Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Железо, определение методом окисления восстановления

    Определение ванадия — элемента с переменной валентностью— основано на реакциях окисления — восстановления, причем наиболее распространенным является метод амперометрического титрования ванадия (V) солью Мора (двухвалентным железом) по току окисления последнего на платиновом вращающемся электроде. [c.180]


    Цель работы — потенциометрическое определение железа компенсационным методом с использованием реакции окисления — восстановления. [c.221]

    При подготовке вещества к анализу для отделения или связывания мешающих компонентов во всех методах широко применяют различные типы реакций. Однако конечный этап определения связан в большинстве случаев с реакцией одного из этих типов. В зависимости от реакции, метод определения того или другого компонента относят к соответствующей группе методов объемного анализа. Так, например, кальций в силикатах можно определить следующим путем. К раствору после разложения силиката прибавляют лимонную кислоту, чтобы связать алюминий и железо (реакция комплексообразования), затем осаждают кальций щавелевокислым аммонием (реакция осаждения) промытый осадок щавелевокислого кальция растворяют в кислоте и освободившуюся щавелевую кислоту титруют (окисляют) перманганатом. Несмотря на использование в ходе анализа реакций различных типов, описанный метод определения кальция относят к группе методов окисления и восстановления. [c.272]

    По окончании разложения железо частично или полностью переходит в трехвалентное состояние, поэтому перед титрованием окислителем необходимо предварительное восстановление железа любым из описанных ранее методов, например восстановление в редукторе Джонса. Амальгама цинка восстанавливает и другие элементы, обычно сопутствующие железу, например титан, ниобий, ванадий, хром, уран, вольфрам, молибден и мышьяк. В низших степенях окисления они также реагируют с перманганатом их присутствие вызывает завышение результатов определения железа. [c.380]

    Опыт 6. Определение содержания железа и сульфата железа (II) в растворе методом окисления — восстановления [c.283]

    Между тем методы окисления — восстановления для церия (IV) более специфичны, так как все остальные представители группы редкоземельных элементов не обладают в обычных условиях переменной валентностью. Система Се +/Се имеет высокий окислительный потенциал (в зависимости от среды значение потенциала может составлять от +1,4 до +1,7 в) и потому церий (IV) легко может быть восстановлен до трехвалентного различными восстановителями. Так, например, растворы церия (IV) можно титровать аскорбиновой кислотой 2 по току восстановления церия при+0,5 в (Нас. КЭ) на платиновом электроде. Если применять в качестве фона 5 и. раствор серной кислоты, то железо не будет мешать титрованию, так как аскорбиновая кислота восстанавливает железо только в менее кислой среде. Если нужно, то по окончании титрования церия (IV) можно изменить среду и продолжить титрование для определения железа [c.342]


    Металлы и амальгамы металлов. Наиболее универсальным методом восстановления вещества до определенной степени окисления является, по-видимому, обработка раствора пробы металлом. В качестве восстановителей используют цинк, алюминий, кадмий, серебро, ртуть, медь, никель, висмут, свинец, олово и железо. [c.317]

    Определение хрома и ванадия основано на реакциях окисления — восстановления. Наиболее распространенным методом амперометрического определения хрома (VI) и ванадия(V) является титрование раствором соли Мора по току окисления железа (II) на платиновом вращающемся электроде. [c.212]

    При определении железа этим способом двухвалентные ионы окисляются током в трехвалентные. Кулонометрическое определение мышьяка основано на реакции окисления ионов АзО до ионов АзО . Разработаны также методы определения урана, ванадия, церия, хрома, сурьмы, селена и др., основанные на электрохимическом окислении-восстановлении ионов этих элементов в растворе. Метод применим и для определения органических вещ,еств, например аскорбиновой и пикриновой кислот, новокаина, оксихинолина и др. [c.271]

    В последнее время В. С. Сахаровым разработаны экспрессные методы определения урана в различных материалах (в концентратах, производственных растворах, сбросных водах, богатых и бедных рудах, кеках, песках, отвалах и др.), заключающиеся в восстановлении урана (VI) до урана (IV) раствором двухвалентного железа в присутствии плавиковой или фосфорной кислоты, дальнейшем окислении избытка железа (II) и восстановившихся примесей сла- [c.351]

    В холодных кислых растворах, не содержащих нитрата серебра, персульфат аммония окисляет железо (II) и лишь очень медленно реагирует с ванадием (IV), перманганатом, марганцем (II) и хромом (III). На этоМ" основан быстрый метод определения ванадия, д оторый заключается в восстановлении ванадия (V) сульфатом железа (II), в окислений, избытка последнего персульфатом и последующем титровании восстановленного ванадия, перманганатом. Определению мешает вольфрам. Хром, никель, [c.514]

