Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Тема 24. Ванадий

    Ванадий (V) является изоэлектронным аналогом титана (IV), между тем ванадий, как хромофор, еще более сильный, чем титан, Например, оксихинолинат титана очень слабо окрашен, тогда как аналогичное соединение ванадия интенсивно окрашено, [c.75]

    Основная часть металлоорганических соединений концентрируется также в смолисто-асфальтеновых компонентах ТНО. В масляной части ванадий практически полностью отсутствует, а часть никеля присутствует и в дистиллятах. Содержание ванадия в ТНО тем больше, чем выше содержание серы, а никеля — чем выше содер — жание азота. В ТНО малосернистых нефтей содержание никеля выше, чем ванадия. Установлено, что основное количество ванадия и [c.37]


    Многие исследователи отмечают повышенную стойкость никельсодержащих комплексов [43, 48, 49, 12]. Это объясняется характером комплексных связей никеля в молекулах асфальтенов и смол, а также особенностями расположения атома никеля в структуре порфирина. Наблюдаемая более высокая глубина удаления ванадия предположительно объясняется тем, что выступающий из плоскости ванадилпорфирина гетероатом кислорода (см. рис. 1.2) прочно связывается с поверхностью [c.56]

    В настоящее время с целью расширения сырьевой базы каталитическому крекингу подвергаются утяжеленные вакуумные газойли (до 540-580 С), мазуты [4.5-4.7] и даже гуд-роны в чистом виде и в смеси. При выборе остаточного нефтепродукта необходимо учитывать показатели качества и наличие резервных ресурсов. При изучении влияния добавок гудрона ставропольско-дагестанской нефти [4.8], характеризующегося малым содержанием ванадия и никеля (8 и 21 ppm) и коксуемостью 7.7%, на показатели каталитического крекинга было установлено, что вовлечение в вакуумный дистиллят 20-25% гудрона идет без заметного коксообразования. Существенных изменений в выходах и качестве получаемых продуктов, по сравнению с крекингом чистого вакуумного дистиллята, нет. Вместе с тем вовлечение в пере- [c.102]

    Ванадий относится к группе тяжелых металлов, отравляющих катализаторы, однако исследования era свойств показали, что наличие на алюмосиликатном катализаторе небольшого количества ванадия (0,0003—0,003%) повышает индекс активности почти на 3 пункта. В результате степень превращения сырья увеличивается по сравнению с исходным катализатором за счет увеличения выхода бензина. Увеличение выхода бензина не отражается на коксо- и газообразовании, отношение бензин кокс повышается. Добавление малых порций ванадия способствует образованию определенного количества ненасыщенных углеводородов, которые инициируют крекинг насыщенных углеводородов и тем самым увеличивают степень превращения сырья и выход бензина. Содержание ванадия ограничивается содержанием непредельных углеводородов в реакционной смеси. С увеличением количества непредельных углеводородов скорость крекинга насыщенных углеводородов уменьшается, так как на активных центрах катализатора адсорбируются в первую очередь непредельные углеводороды. Получающиеся при дегидрировании непредельные углеводороды крекируются и образуют в несколько раз больше кокса, чем парафиновые углеводороды. Кокс экранирует активные центры катализатора, в результате чего активность резко уменьшается. [c.23]


    Но атомы металлов третьего переходного ряда, от Ьи до Н , не настолько больше атомов соответствующих металлов второго переходного ряда, как можно было бы ожидать. Причина этого заключается в том, что после Ьа вклиниваются металлы первого внутреннего переходного ряда-лантаноиды. Переход от Ьа к Ьи сопровождается постепенным уменьшением размера атомов по причине возрастания ядерного заряда-этот эффект носит название лантаноидного сжатия. Поэтому атом гафния оказывается не столь большим, как следовало бы ожидать, если бы он располагался в периодической таблице непосредственно за Ьа. Заряд ядра у 2г на 18 единиц больше, чем у Т1, а у НГ он на 32 единицы больше, чем у 2г. Вследствие указанного обстоятельства металлы второго и третьего переходных рядов имеют не только одинаковые валентные электронные конфигурации в одинаковых группах, но также почти одинаковые размеры атомов. Поэтому металлы второго и третьего переходных рядов обладают большим сходством свойств между собой, чем с металлами первого переходного ряда. Титан напоминает 2г и НГ в меньшей мере, чем Zr и НГ напоминают друг друга. Ванадий отличается от МЬ и Та, но сами названия тантал и ниобий указывают, как трудно отделить их один от другого. Тантал и ниобий были открыты в 1801 и 1802 гг., но почти полвека многие химики считали, что имеют дело с одним и тем же элементом. Трудность выделения тантала послужила поводом назвать его именем мифического древнегреческого героя Тантала, обреченного на вечный бесцельный труд. В свою очередь ниобий получил свое название по имени Ниобы, дочери Тантала. [c.438]

