Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Типы связи в структурах

    Основные типы связей, имеющиеся в структуре вулканизатов, полученных на основе углеводородных каучуков, характеризуются следующими значениями энергии связи связи каучук — сажа 75— 83 кДж/моль, —С—С— связи главной цепи 352 кДж/моль связи С—S — в узлах, С—(5) —С— вулканизационной сетки 250 кДж/моль и менее. Относительно низкие значения энергии связи сажа — каучук вызывают быстрое падение прочности рассматриваемых резин при повышении температуры. [c.87]


    Литейное производство является одним из главных потребителей фенольных смол. За последние 5 лет увеличение потребности в фенольных смолах было вызвано не расщирением литейного дела, а различными нововведениями в технологических процессах и, в частности, применением новых типов связующих. Структура литейного производства в различных странах далеко ие одинакова. Что же касается объема производства, то по этому показателю первое место в Западной Европе занимает ФРГ, а затем следуют Великобритания, Франция и Италия. До недавнего времени в ФРГ было 494 литейных производств с числом рабочих 103300 (1977 г.), а в США —около 4500 производств с числом работающих 375 000 (1975 г.) в настоящее время во всех индустриально развитых странах наблюдается процесс концентрации литейного производства. Сегодня в западных странах наиболее перспективной областью, потребляющей литейные формы, является автомобильная [c.209]

    Основным ( ктором воздействия добавок считают их химический состав (при постоянном расходе добавок). Установлено, что парафиновые углеводороды практически не влияют на коксуемость углей, а вещества, в состав которых входит кислород (фенольные или хинонные группы, гетероциклы) ухудшают коксуемость шихт. Азот и азотсодержащие соединения не способствуют повышению коксующих свойств углей. В то же время высококонденсированные вещества типа асфальтенов, которые в больших количествах содержатся в каменноугольном пеке и тяжелых остатках переработки нефти, улучшают коксуемость, отмечается, что спекающие добавки эффективны в том случае, если содержат асфальтенов ( -фракция) не менее 30—40%, карбидов ((Х-фракция) не более 30—40% и имеют выход летучих вешеств не выше 50—55%. Учитывая, что зарождение и образование мезо эы связано с наличием в пластической массе определенного типа соединений (структур) к наиболее эффективным добавкам относят продукты, имеющие в своем составе зародыши мезофазы или образующие ее при кар -низации. Эффективность действия добавок зависит Также от спекающих свойств углей. Ввод добавок к углям, обладающим достаточной спекаемостью (Ж, К, КЖ) не приводит к какому-либо заметному положительному эффекту. Для углей низкой спекаемости (Г, ОС, СС) и неспекающихся (Т, Д) действие добавки весьма ощутимо. [c.215]

    Элементарной структурной ячейкой силикатов является кремнекислородный тетраэдр такие тетраэдры могут образовывать циклические, цепные, листовые и трехмерные каркасные структуры. Часть атомов кремния способна замещаться алюминием, но при этом компенсация заряда требует введения дополнительных катионов, что приводит к усилению электростатического вклада в химическую связь кристалла. На примере силикатов иллюстрируются четыре из пяти типов связи, обсуждавшихся в данной главе ковалентная связь между атомами кремния и кислородом в тетраэдрах, вандерваальсовы силы между силикатными листами в тальке, ионное притяжение между заряженными листами и цепочками, а также водородные связи между молекулами воды и силикатными атомами кислорода в глинах. Если включить в этот перечень еще никелевые катализаторы на глиняном носителе, то мы охватим и пятый тип химической связи (металлический). [c.640]


    Прибавление электронов сверх оптимально допустимого приводит к энергетической неустойчивости данного типа кристаллической структуры металл — растворитель и к возникновению структуры нового типа. Это уже свидетельствует о превращении твердого раствора в интерметаллическое соединение или при полном завершении валентной зоны — в соединение с ковалентной или ионной связью. [c.253]

    Следует подчеркнуть, что определение надежных значеннй констант теплового разупорядочения решетки и констант распределения для важнейших соединений классов А В и А В является весьма актуальной задачей как для физико-химического анализа образования дефектов в кристаллах этих веществ, так и для установления общих, хотя бы эмпирических зависимостей, позволяющих уверенно оценить значения констант, опираясь на известные данные о типе связи, структуре кристалла и точке плавления вещества. [c.95]

    В структуре твердых смазок обычно сочетаются два типа связей — очень слабые (вандерваальсовские) между слоями и сильные (ковалентные, металлические) внутри слоя. Наличие значительно более слабых сил связи между отдельными слоями по сравнению с аналогичными силами внутри слоев является общим для всех материалов со слоистой структурой. [c.204]