    Кроме того, определение количества фаялита методом окисления производится по содержанию закиси железа в окисленном материале. При методе же восстановления необходим анализ на металлическое железо, для чего требуется применение сулемы. [c.188]

    Добавки определяемого элемента следует вводить в систему в той же форме, в которой ожидается нахождение примеси в препарате. Однако, если в процессе анализа выполняют операции окисления, восстановления и др., то более целесообразно вводить добавку в наименее удобной форме. Например, при определении железа в виде двухвалентного по ферроин-иодидному методу следует вводить добавку железа (III), что обеспечивает контроль полноты восстановления. При определении примеси мышьяка с предварительным концентрированием его экстрак- [c.89]

    Платина и палладий. Для определения платины кинетическим методом найдена только одна индикаторная гомогенная реакция окисления-восстановления окисление Зп(И) железом(1И) [60]  [c.315]

    Определению сурьмы родаминовым методом мешают металлы, хлоридные комплексы которых дают такую же реакцию с родамином В, как и сурьма. К этим металлам относятся трехвалентные золото, таллий, галлий и железо. Золото отделяют после восстановления сульфитом до металла. Галлий и железо отделяют экстракцией в виде хлоридных комплексов еще до окисления сурьмы(П1) в сурьму(У). Следовые количества железа(1П) маскируют фосфорной кислотой. [c.376]

    Определение железа (III) основано на предварительном его восстановлении до степени окисления +11 небольшим избытком раствора хлорида олова (II) и последующем титровании стандартным раствором бихромата калия смеси ионов железа (II) и олова (II). Дифференцированное определение Sn++ и Fe++ в растворе при совместном их присутствии проводят титрованием 0,05 н. раствором бихромата калия с компенсационным методом измерения э. д. с. элемента, состоящего из индикаторного Pt-электрода, опущенного в испытуемый раствор, и Няс.КЭ сравнения. [c.65]

    При определении железа этим способом двухвалентные ионы окисляются током до трехвалентных. Кулонометрическое определение мышьяка основано нз реакции окисления нонов АзО до ионов ЛзОГ Разработаны также методы определения урана, ванадия, церия, хрома, сурьмы, селена и других элементов, основанные на электрохимическом окислении — восстановлении ионов этих элементов в растворе. Метод применим и для определения органических веществ, например аскорбиновой и пикриновой кислот, новокаина, оксихинолина и др. Так, определение пикриновой кислоты основано на ее восстановлении Н 1 ртутном катоде в соответствии с уравнением  [c.513]

    При полярографировании Сг(Н) в слабокислых растворах КС1 получены две волны. Первая волна Е,/, = —0,5 в (отн. нас. к. э.) соответствует окислению, Сг(Н) до Сг(И1), а вторая — Еп, = =—0,97 б (отн. нас. к.э.) соответствует восстановлению Сг(И1) до Сг(П) [221]. Было установлено, что даже при соотношении концентраций Сг(П) и Fe(H), равном 1 1000, волны Сг(Н) получаются достаточно четкими, а пропорциональность между высотой волны и концентрацией сохраняется и при более значительных количествах железа. На этом основан метод определения хрома в стали [147]. Анодные волны Сг(И) изучались па фоне различных [c.57]


    Среди других физико-химических методов определения мышьяка можно упомянуть кинетические методы [110, 252, 479]. По одному из них [252] микроколичества мышьяка определяют по реакции восстановления ионов серебра железом(П), катализируемой арсенат-ионами. В другом методе [479] используют каталитическое действие арсената на реакцию окисления иодида перекисью водорода. Этот метод применен для определения мышьяка в фосфоре. Чувствительность метода 10 нг As в 15 мл раствора. [c.91]

    Переменная валентность плутония позволяет применить для его амперометрического определения методы окисления — восстановления. На платиновом электроде можно титровать плутоний (VI) в виде РиОг -иона раствором сульфата железа (И), причем можно пользоваться как током окисления Fe после конечной точ-ки , так и током восстановления РиОг" до Ри " . В первом случае титруют при -f0,6 в относительно меркур-сульфатного электрода сравнения, во втором — при +1,0 s (Нас. КЭ). Оба метода осуществляются в микро- или полумикроварианте с нрименением весовой бюретки и специальной аппаратуры. [c.280]