    Вместе с тем сжигание мазута связано с рядом трудностей.обусловленных главным образом присутствием в нем серы. Определённые сложности возникают из-за наличия в мазуте и других примесей, в частности, ванадия и натрия. [c.106]

    В форме порфириновых комплексов мон<ет содержаться от 5 до 50% присутствующих в нефтях ванадия и никеля [784, 785]. Вследствие летучести порфирины попадают в заметных количествах уже во фракции с начальной температурой кипения около. 300°, обусловливая тем самым присутствие в них ванадия [786]. С точки зрения нефтедобычи и нефтепереработки представляют интерес поверхностно-активные свойства порфиринов как соединений, влияющих на образование и устойчивость водонефтяных эмульсий [787, 788]. Эти свойства могут играть также определенную роль в процессе формирования состава нефтей, обеспечивая перенос металлов пз водной среды в нефтяную. По составу нефтяных порфириновых фрагментов можно судить о физико-химических условиях и процессах, протекающих при формировании нефтяных систем, кроме того, при миграции нефтей происходит направлен-пое фракционирование порфиринов вследствие неодинаковой сорбции на породах молекул различной полярности. Это позволяет использовать информацию о составе порфиринов для решения ряда задач нефтяной геологии [789—791]. [c.140]

    Формы существования ванадия в нефтях изучены по сравнению с другими элементами более полно, что, очевидно, связано с большим значением, которое имеет ванадий в нефтепереработке и органической геохимии, а также с его относительно высоким содержанием в нефтях. Однако единственными надежно идентифицированными к настоящему времени ванадийсодержащими компонентами нефтей являются ванадилпорфирины. Это в значительной степени обусловлено относнтельной легкостью их обнаружения, возможностью выделения в относительно чистом виде и высоким уровнем развития методов исследования их химической структуры. Исчерпывающую информацию о наших знаниях по различным аспектам геохимии ванадилпорфиринов можно получить из ряда специальных обзоров, посвященных этой теме [65, 813, 955]. [c.177]

    В табл. 41 приведен состав золы коксов, полученных из малосернистого и сернистого крекинг-остатков и из каменноугольного пека (малосернистого). Основное отличие в составе золы малосернистого кокса от сернистого заключается в пониженном относительном содержании ванадия, никеля, фосфора и в повышенном содержании титана. Более низкое содержание натрия в пековом коксе объясняется тем, что каменноугольный пек является дистиллятным сырьем. [c.141]

    Отравление металлами и другими неорганическими ядами. Никель и ванадий. Эти два металла чаще всего встречаются в сырых нефтях. Как уже говорилось в разд. II, они содержатся главным образом в порфириновых соединениях и сконцентрированы во фракциях остаточных масел. Несмотря на то что никель и ванадий являются ядами катализаторов гидрообработки, сырье с высоким содержанием этих металлов приходится обрабатывать для гидрообессеривания или предварительного облагораживания перед дальнейшими стадиями. За последнее время опубликовано много работ, посвященных этой теме [10, 12, 18, 19]. Массовая концентрация никеля и ванадия в остатках атмосферной перегонки составляет 5—200 млн , а в остатках вакуумной перегонки — примерно вдвое выше. От- [c.116]


    Цеолитсодержащие катализаторы более стойки к отравлению металлами. В одном случае при работе на аморфном катализаторе содержание ванадия было 800—1000 млн , а никеля 300— 400 млн. . При этом коксовый и газовый фактор был равен 0,8—1,0. С переходом на новый катализатор он снизился до 0,4— 0,8 [210]. Полагают, что чем выше активность катализатора, тем больше допустимо на нем отложение металлов (учитывая наличие большого числа активных центров). На одной установке, работавшей на цеолитном катализаторе, при уменьшении количества догружаемого катализатора активность его заметно не понизилась, что свидетельствует о более высокой стойкости к отравлению металлами этого катализатора, чем обычного. [c.152]