    Непредельность и наличие функциональных карбоксильных групп в сополимерах дает возможность образовывать многочисленные типы связей в пространственной структуре вулканизата [c.399]

    При обычных температурах и давлениях соединение с эмпирической формулой ВНз имеет молекулярную формулу ВзН и называется дибора-ном. Экспериментальные исследования структуры В,Нб обнаруживают в этой молекуле два типа связей между атомами бора и водорода, что условно показано на рис. 13-8. В молекуле диборана два фрагмента ВН2 связаны вместе посредством двух мостиков В—Н—В, или, как говорят, трехцентровых связей. При этом обычная (или концевая) связь В—Н имеет меньшую длину, чем расстояние В... Н в мостиковых связях. [c.558]

    Взаимодействия (притяжение, отталкивание, взаимная ориентация) при сближении молекул. Могут носить различный характер в зависимости от структуры и типа связей взаимодействующих частиц. [c.74]

    Новый этап в развитии и использовании метода люминесцентного анализа начался с 1952 г., когда Э. В. Шпольский и со<-трудники открыли эффект существования тонкой квазилинейчатой структуры электронных спектров многоатомных молекул [16, 20]. Было показано, что при использовании низкомолекулярных парафинов (Сб—Сю) неразветвленного строения в качестве матрицы в условиях низких температур (ниже — 196°С) диффузные полосы люминесценции многоядерных ароматических углеводородов способны расщепляться на ряд узких и четких линий. Было показано, что существует принципиальная возможность определять тип молекулярной структуры неизвестных соединений на основе анализа его квазилинейчатого спектра и данных о связи структуры спектра со строением молекул. [c.215]

    Боресков и сотрудники обратили внимание на то, что твердые вещества с ковалентными связями лучше противостоят релаксационным явлениям, спеканию, выравниванию дефектов, чем вещества с ионным типом связей [50]. Это, вероятно, сможет стать в некоторой степени принципом подбора носителей и структур для стабилизации катализаторов, однако пока вопрос еще недостаточно разработан. Таким образом, в большинстве случаев не остается ничего другого, как следовать очевидному принципу, что при прочих равных условиях для приготовления катализатора следует применять возможно более высокоплавкие и термостойкие соединения. [c.200]

    Накопленные к настоящему времени сведения позволяют лишь в самом общем виде систематизировать типы связей элементов с нефтяными соединениями. Материалы оригинальных работ очень редко содержат сколько-нибудь убедительные доказательства химической структуры микроэлементных соединений. Зачастую такого рода сведения базируются на аналогиях с известными классами синтетических соединений того или иного элемента, а выводы авторов о структуре нефтяных соединений носят характер предположений. До сих пор достоверно не выяснена точная химическая структура ни одного содержащего микроэлемент нефтяного вещества, за исключением порфириновых комплексов ванадил а и никеля. Заключение о типе микроэлементного соединения [c.161]

    Элементы подгруппы калия — калий К, рубидий Rb, цезий s и франций Fr — наиболее типичные металлические элементы — катио-ногены. При этом с повышением порядкового номера этот признак у элементов усиливается. Для них наиболее характерны соединения с преимущественно ионным типом связи. Вследствие незначительного поляризующего действия ионов (малый заряд, устойчивость электронной структуры, большие размеры), комплексообразование с неорганическими лигандами для К , Rb , s , Fr" нехарактерно, даже кристаллогидраты для них почти не известны. [c.490]

    При производстве катализаторов часто используют экструзию, выдавливая пасту через отверстия, которые имеют размер и форму поперечного сечения образца. Качество продукта определяется характером течения пасты в экструдере. Важно заранее определить оптимальное соотнощение количеств катализатора и связующего, а также тип связующего или растворителя. Пористая структура экструдата зависит от морфологии частиц катализатора и связующего. [c.26]


    Обширный экспериментальный материал по изучению природы смолисто-асфальтеновых веществ нефтей и рассеянных битумов на основе применения ИК-спектроскопии собран Е. А. Глебовской [1—4]. Некоторые из наиболее существенных выводов автора, например, о преобладании ароматической структуры в ряде исследованных смол, о степени цикличности, о типах связей кислорода с углеродом, удовлетворительно согласуются с результатами химических исследований подобных веществ, выполненных другими авторами. [c.207]