    Значительно большее распространение получили косвенные определения по методу окисления-восстановления. Аскорбиновая кислота [556], ( -сорбоза, ( -галактоза, ( -фруктоза, d-глюкоза и формальдегид [944] восстанавливают при определенных условиях ионы серебра до металла. Осадок металлического серебра отделяют, растворяют в избытке Ге2(304)з(КН4)2304 и 4 7V Н2ЗО4 и титруют ионы железа(П), количество которого эквивалентно содержанию серебра в анализируемом растворе, стандартными растворами Се(304)2 или бихромата калия -в присутствии N-фенил-антраниловой кислоты [944]. При восстановлении /-аскорбиновой кислотой образуется дегидро-/-аскорбиновая кислота избыток восстановителя титруют раствором N-бромсукцинимида в присутствии иодида калия и крахмала [556]. [c.82]

    H. K. Пшеницын и H. A. Езерская > разработали амперометрический метод определения рутения, основанный на титровании рутения в виде черной соли — КгНиСЦ — растворами гидрохинона или аскорбиновой кислоты, восстанавливающими рутений (IV) до рутения (И). Титруют при -1-0,5 б (Нас. КЭ) потоку восстановления рутения (IV) на платиновом вращающемся электроде на фоне соляной кислоты (1 1). В присутствии золета (III), которое также восстанавливается на электроде при указанном потенциале, ток повышается, но это не мешает определению конечной точки, если количество золота не слишком велико — не больше 15—20-кратного по отношению к рутению. Если золота больше, то оно одновременно с рутением восстанавливается гидрохиноном. При относительно малых количествах золота эта реакция незаметна, так как она протекает значительно медленнее, чем восстановление рутения (IV). Определению рутения этим методом мешают двухвалентное железо (анодный ток окисления, компенсирующий катодный ток рутения) и иридий. Метод применим для определения 0,02—2,0 мг рутения. [c.288]

    Для определения хрома, элемента с переменной валентностью, используются реакции окисления — восстановления. Большая часть методов основана на титровании хрома (VI) железом (If)—солвю Моракоторое выполняется с платиновым электродом по току окисления железа (II). [c.339]

    Конант и др. изучали необратимое окисление — восстановление органических соединений и разработали методы определения того, что они назвали кажущимся окислительно-восстановительным потенциалом. Для этого подбирают легко обратимые системы с эквивалентным соотношением окисленной и восстановленной форм. К такой системе прибавляют исследуемое вещество и измеряют потенциал обратимой системы. С помощью этого метода можно необратимый потенциал заключить между потенциалами двух обратимых систем. Другие методы следующие. Некоторые вещества, которые не дают истинного потенциала, могут титроваться обратимым окислителем. Например, КзРе(СМ)а применяется для титрования восстановленной формы аскорбиновой кислоты. Аскорбиновая кислота окисляется, а железо-оинеродистый калий восстанавливается. Измеряемый потенциал определяется системой Ре(СН) /Ре(СЫ) , но если прошло достаточно времени для достижения равновесия, то этот потенциал должен равняться потенциалу системы аскорбиновой кислоты и будет оставаться даковым, пока вся восстановленная аскорбиновая кислота не окислится. [c.179]

    Аналогичные эллипсометрические измерения пассивирующих окисных пленок на железе проведены Кудо, Сато и Окамото [75], продолжившими работу Сато и Коэна по механизму роста окисных пленок на железе [83]. На рис. 13 показаны изменения Д и ц при потенциостатическом окислении железа и гальваностатическом восстановлении окисной пленки на железе, а на рис. 14 приведено сравнение экспериментальных и теоретических изменений Д и ц/ для нескольких принятых значений оптических констант пленки. Соотношение между толщинами окисных пленок на железе, определенными кулонометрическим и эллипсометрическим методами, приведено на рис. 15 (ср. [78]). Эллипсометрические, емкостные и кулонометрические свойства изучались также Уордом и Де-Гинетом [80]. Проанализировано накопление протонов и содержание воды в пленке (ср. [81, 84]) в зависимости от ее толщины. В случае сложного поведения пассивирующих окисных пленок на железе, как при их образовании, так и при катодном восстановлении, эллипсометрические исследования дают существенную дополнительную информацию, которую нельзя получить ни поверхностной кулонометрией, ни химическим анализом пленки. [c.434]