    Трансформация структуры носителя, пропитанного солями ванадия, зависит, как уже указывалось, от концентрации соли, температуры и времени термической обработки. Основным определяющим фактором прн постоянной концентрации является температура, хотя и время, безусловно, играет большую роль, компенсируя в какой-то мере недостаточно высокую температуру Чем длительнее термообработка, тем больше участков носителя включается в расплав. При достижении на поверхности минимального значения свободной энергии изменения поверхности прекращаются. Кине- [c.88]

    Зольные части нефти не перегоняются, а входят в остаток. Тем не менее в дистиллятах и маслах всегда имеется зола, но образующаяся уже в результате вторичных процессов разъедания аппаратуры, неполного освобождения от солей при очистке нефтепродуктов и т. д. Зола в нефти и нефтепродуктах состоит из большого количества компонентов, важнейшими из которых являются Са, Mg, Ге, А1 и ЗЮг (последний, очевидно, удерживается коллоидально). В золе сырых нефтей встречаются также ванадий, натрий, фосфор, калий, никель и т. д. [c.36]

    Выше обсуждались вопросы, связанные с выяснением молекулярной структуры нефтяных асфальтенов вне зависимости от молекулярной структуры нефтяных смол. Между тем, в предыдущих главах мы неоднократно подчеркивали генетическую связь этих не-углеводородных высокомолекулярных соединений нефти. Рассмотрим теперь наличие общности и различия в строении молекул смол и асфальтенов, так же как мы сделали это в случае их элементного состава. Д. Эрдман в одной из своих работ [14] рассмотрению структурно-молекулярных вопросов смолисто-асфальтеновых веществ нефти предпослал характеристику их химического состава. Смолы и асфальтены, но мнению Эрдмана, представляют собою смеси высокомолекулярных неуглеводородных соединений нефти, в которых содержатся такие гетероэлементы, как кислород, азот и сера, а также небольшие количества ванадия и никеля. Используя большой комплекс физических методов для изучения углеродного скелета и соотношения в нем атомов углерода различной природы (ароматический, нафтеновый, парафиновый) в молекулах смол и асфальтенов, выделенных из сырых нефтей, природных асфальтенов и продуктов высокотемпературной переработки нефти, многие исследователи при решении принципиальных вопросов пришли к аналогичным выводам. В работах Эрдмана сделаны некоторые обобщения этих экспериментальных результатов. Важное научное значение имеет положение о том, что молекулы смол и асфальтенов состоят из нескольких плоских двухмерных пластин конденсированных ароматических и сферических нафтеновых структур, б.тиз-ких но своему строению. Принципиальное различие между смолами и асфальтенами, проявляющееся в различной их растворимости [c.98]

    В настоящее время данных для полной характеристики высокомолекулярной части нефтей, особенно неуглеводородных ее компонентов, пока еще очень мало. Между тем знание состава и свойств этой части нефти имеет решающее значение для выбора технологии и режима химической безостаточной ее переработки. Поэтому весьма важным направлением исследования высокомолекулярной части нефти является химическая инвентаризация по таким показателям, как суммарное содержание смолисто-асфальтеновых веществ и соотношение в них основных компонентов (смол и асфальтенов), содержание металлов, в первую очередь ванадия, в смолисто-асфальтеновой части. [c.108]

    Чем глубже очистка, т. е. чем более полно удаляются вредные соединения, тем меньше выход рафината. Ниже приведены данные ВНИИ НП об очистке вакуумного дистиллята фурфуролом (в сырье содержалось 1,99% серы, 0,1% азота, 0,00066% ванадия и 0,00003% никеля)  [c.33]

    Наблюдается наличие общей тенденции к увеличению содержания в нефтях ванадия с увеличением содержания серы, смол и асфальтенов. Например, в высокосернистых нефтях восточных районов страны ванадия содержится в 200—500 раз больше, чем в малосернистых бакинских. Замечено, что содержание ванадия в САВ тем больше, чем выше содержание серы, а никеля — чем выше содержание азота. Однако огромное разнообразие типов нефтей, различный возраст месторождений и многие другие факторы делают невозможным установление единых и определенных закономерностей. [c.298]