    В соответствии с различием в кристаллической структуре (в особенности в типах связи) полиморфные модификации различаются (иногда очень резко) по своим физическим свойствам — плотности, твердости и пластичности, электропроводности и пр. Так, графит черного цвета, непрозрачен, проводит электрический ток алмаз — прозрачен, электрический ток не проводит. Графит — мягкое вещество, а алмаз — самое твердое из всех известных веществ плотность графита 2,22 г/см , алмаза 3,51 г см . Полиморфные модификации могут заметно отличаться и по химической активности. [c.144]

    Между элементами и подсистемой существуют различные типы связей материальные, энергетические, тепловые, информационные, которые реализуются в форме потоков, переносящих вещество, теплоту, энергию. В самом элементе происходит преобразование этих потоков, изменение их природы. Для химической технологии, изучающей химическое производство как ХТС, особое значение имеют не внутренние структура и свойства элементов (аппаратов), а те качества, которые определяют их взаимодействие с другими элементами ХТС или влияют на свойства системы в целом. [c.139]

    При плавлении металлов существенного изменения типа связи и структуры не происходит. Поэтому ЛЯ , и олова и свинца [c.189]

    Атомные кристаллы (рис. 1.9, а) построены из нейтральных атомов, между которыми возникает ковалентная связь. Это весьма прочный тип связи ее энергия составляет (8—12). 10 кДж/моль. Кроме того, ковалентная связь отличается направленностью , что сообщает телам, обладающим такой структурой, очень большую твердость, высокую температуру плавления, малые испаряемость и растворимость, низкие тепло- и электропроводности. Таковы углерод (алмаз), бор, кремний и некоторые органические вещества. [c.37]

    Весьма важно изучить также, на каком числе иерархических уровней располагаются основные компоненты (подсистемы) если в системе один уровень, связь координационного характера (слож-носочинет1ное предложение), если два и более уровней, субординационная связь (сложноподчиненное предложение). При сочетании обоих типов связей структура имеет горизонтальные и верти- [c.36]

    Соединения металлов с водородом, называемые гидридами, являются преимущественно ионными, В гидридах щелочных металлов, например КН или NaH, происходит перенос отрицательного заряда к атому водорода. Гидриды щелочных металлов обладают кристаллической структурой типа Na l (см. гл. 1). В соединениях ВеН , MgHj и AIH3 обнаруживается своеобразный тип связей с мостиковыми атомами водорода. В кристаллах этих соединений каждый атом Н равноудален от двух соседних атомов металла и образует между ними водородный мостик. Во всех случаях, когда на атомах Н имеется избыточный отрицательный заряд, он используется для образования второй связи с еще одним атомом, если у последнего имеются неиспользованные возможности образования связей. Отрицательно заряженные атомы Н имеются и в NaH, но в данном случае [c.318]

    Ж. Фриделем установлено, что упрочнение неоднозначно связано с плотностью дислокаций, находящихся на расстоянии i друг от друга определяется по формуле а = Gb /п Р/2т1, где в - вектор Бюргерса. В трехмерной сетке изолированных дислокаций, отстоящих друг от друга на расстоянии f о = GbVp/4. в сетке диполей вьюо-той h, отстоящих друг от друга на расстоянии сопротивление деформации описывается выражением о = ОвЬ р I 2nf. Примечательно, что независимо от типа дислокационной структуры плотность дислокаций р в этих формулах имеет степень 1/2. Здесь под а следует понимать приращение сопротивления деформации  [c.42]

    Свойства стеклотекстолитов изменяются в широких пределах в зависимости от то.лщины стеклянного волокна, структуры стек-ЛЯН1ЮЙ рштн, предварительной обработки стеклянного наполнителя, типа связующего и метода производства этих слоистых материалов. Прочностные свойства стеклотекстолитов высокие. [c.401]

    Все три рассмотренных типа связи — ковалентная, ионная и донорно-акцепторная — являются двухэлектронными, в них атомы связаны при помощи пары электронов. Помимо химических соединений, в которых атомы связаны двухэлектронными связями, известны вполне устойчивые соединения, у которых на одну связь приходится меньше, чем по два электрона — так называемые соединения с дефицитными структурами. Примером такого рода соединений являются бороводороды. Так, н молекуле В2Н0 шесть валентных электронов двух атомов В и шесть валентных электронов шести атомов Н обеспечивают соединение 8 атомов, т. е. образование по крайней мере 7 связей. [c.13]