    Еще удобнее в практическом отношении и значительно чувствительнее амперометричеокий вариант индикации конечной точки при титровании пятивалентного ванадия солью Мора. Этот метод был предложен Г. А. Бутенко и Г. Е. Беклешовой [303] для определения ванадия в стали, а также И. П. Алимари-ным, Т. К. Кузнецовым и Б. И. Фрид [304, 305] для определения ванадия в феррохроме и рудах. Титрование ведется на платиновом вращающемся электроде при потенциале +1,0 в с использованием диффузионного тока окисления двухвалентного железа, которым титруется пятивалентный ванадий. Метод очень прост и быстр, результаты отличаются высокой точностью, в связи с чем этот метод уже получил распространение -в заводских лабораториях [306]. Амперометрический метод применяется также при определении закиси железа по методу А. В. Шейна для титрования избытка пятиокиси ванадия (солью Мора) или восстановленного ванадия (перманганатом) [307]. Амперометри-чеокое определение ванадия солью Мора хорошо идет также при применении двух индикаторных электродов [308] этот же метод предложен для последовательного титрования пяти- и четырехвалентного ванадия при одновременном их присутствии в растворе пятивалентный ванадий титруют солью Мора, затем в этом же растворе титруют четырехвалентный ванадий перманганатом [309]. Некоторые другие варианты амперометрического определения ванадия приводятся в монографии [273], а также в сборнике [292]. [c.129]

    Окислительно-восстановительные флуоресцентные индикаторы изменяют интенсивность или цвет флуоресценции при изменении потенциала раствора. Изменение флуоресценции связано с окислением или восстановлением индикатора флуоресцирует окисленная или восстановленная форма индикатора. Преимущества таких индикаторов заключаются в возможности титрования в мутных и окращенных растворах. Например, определение железа перманганатометрически в окрашенных растворах невозможно. Использование родамина С позволяет определять железо этим методом [7]. [c.169]

    Электрометрический метод был разработан, в частности, для определения толщины тонких пленок окислов на металлах и поэтому пригоден для определения скорости окисления во времени на начальных стадиях. процесса. Метод состоит в определении количества электричества, необходимого для восстановления окисла либо до металла, либо до низшего окисла. Впервые он был использован Эвансом и Баннистером [614] для определения толщины пленки йодистого серебра, образующейся нз металлическом серебре, по количеству электричества, требующегося для восстановления пленки до металла. Им пользовались также Майли [615, 616] для определения толщины окисных пленок на железе и меди и Дайесс с Майли [617] при исследовании окисных и сульфидных пленок на меди. Прайс и Томас [258, 618] воспользовались этим методом для определения состава продуктов коррозии, образующихся на серебре и медносере- [c.248]

    Описан потенциометрический метод определения миллиграммовых количеств урана в присутствии железа [156]. Метод основан на восстановлении шестивалентного урана и трехвалентного железа в атмосфере СОг до соответственно четырех- и двухвалентного состояния добавлением небольшого избытка 10%-ного раствора сульфата двухвалентного хрома, окислении последнего раствором Се , связывании двухва ентного железа в комплексное соединение с 1,10-фенантролином и титровании четырехвалентного урана с золотым индикаторным электродом 0,1 N раствором сульфата четырехвалентного церия при комнатной температуре. Первый скачок потенциала соответствует окончанию окисления избытка двухвалентного хрома, второй (после добавления 1,10-фенантролина) — окончанию окйсления четырехвалентного урана до шестивалентного. При определении 2,53 мг1] в присутствии 0,1—1 мг Fe получаются удовлетворительные результаты. При больших количествах железа определение урана становится невозможным. [c.116]

    Определение общего количества железа производят объемным бихроматным методом после восстановления окисного железа в закисное с помощью раствора хлористого олова. Избыток хлористого олова окисляют раствором двухромовокислого калия с применением в качестве индикатора кремнемолибденовой кислоты (С. Ю. Файнберг, 1946). В присутствии избытка хлористого олова кремнемолибденовая кислота восстанавливается с образованием молибденовой сини. При обратном титровании бихроматом избытка хлористого олова синяя окраска исчезает, как только заканчивается окисление двухлористого олова, но раньще, чем начнет окисляться закисное железо. [c.47]

    Таким образом, избыток восстановителя, собственно говоря, не удаляется, так как осадок HgJ, l2 хотя и медленно, но реагирует с ионами перманганата. При титровании железа наблюдается вначале быстрое обесцне-чивание ионов перманганата, а затем, после окисления железа, раствор окрашивается избытком перманганата. Однако эта окраска недостаточно устойчива, потому что перманганат постепенно обесцвечивается вследствие восстановления его каломелью. Поэтому метод очень несовершенен, в особенности для определения малых количеств железа даже при хорошем навыке наблюдаются иногда систематические ошибки. [c.367]