    Ванадий. Содержится в нефтях —10- 7о и концентрируется в САВ [351] (рис. 24). Относительно связи ванадия с САВ имеется ряд гипотез. Одна из них объясняет это явление следующим образом [352] наличие в нефти ванадия способствует восстановлению сульфатов, содержащихся в пластовых водах, до сероводорода и свободной серы и тем самым окислению нефти за счет кислорода сульфатов. В результате этого происходит осмо-ление и осернение нефти. [c.302]

    Хром Ст значительно отличается от титана и ванадия по электронному строению и свойствам. Это объясняется тем, что предыдущие переходные элементы содержат заполненную внешнюю 3-оболочку, в то время как у атома хрома в основном состоянии всего один 48-электрон. Электронное строение хрома (конфигурация Зd 4s ) обусловлено устойчивостью наполовину заполненной [c.154]

    В связи с продолжающимся укрупнением и комбинированием технологических установок и широким применением каталитичес — сих процессов требования к содержанию хлоридов металлов в тефтях, поступающих на переработку, неуклонно повышаются. При л ижении содержания хлоридов до 5 мг/л из нефти почти полностью /даляются такие металлы, как железо, кальций, магний, натрий и соединения мышьяка, а содержание ванадия снижается более чем в, 2 раза, что исключительно важно с точки зре1тия качества реактивных и газотурбинных топлив, нефтяных коксов и других нефтепродуктов. На НПЗ США еще с 60-х годов обеспечивается глубокое обессоливание нефти до содержания хлоридов менее 1 мг/л и тем самым бесперебойная работа установок прямой перегонки нефти в ечение двух и более лет, На современных отечественных НПЗ считается вполне достаточным обессоливание нефтей до содержа — тя хлоридов 3 — 5 мг/л и воды до 0,1 % масс. [c.146]

    Общее содержание металлов в остатках нефтей различной глубины отбора изменяется в широких пределах 10—970 г/т и зависит от типа нефти и концентрации смол и асфальтенов (см. табл. 1.1-1.4). Отношение содержания ванадия к никелю также меняется в широком диапазоне от 0,5 до 4,8. Существует корреляция между характером распределения металлов в смолах и асфальтенах и типом исходной нефти. Например, в близких по химическому составу остатках сернистых нефтей преобладает содержание ванадия и никеля, которые равномерно распределены между асфальтенами и различными фракциями смол, а отношение ванадия к никелю в смолах может достигать 4,8-4,0. В несернистых нефтях нафтенового основания в смолисто-асфальтеновых компонентах это значение не превышает 0,4. Существует определенная зависимость между содержанием серы и ванадия в нефти. Например, в высокосернистых остатках нефтей Башкирии содержание ванадия в 200-500 раз больше, чем в малосернистых остатках нефтей Азербайджана. Для высокосернистых нефтей содержание вана1щя тем выше, чем выше [c.17]

    Влияние водорода сказывается не только на молекулярной массе, но и на составе сополимера [30]. Это можно объяснить тем, что при обрыве растущей полимерной цепи водородом образуется алкилалюминийгидрид [42], который в сочетании с соединением ванадия образует каталитический комплекс с другими константами сополимеризации, чем исходные компоненты каталитической системы [43]. Молекулярная масса сополимера понижается в зависимости от корня квадратного от парциального давления водорода [42]. Водород мало снижает эффективность катализатора [37] и не вызывает затруднений при регенерации растворителя и мономеров. [c.304]

    Общая характеристика переходных элементов. Особенности переходных элементов определяются, прежде всего, электронным строеинем их атомов, во внешнем электронном слое которых содержатся, как правило, два 5-электрона (иногда—один 5-элек-трон ). Невысокие значения энергии ионизации этих атомов указывают на сравнительно слабую связь внешних электронов с ядром так, для ванадия, хрома, марганца, железа, кобальта энергии ионизации составляет соответственно 6,74 6,76 7,43 7,90 и 7,86 эВ. Именно поэтому переходные элементы в образуемых ими соединениях имеют положительную окисленность и выступают в качестве характерных металлов, проявляя тем самым сходство с металлами главных подгрупп. [c.646]