    В соответствии с общими положениями теории дисперсных систем ограничение подвижности структурных образований, определяющее физико-химические свойства жидкостей при низких температурах, тесно связано с типом надмолекулярной структуры и интенсивностью межмолекулярных связей [16,17,26,28-33]. Множественный корреляционный анализ указывает на сильную, но неоднозначную связь температуры застывания компаундов с содержанием ас-фальто-смолистых компонентов, а в некоторых случаях и с размерами дисперсных частиц (табл. 1.3). [c.12]

    Транспорт флюидов по стволу скважины и инертного сырья по. магистральным трубопроводам различается. Под нормальным технологическим режимом эксплуатации скважин подразумеваются усилия, прн которых обеспечиваются наибольшие дебиты нефтяного сырья. Наряду с экстремальными, технологическими факторами (смятие эксплуатационной скважины, ее разрушение, вибрация и т. д.) ограничивают дебит скважины факторы, связанные с физико-химическими свойствами потока, движущегося по сквал сине в условиях изменяющегося давления и температуры. К ним, прежде всего, относятся песчаные пробки, образующиеся в результате скрепления частиц при помоиди вяЛ Сущих компонентов нефти, парафиноасфальтеновые отложения, кристаллогидраты природных газов и т. д. Все эти явления так или иначе связаны с фазообразованием, изменением размеров различных типов элементов структуры дисперсной фазы, динамикой расслоения дисперсной системы и могут быть решены па основе теории регулируемых ММВ и фазовых переходов. По мере перемещения от забоя скважины на дневную поверхность снижаются температура и давление, что ведет к изменению условий равновесия в потоке нефтяного сырья и выпаданию из него парафинов, асфальтенов, воды, песка с образованием структурированных систем на внутренних поверхностях эксплуатационных колонн (осадков, газогидратов). [c.189]

    Электронные спектры поглощения позволяют количественно определять различные типы ароматических структур, содержащихся в циклоалкано-ареновых или алкано-циклоалкановых фракциях. Возможность количественного определения таких типов ареновых структур связана с тем, что у каждого типа, характеризующегося данным числом и расположением бензольных циклов, имеется оригинальный спектр поглощения, вариация которого, обусловленная характером замещения циклов, существенно меньше, чем изменение, связанное с переходом к другой ареновой структуре [222]. Заметим, что полосы поглощения ароматических структур располагаются в области, свободной от полос поглощения алканов. [c.140]

    В конце 1970-х годов А. А. Кричко были обобщены представления о строении органического вещества угля как о самоассоциированном мультимере с трехмерной пространственной структурой [67[. В соответствии с этой концепцией органическая масса угля представляет собой набор макромолекул и олигомеров различного состава, соединенных между собой связями невалентного характера, среди которых основную роль играют алектронодонорно-акцепторные взаимодействия, включая водородные связи. Отдельные структурные блоки могут обладать разным набором участков, проявляющих электронодонорные и электроноакцепторные свойства. Относительно непрочные валентно-химические связи типа связей в эфирных и метиленовых мостиках также характерны для углей, но они находятся внутри объединенных в мультимер структурных единиц. [c.65]

    Значительная чувствительность флуоресценции к внутримолекулярным и межмолекулярным изменениям позволяет выявить взаимодействия молекул, не обнаруживаемые другими методами. Так, ионизация и взаимодействие между мо.пекулами, которые трудно обнаружить спектрофотометрическими методами, могут изменять квантовый выход флуоресценции. Флуорофоры, взаимодействуя со специфическим ферментом, могут увеличить или уменьшить интенсивность его флуоресценции, и по степени изменения интенсивности можно судить о типе связи. Межмолекулярные и внутримолекулярные взаимодействия могут вызвать также изменения в спектрах возбуждения и флуоресценции. А по изменению спектров можно также судить об изменениях в структуре флуорофора, сопровождающих молекулярное взаимодействие. [c.84]

    Металлические твердые растворы. Металлы характеризуются повышенной склонностью растворять металлы и в мень[пей степени неметаллы. Эта способность следствие предельной нелокализованности металлической связи. Вследствие дефицита электронов (см, рис, 64) валентная зона металлическ010 кристалла может принимать некоторое число добавочных электронов, не вызывая изменений структуры и металлических признаков кристалла. Образованию твердых растворов благоприятствует близость химических свойств, атомных радиусов и типов кристаллической структуры исходных вешеств (см. с. III). Несоблюдение одного из этих [c.205]