    В полученном солянокислом растворе непосредственно определяют железо. Очень редко приходится иметь дело с мешающими элементами и устранять их влияние. К таким элементам относятся ванадий, молибден и вольфрам, которые иногда могут находиться в незначительном количестве в железной руде. При восстановлении железа двухлористьш оловом эти элементы также восстанавливаются до низших степеней окисления и затем титруются перманганатом. В случае их присутствия анализ усложняется и для определения железа приходится пользоваться другими методами или вводить ряд дополнительных операций, которые подробно рассматриваются в специальных курсах анализа. [c.382]

    Восстановление перекисных соединений солями двухвалентных железа и олова, трехвалентного титана и иодистоводородной кислотой ведут в кислой среде, в которой перекисные соединения, особенно гидроперекиси, неустойчивы и легко разрушаются. Кроме того, эти восстановители легко окисляются кислородом воздуха. Определение активного кислорода с использованием мышьяковистой кислоты в практически нейтральной среде без заметного разрушения гидроперекисей и без одновременного окисления кислоты кислородом воздуха позволяло предполагать, что арсенометрический метод окажется наиболее точным и удобным. [c.221]

    Наиболее интересным методом среди методов окислительно-восстановительного титрования плутония по достигнутой точно-сти и малому влиянию многих примесей является метод Вотербери и Метца [717], о котором несколько раньше упоминал Метц [547]. Метод основан на количественном окислении плутония до шестивалентного выпариванием с хлорной кислотой и восстановлении Ри(У1) до Ри(1У) малым избытком стандартного раствора двухвалентного железа, который затем оттитровывается прн помощи автотитратора раствором церия(IV). Для образцов высокочистого металла получено среднее содержание плутония 99,98% со стандартным отклонением 0,02% в 11 определениях. Для анализа брали 3—5 г раствора плутония с концентрацией около 60 мг г раствора. Найденное значение совпадало с содержанием плутония в металле, полученным путем определения примесей спектральным методом и высоковакуумной плавкой металла.  [c.201]

    Последовательное титрование трехвалентного железа и шестивалентного молибдена раствором соли двухвалентного хрома или другого восстановителя может привести к удовлетворительным результатам только при их соизмеримых количествах. При определении небольших количеств молибдена в присутствии железа более целесообразно определять молибден по методу Клингера, Штенгеля и Коха [931]. Они определяли молибден в сталях, ферромолибдене, шлаках и рудах путем его восстановления при помощи металлического цинка в среде НС1. а затем довосстановления при помощи раствора СгСЬ и последующего потенциометрического титрования трехвалентного молибдена раствором К2СГ2О7. Первый скачок потенциала соответствует окончанию окисления избытка Or la, а второй — окончанию окисления трехвалентного молибдена. [c.200]

    При оттитровывании персульфат-ионов солью железа к анализируемому раствору прибавляют в избытке титрованный раствор соли железа(П) и соль серебра, каталитически ускоряющую реакцию восстановления персульфата. Затем избыток Fe(II) титруют раствором окислителя [670]. Определению мешают органические вещества, так как реакция между персульфат-ионами и Fe(II) индуцирует окисление органических веществ. Бромиды подавляют такие индуцированные реакции окиеления. Разработан [1003] метод определения персульфат-ионов в присутствии этанола, метанола, аллилацетата, аллилового спирта и метил-изопропиенилкетона с применением бромида натрия в качестве ингибитора индуцированных реакций. [c.108]

    Для определения олова в самых различных продуктах широко используются объемкые методы, основакны.е па реакции восстановления олова до двухвалентного состояния с иоеледуюш,им окислением его стандартным раствором иода плп смесью иодата и иодида калия. Лучше применять для окисления иодатно-иодидные растворы, так как растворы иода менее стабильны и легче окисляются воздухом. Были опробованы и рекомендованы различные восстановители, в том числе железо , никель , алюминий и гипосульфит натрия [c.96]


Смотреть страницы где упоминается термин Железо, определение методом окисления восстановления: [c.669]    [c.389]    [c.383]    [c.249]    [c.140]    [c.56]    [c.180]   
Количественный анализ (1963) -- [ c.383 ]




ПОИСК





Смотрите так же термины и статьи:

Железо определение методом ААС

Метод окисления восстановления

Окисление железа

окисление—восстановление



© 2025 chem21.info Реклама на сайте