    На рис. 54 показаны зависимости содержания смол сернокислотных и си-ликагелевых, а также коксуемости нефти от содержания серы [124, 125] (при рассмотрении этих зависимостей нужно учитывать возможность отклонения фактических данных для конкретных нефтей от усредненных). Как видно, одновременно с увеличением содержания серы в нефти возрастают коксуемость и содержание смол. Увеличение содержания асфальтенов и смол, сопутствующее повышению сернистости нефти, показано и в работе [126] (рис. 55). В этой же работе показано, что нефти с более высоким содержанием серы характеризуются и более высоким содержанием ванадия и никеля (рис. 56), азота и значениями вязкости, плотности (рис. 57). Последнее отмечается также в других работах [127, 129]. Взаимосвязь содержания серы, ванадия и смолистых веществ объясняется [ГЗО] способностью находящегося в нефти ванадия восстанавливать сульфаты, присутствующие в пластовых водах, до сероводорода и серы и тем самым вызывать окисление нефти за счет кислорода сульфатов. [c.91]

    Еще Вертело пытался ускорить реакцию между этиленом и серной кислотой, применяя в качестве катализаторов соли ртути. Фритцше [38] считал, что этилсерная кислота сама по себе достаточно акти1 ный катализатор. Это было подтверждено в работе [39]. В дальнейшем были изучены многие катализаторы [40, 41], причем наиболее эффективными оказались соли серебра, железа, меди и окислов ванадия. Действие солей в болынинстве случаев не зависит от аниона, но поскольку мы имеем дело с серной кислотой, рекомендуе -ся употреблять сульфаты (несколько отличаются друг от друга по действию соли одно- и двухвалентной меди). Иногда специфичность действия приписывается аммиачным солям [42] и циановым комплексам металлов [43], но, по нашему мнению, главная роль во всяком молекулярном комплексе принадлежит металлу (например, железу в соли Мора и ферроциановых соединениях). Различие может заключаться лишь в неодинаковом физическом состоянии катализатора в серной кислоте и в последующем изменении состояния с превращением части молекул серной кислоты в молекулы этилсерной кислоты или с введением влаги в серную кислоту. Сравнение действия различных катализаторов может привести к одним и тем же выводам кривые относительной интенсивности действия в ряду каталитических добавок приблизительно одного порядка. Абсолютные значения каталитического действия здесь не важны, поскольку они зависят от условий эксперимента. [c.22]

    И совершенно иной, присущей только асфальтенам тип связывания имеется в том случае, если микроэлемент зафиксирован на полисопряженной, включающей гетероатомы конденсированной системе. К сожалению, в литературе нет прямых данных о количестве микроэлементов в асфальтенах, связанных по тому и другому типу. Однако тот факт, что смолы, обладая почти тем же гетероатомным составом (но 3, О, N), что и асфальтены, содержат, как правило, в 5—10 раз меньше микроэлементов 908], свидетельствует о весьма значительной роли полициклоароматических сопряженных систем в связывании металлов. Такой же вывод можно сделать и на основании изучения распределения микроэлементов по фракциям асфальтенов различного молекулярного веса [76]. Показано, что концентрация большинства микроэлементов возрастает с повышением молекулярной массы, а следовательно, и возможности реализации более развитых сопряженных конденспрованных систем. Исключение составляют лишь часть ванадия, никель и сурьма [76], причем первые два элемента концентрируются во фракциях с молекулярной массой, близкой к массе соответствующих порфириновых комплексов, а сурьма преобладает в низкомолекулярной части. [c.169]

    Никель появляется во фракциях с температурой кипения около 300° и его распределение подчиняется тем же закономерностям, что и распределение железа [786, 959]. Кобальт при перегонке нефти целиком концентрируется в остатке (500°) [786, 880]. При разделении нефти на компоненты кобальт полностью попадает в асфальтены, главным образом в их высокомолекулярную часть (4000— 8000 и 8000—22 000 по данным гель-хроматографии) [76]. Видимо, он связан в комплексы с тетрадентатными лигандами. Распределение железа и никеля по молекулярно-весовым фракциям носит бимодальный характер. Природа низкомолекулярных соединений никеля достаточно изучена они представлены комплексами с порфиринами. При возрастании молекулярной массы фракции растет доля непорфириновых соединений никеля. По своей природе они, по-видимому, аналогичны непорфириновым соединениям ванадия [8, 76]. Для высокомолекулярных соединений железа также справедливо то, что сказано о непорфириновом ванадии. Природа низкомолекулярных соединений железа в нефти до сих пор не ясна. Наличие нафтенатов железа исключается [926, 927, 973], но допускается возможность существования железо-порфириновых комплексов, аналогичных найденным в сланцах [390, 794, 798]. Предполагается также существование кобальт-порфиринов в концентрациях ниже предела обнаружения. Это может объяснить присутствие небольшого количества кобальта в низкомолекулярных фракциях смол и асфальтенов (300—1000) [76]. [c.179]

