает в спектре ДЭЯР две линии, расстояние между которыми точно соответствует константе СТВ для ядер данного типа. [c.92]

    Если вращательное движение частиц является очень быстрым, на отдельный спин накладывается за короткое время большое число беспорядочных полей. Вследствие того что уширяющие поля усредняются до нуля, происходит трансляционное сужение линий. При этом в спектре наблюдают узкие линии. Электронной аналогией указанного процесса является перекрываиие орбиталей неспаренных электронов, когда радикалы расположены достаточно близко друг от друга. Неспаренные электроны в таком случае делокализованы по всему кристаллу. Поэтому на отдельный спин за время, малое по сравнению с временем наблюдения, накладывается большое число беспорядочных полей. В результате возникает очень узкая линия ( обменное сужение ). В этом случае любая сверхтонкая структура, обусловленная взаимодействием с ядрами, исчезает, так как ядерные поля распределены беспорядочно и взакмодействие с ними в среднем равно нулю. [c.45]

    Огромный интерес представляют редкоземельные элементы в форме чистых металлов, образующих при достаточно низких температурах магнитно-упо-рядоченные структуры со сложными спиновыми системами, знание которых чрезвычайно важно для теории. Среди соединений редкоземельных элементов существуют группы, являющиеся ферро- или ферримагнетиками, и некоторые из этих групп соединений находят применение в физике и технике. В качестве примера можно упомянуть феррит-гранаты редкоземельных элементов и различные интерметаллические соединения и сплавы. В случае магнитно-упорядоченных систем сверхтонкие взаимодействия в мессбауэровских спектрах редкоземельных элементов проявляются как очень большие магнитные расщепления, связанные с наличием на ядрах сильных эффективных магнитных полей, создаваемых ориентированными 4/-электронами. Обычно наблюдаются и большие квадрупольные взаимодействия, так как а) ядерные состояния в области деформированных ядер обладают большими электрическими квадру-польными моментами и, б) как правило, 4/-электроны, окружающие нон (и, возможно, заряды соседних ионов), создают на ядрах значительные градиенты электрического поля. [c.336]

    Помимо зеемановского и сверхтонкого электронного взаимодействий в радикальных парах существенное значение имеют магнитное дипольное и электростатическое обменное взаимодействия между неспаренными электронами радикалов — партнеров пары, Дипольное взаимодействие вызывает дублетное расщепление в спектре ЭПР пары (тонкая структура), величина которого равна энергии дипольпого взаимодействия и зависит от ориентации электрон-электроппого радиус-вектора относительно направления внешнего магнитного поля. Это означает, что дипольное взаимодействие анизотропно (как и рассмотренное ранее дипольное электрон-ядерное сверхтонкое взаимодействие). [c.45]

    N 2-Центры были идентифицированы [45 ] на основе наблюдения теоретически ожидаемой сверхтонкой структуры, обусловленной взаимодействием неснаренного электрона с группой N-ато-мов, ядерный спин каждого из которых равен 1. Для двух эквивалентных ядер следует ожидать 5 линий с относительной интенсивностью 1 2 3 2 1. Такой сигнал был независимо обнаружен двумя группами исследователей [45, 47а], которые согласно утверждают, что все N 2-центры ведут себя одинаково, если магнитное поле параллельно кристаллографической оси четвертого порядка [001]. При этой ориентации значение g равно 2,0008 0,0004, а сверхтонкое расш епление составляет примерно 3,8 гаусс. Если, однако, магнитное поле поворачивается так, чтобы оно лежало в плоскости (001), а кристалл враш ается вокруг оси четвертого порядка, то через каждые четверть оборота наблюдаются эквивалентные спектры, с какого бы положения не начиналось враш ение. Эти сложные спектры можно разложить на два более простых эквивалентных между собою спектра. Однако для одного из них взаимодействие, обусловливающее тонкую структуру, достигает максимума при магнитном поле, совпадающем с направлением [110], а для другого при магнитном поле, лежащем в направлении [110]. Параллельное и перпендикулярное значения -фактора равны при этом 2,0027 0,001 и 1,9832 + 0,0004 соответственно, а сверхтонкое расщепление составляет 12 и 4 гаусс. Перпендикулярное сверхтонкое расщепление, как видно из этих опытных данных, равно расщеплению, наблюдаемому при магнитном поле, параллельном [001]. Поэтому был сделан вывод, что Мг-цептры лежат в узлах ионов азида с осью Соо, параллельной направлениям (110). При этом не известно, находится ли неспаренпый электрон на связывающей или разрыхляющей орбитали. [c.154]

    Хорошо изучено простейшее парамагнитное соединение азота — атомарный азот в газовой фазе. Спектр ЭПР атомарного азота в основном состоянии состоит из трех линий, обусловленных сверхтонким взаимодействием электронов с ядрами (ядерный спин /=1) и двух слабых линий, которые отнесены в работе [1362] к сверхтонкой структуре атомов изотопа N (/ = Уг). Отношение констант сверхтонкой структуры а =Л( N) / Л ( N) =1,388 находится в хорошем согласии с результатами Рамзея (а = 1,402). Константы сверхтонкой структуры для изотопов и соответственно составляют 10,46 и 14,63 Мгц. [c.144]


Смотреть страницы где упоминается термин Электрон-ядерное взаимодействие и сверхтонкая структура спектра ЭПР: [c.521]    [c.113]    [c.309]    [c.716]    [c.423]    [c.260]    [c.253]    [c.164]    [c.303]    [c.124]   
Смотреть главы в:

Физические методы исследования в химии -> Электрон-ядерное взаимодействие и сверхтонкая структура спектра ЭПР




ПОИСК





Смотрите так же термины и статьи:

РНК взаимодействие структура

Сверхтонкая структура, спектр ЭПР

Сверхтонкое взаимодействие

Сверхтонкое взаимодействие взаимодействия

Спектр взаимодействия

Спектр ядерные

Спектры электронные

Структура сверхтонкая

Электронно-ядерные (сверхтонкие) взаимодействия



© 2025 chem21.info Реклама на сайте