    Во-вторых, нанесение полимерного защитного покрытия резко меняет природу материала подложки место кристаллического атомного соединения - металла - занимает аморфное атомное соединение - полимер, т.е. происходит замена типа электронной структуры материала подложки. Замена кристаллического атомного соединения, у которого каждый электрон взаимодействует сразу со всей системой в целом, на аморфное атомное соединение, электронная структура которого представляет собой набор дискретных уровней, разделенных высокими потенциальными барьерами, препятствующими распределению электронных волн за границу каждой данной межатомной связи, меняет механизм взаимодействия подложки с такими типичными молекулярными твердыми соединениями, какими являются кристаллические парафиновые частицы. В результате такой замены более интенсивная адгезионная связь, основанная на образовании двойного электрического слоя, возникающего в результате контактной электризации поверхностей металла и парафиновой частицы, с энергией более 65 кДж/моль /56/, сменяется адгезионной связью, определяемой ван-дер-ваальсовыми силами, энергия которых не превышает 50 кДж/моль. Поэтому смена металлической поверхности на полимерную уже сама по себе должна привести к ослаблению адгезионной связи. Действительно, как бьшо показано экспериментально /30/, сила прилипания парафина к поверхности такого наиболее интенсивно парафинирующегося полимера, как полиэтилен, в 2,3 раза ниже, чем у стали. [c.143]

    Морфология и атомная структура изучались методом просвечивающей электронной микроскопии (JEM-100 ), электронная структура - методом электронной спектроскопии (RIBER), химический состав - методами рентгеновской и Оже спектроскопии, тип связи определялся из ИК-спектров. [c.83]

    Рассмотренные в данной главе модели среднестатистических молекул-относительно грубое приближение к молекулярной структуре нефтяных остатков, карбонизующихся масс, пеков и их групповых компонентов, коксов и углеродных волокон, поскольку реальные системы содержат, кроме углерода и водорода, множество других элементов от микроколичеств до нескольких процентов с соответствующими им химическими внутри- и межмолекулярными связями, структурами молекулярных фрагментов и т.д., состоят не только из нейтральных молекул, ко и из органических и неорганических свободных радикалов, ионов и радикал-ионов. Сотообразные ароматические фрагменты молекул могут быть незавершенными из-за образования внутренних и краевых дырок (см. табл. 1.9), относиться к различным гомологическим рядам и отличаться типом связи меж- [c.59]

    Кроме разложения по базису в квантовой химии часто используется и другой способ построения приближенной волновой функции, который для определенного типа молекулярных структур соответствует интуитивным представлениям о химических связях в молекуле. В этом способе волновая функция молекулы записьшается (приближенно) с помощью двухэлектронных функций, в качестве которых естественно брать антисимметричные 0(лс1, х ) = —Щх , 1). Эти функции принято называть спин-геминапями (или геминтями). Наиболее простое выражение многозлектронной волновой функции получают с помощью гемина-лей в случае синглетного состояния системы, где число электронов четно, N = 1п. Ъ этом случае можно использовать синглетные спин-геминали [c.70]

    Мы видим, что аморфные вещества не являются разупорядо-ченными кристаллическими веществами. И, таким образом, кристаллическая модель не может отражать природу аморфных веществ, так же как кристаллическая решетка не может содержать никакой информации о структуре аморфных веществ. Кристаллическая модель твердого вещества не отражает существования направленной составляющей связи, соединяющей структурные единицы твердого вещества. Между тем давно известно, что природа кристаллов определяется в конечном счете именно этим фактором. В самом деле, тип кристаллической структуры определяется характером межатомной связи и кристаллические структуры издавна классифицируются по типу связи ковалентной, водородной или ионной, металлической, молекулярной — ван-дер-ваальсовской. При этом различают координационные, каркасные, слоистые, цепочные и островные структуры. [c.162]

    При плавлении металлов существенного изменения типа связи и структуры не происходит. Поэтому ДЯпл и Д5пл олова и свинца имеют относительно низкие значения. [c.197]

    По структуре и свойствам силициды отличаются от карбидов. В зависимости от типа менее электроотрицательного, чем кремний, элемента тип связи в силицидах изменяется от ионно-ковалентного др металлического. Силициды s- и -элементов I и П групп, например ajSi, aSi и aSij,— полупроводники. В химическом отношении силициды этого типа неустойчивы. Они более или менее легко разлагаются водой и особенно кислотами. [c.471]


Смотреть страницы где упоминается термин Типы связи в структурах: [c.10]    [c.106]    [c.141]    [c.277]    [c.37]    [c.202]    [c.21]    [c.46]    [c.47]    [c.191]   
Смотреть главы в:

Кристаллография -> Типы связи в структурах




ПОИСК





Смотрите так же термины и статьи:

типы связ



© 2025 chem21.info Реклама на сайте