    Неюторые стали в результате длительной работы при тем-ператус1е свыше 450 °С значительно теряют ударную вязкость, сохраняя все другие механические свойства. Это явление называется тепловой хрупкостью и предотвращается легированием стали молибденом, вольфрамом, ванадием. [c.275]

    Кислородные соединения в ТНО входят в основном в состав асфальтенов и смол. Основная масса металлоорганических соединений концентрируется также в асфальто-смолистых компонентах ТНО. В масляной части ванадий практически полностью отсутствует, а часть никеля присутствует и в дистиллятах. Содержание ванадия в ТНО тем больще, чем выще содержание серы, а никеля - чем выше содержание азота. В ТНО малосернистых нефтей содержание никеля вьш1е, чем ванадия. Установлено, что основное количество ванадия и никеля в нефтяных остатках представлено в виде металлоорганических соединений непорфиринового характера (например 62 и 60% соответственно в мазуте ромашкинской нефти), а меньшая их часть - в виде метал-лопорфириновых комплексов (27 и 33% соответственно). [c.59]

    Из табл. 6 видно, что СгОз восстанавливается монооксидом углерода ири более низких температурах, чем VjOs и М0О3. Аналогично этому ванадиевые и молибденовые катализаторы не могут легко восстанавливаться этиленом ири температуре его полимеризации, поэтому для достижения высокой активности необходимо использовать промотор, служащий восстановителем. Как показано в табл, 6, температура плавления оксида резко возрастает ири переходе от хрома к ванадию и молибдену. Низкая точка плавления СгОз обеспечивает его подвижность по поверхности оксида кремния и тем самым высокую дисперсность. [c.188]

    На выходящем пз регенератора катализаторе металлы находятся в виде окислов. Это было доказано на примере ванадия. В пор-фирине ванадий находится в четырехвалентной форме (У +). При отложении ванадия из такого соединения на катализатор валентность его не изменяется, что установлено по спектрам электронного парамагнитного резонанса катализаторов крекинга, отравленных ванадием [337]. После обработки загрязненных ванадием катализаторов крекинга воздухом в условиях, обычно применяемых для выжига, четырехвалентный ванадий переходит в другое окисленное состояние, вероятно, в пятивалентное, и не обнаруживается методом электронного парамагнитного резонанса. В связи с тем, что активность отравленного катализатора сильно зависит от вида соединения, в котором металл присутствует на катализаторе [217], для восстановления первоначальной активности и селективности отравленных катализаторов металлы следует либо совсе.м удалять, либо перевести в новые, неактивные соединения. [c.212]

    Для удаления металлов с поверхности катализатора предложен процесс сухой деметаллизации [384]. Он отличается от известных процессов Мет-х и Демет, внедренных в промышленности США, тем, что металлы удаляются с поверхности катализатора путем перевода их в легколетучие карбонилы. Известно, что карбонилы никеля и железа образуются при контакте окиси углерода со свободными металлами. Металлы на равновесном катализаторе после регенерации находятся в виде окислов поэтому перед обработкой окисью углерода для перевода металла в свободное состояние необходимо его восстановить. Алюминий и ванадий в этих условиях [c.243]

    Положенное в США в основу производства синтетическою каучука дегидрирование бутанов и бутенов изучалось Гроссом [43] и Моррелем [44]. В качестве катализаторов этими авторами были использованы хром-молибден и окись ванадия, нанесенная на глинозем. Над теми же катализаторами, приготовление которых было описано Гроссом, может быть осуществлено и дальнейшее дегидрирование олефинов в диолефины [45]. Последнюю реакцию, в отличие от дегидрирования парафиновых углеводородов, осуществляют иод вакуумом в 0,25 атм при 600—6.50 и времени контакта от0,3 до0,03сек. Выход бутадиена за проход колеблется в пределах от И до 30%, а максимальный выход 1,3-бутадиена из бутонов достигает 1 % (при отделении сажи, не превышающем 10%). В С(>СР этот путь синтеза дивинила разрабатывался П. Д. Зелинским, О. К. Богдановой, А. П. Щегловой, М.П. Марушкиными Л. Н. Павловым [46, 47].Производство каучука, а затем резины потребовало, в свою очередь, преодоления ряда новых трудностей. Мы приведем лишь два примера, относящихся к полимеризации смесей дивинила п стирола и к производству сажи. [c.474]

    Выше уже отмечалось, что одно из серьезных затруднений при переработке тяжелых нефтяных остатков, особенно при использовании каталитических процессов, создает большое содержание в них атомов металлов, прежде всего ванадия и никеля, которые обусловливают быстрое старение (снижение активности) катализаторов в процессах. Так как основная часть этих металлов сконцентрирована в асфальтенах и смолах, то естественно, что процессы деасфальтизации в процессах подготовки к переработке тяжелых нефтяных остатков являются одновременно в большей или меньшей степени и процессами деметаллизации этого сырья. Так, авторы процесса Добен утверждают, что процесс этот позволяет вывести из гудронов 90—95% содержащихся в них ас-< )альтенов и тем самым снизить на 50—70% концентрацию металлов в сырье. Второе направление деметаллизации тяжелых нефтяных остатков основано на термическом разложении метал-лооргапических соединений смолисто-асфальтеновых веществ с последующим поглощением освободившихся атомов металлов в порах соответствующих адсорбентов. На этом принципе базируется запатентованный пенсильванской нефтяной компанией Sun Oil процесс деметаллизации тяжелых нефтяных остатков [6]. Согласно этому патенту, тяжелые нефтяные остатки в смеси с углеводородным растворителем, служащим донором водорода, и высокопористым минеральным адсорбентом с хорошо развитой поверхностью нагреваются при температуре 400—540° С и давлении 70—200 атм. В этих условиях тормозится процесс коксования смо- [c.246]

    Соединения железа, никеля и ванадия вредны для катализаторов крекинга тем, что промотируют нежелательное образование водорода и кокса. Соединения никеля и ванадия часто присутствуют в высококипящих фракциях многих сьфьевых масел и иногда попадают в сырье для каталитического крекинга. Интересно, что окисные алюмокобальтмолибденовые, алюмоникельмолибденовые и алюмоникельвольфрамовые катализаторы способны удалять эти металлы, вероятно, за счет адсорбции на окиси алюминия. В табл. 11 представлены данные по удалению соединений мышьяка и свинца на алюмокобальтмолибденовом катализаторе, а результаты табл. 12 показывают, что большая часть мьпиьяка концентрировалась в верхней части слоя катализатора. [c.249]

    Объем свободной упаковки, как и седиментационный объем, возрастает (снижается критическая концентрация структурообра-зования) с увеличением дисперсности, анизометрии частиц дисперсной фазы и образующихся первичных агрегатов. Соприкасаясь своими концами, частицы и их агрегаты образуют ажурную пространственную сетку. Чем выше дисперсность и сильнее анизомет-рня частиц и агрегатов, тем при меньщей концентрации появляется предел текучести. Например, в суспензии кизельгура (легкая пористая горная порода), частицы которого имеют вид пленкоподобных неправильных пластинок, предел текучести наблюдается уже при концентрациях 3,0% (об.). Большими объемами свободной упаковки обладают суспензии с пластинчатыми мицеллами гидроксидов железа и алюминия, с игольчатыми мицеллами пятиоксида ванадия и др. Нитевидные молекулы органических полимеров, [c.375]

    Из всех элементов, найденных в нефтяной золе, наибольший интерес представляют никель и ванадий. Оба этих элемента относятся к классу микроэлементов, между тем в нефтях повышенное содеря ание их ус танавливается во всех почти случаях. [c.183]


Смотреть страницы где упоминается термин Тема 24. Ванадий: [c.229]    [c.193]    [c.312]    [c.172]    [c.95]    [c.32]    [c.97]    [c.102]    [c.259]    [c.24]    [c.119]   
Смотреть главы в:

Вопросы, упражнения и задачи по неорганической химии -> Тема 24. Ванадий




ПОИСК





Смотрите так же термины и статьи:

Хай-Темя



© 2025 chem21.info Реклама на сайте