Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коэффициент зависимость от скорости

    П. Концентрация реагирующих веществ. Необходимым (но не достаточным) условием для того, чтобы молекула А прореагировала с молекулой В, является столкновение этих молекул. Вероятность столкновения молекул напрямую зависит от количества молекул в единице объема, а оно определяется концентрациями реагирующих веществ. Вероятность столкновения двух молекул равна произведению вероятностей нахождения каждой из молекул в точке столкновения. Следовательно, скорость элементарной химической реакции пропорциональна произведению концентраций реагирующих веществ в степенях, указывающих количество молекул данного сорта, участвующих в реакции (стехиометрические коэффициенты). Зависимость скорости элементарной химической реакции  [c.37]


    Коэффициент зависимости скорости ультразвука от давления в некоторых органических жидкостях [c.55]

    Аналогичное рассмотрение обычно используется для реакции рекомбинации метильных радикалов. Здесь большая величина 6 = — избыток энтропии в переходном состоянии — ведет к увеличению характеристического давления. Для того чтобы объяснить экспериментальные данные, необходимо принять допуш ение о почти совершенно свободном враш ении групп СНз в переходном состоянии. Учитывая большую энергию связи (85 ккал/моль ), такое допущение возможно. Кистяковский и Робертс нашли, что скорость рекомбинации радикалов СНз при 165° С возрастает приблизительно втрое при переходе от суммарного давления ацетона от 1 до 10 мм рт. ст. Далее они установили довольно удивительный факт — ацетон приблизительно в 40 раз более эффективно дезактивирует комплекс, чем СОг- Эти результаты объясняют отрицательный температурный коэффициент реакции рекомбинации, полученный этими авторами, отрицательной температурной зависимостью скорости реакции от давления. [c.269]

    Ранее мы отмечали одну из особенностей газофазного окисления углеводородов — наличие области температур, в которой коэффициент температурной зависимости скорости реакции имеет отрицательное значение. Аналогичный эффект наблюдается и при жидкофазном окислении углеводородов в условиях, когда зарождение цепей происходит преимущественно по гомогенному механизму. Экстремальный характер температурной зависимости скорости образования продуктов окисления отмечался в литературе [30—32]. Возможной причиной наблюдаемого эффекта является экстремальная температурная зависимость скорости реакцин зарождения цепей по гомогенному механизму, что подтверждается приведенным ниже теоретическим анализом процесса зарождения цепей, скорость которого определяется уравнением (2.15). [c.36]

    Таким образом, для случая линейной зависимости скорости межфазного перехода от концентрации общий коэффициент массопередачи со стороны первой фазы определяется соотношением  [c.263]

    Уточнением пленочной теории является модель приведенной пленки [392], в которой толщина пленки выражается через критерий Нуссельта (или Шервуда). Как будет показано ниже, это уточнение приводит к правильной зависимости скорости массопередачи от коэффициента диффузии. [c.266]

    Соответствующие данные по коэффициентам парциальных скоростей для реакции замещения в толуоле приведены в табл. И. Эти данные определяют простую линейную связь между логарифмами обеих величин (рис. 6). До сих пор зависимость активности замещающего вещества и распределения получаемых изомеров рассматривалась только как обобщение эмпирических данных. Однако имеются также и важные теоретические соображения. [c.424]


Рис. 6. Зависимость между активностью реагента и степенью мета-заме-щения, выраженная в коэффициентах парциальных скоростей. Рис. 6. <a href="/info/1035549">Зависимость между активностью</a> реагента и степенью <a href="/info/1837406">мета-заме</a>-щения, выраженная в <a href="/info/117461">коэффициентах парциальных</a> скоростей.
Рис. 124, Зависимость скорости и коэффициента седиментационного осаждения от начального диаметра капель масла Рис. 124, <a href="/info/361093">Зависимость скорости</a> и <a href="/info/1387781">коэффициента седиментационного</a> осаждения от начального диаметра капель масла
    На рис. 124 приведена зависимость скорости и коэффициента седиментационного осаждения от начального диаметра капель масла. Из рис. 124 видно, что на скорость сушественное влияние оказывает начальный диаметр капель масла. [c.299]

    Коэффициент а пропорционален мольной концентрации кислорода и концентрации метана коэффициент Ь пропорционален квадрату давления и не зависит от состава смеси. Зависимость скорости окисления метана при 530 °С и мольном соотношении СН4 О2 = 1 1 от диаметра реактора при различных давлениях (ниже атмосферного) приведена на рис. 54. [c.133]

    И общем случае скорость химической реакции с повышением температуры увеличивается. Опыт показывает, что при повышении температуры на 10° С скорость реакции возрастает в 2—4 раза. Для характеристики зависимости скорости химической реакции от температуры был введен температурный коэффициент скорости реакции у. Этот коэффициент является отношением константы скорости химической реакции при температуре 74-10° к константе скорости при температуре Т, т. е. [c.41]

    Следовательно, если пренебречь относительно слабой зависимостью О от температуры, то температурный коэффициент наблюдаемой скорости процесса будет равен корню квадратному из константы скорости. При этом энергия активации процесса будет [c.43]

    Как отмечалось в первой главе, переход может иметь место а реакциях газ — твердое тело при увеличении температуры. При этом не происходит снижения скорости выделения тепла до нуля, как в случае потребления реагентов, а наблюдается лишь ограничение роста скорости выделения. Связано это с меньшей величиной температурного коэффициента диффузионного процесса по сравнению с химической реакцией. Именно это обстоятельство придает кривой, выражающей зависимость скорости выделения тепла от температуры, 5-образную форму, напоминающую форму кривой исчерпывания реагентов, характерную для проточной системы. [c.155]

    Коэффициент пропорциональности ki называется константой скорости прямой реакции, а выражения в квадратных скобках [Nj] и [О 2] означают молярные концентрации в молях на литр. Константа скорости, которую мы будем подробнее обсуждать в гл. 22, обычно изменяется с температурой. Большинство реакций ускоряется при повышении температуры, т. е. kj становится больше при повышенных температурах. Однако ki не зависит от концентраций присутствующих газов-кислорода и азота. Вся концентрационная зависимость скорости прямой реакции К определяется только сомножителями [N2] и [Ог]. Если эта реакция начнет быстро протекать в закрытом сосуде с большими исходными концентрациями обоих газов, то по мере расходования Nj и О2 прямая реакция постепенно замедляется. Скорость реакции снижается, потому что по мере уменьшения числа молекул N2 и О2 в сосуде частота столкновений между ними все время уменьшается. [c.170]

    Установлено, что скорость массопередачи определяется соотношением конвективного массообмена и молекулярной диффузии. Зависимость от О экспериментально подтверждена рядом исследователей [13—21 и др.]. Однако эти работы подтверждают одновременно и зависимость скорости массопередачи от наличия конвективного переноса. Различие гидродинамической обстановки обусловливает и различный вклад молекулярной и конвективной диффузии в процессы переноса в сплошной и дисперсной фазах. Более того, по данным некоторых исследователей [22, 23], на иоверхности капли могут существовать несколько зон с различным механизмом массопередачи, хотя на практике обычно определяется величина коэффициента массопередачи, усредненная по всей поверхности капли [c.197]

    В пособии по химии написано Зависимость скорости реакции от концентрации реагирующих веществ определяется законом действующих масс скорость химической реакции при постоянной температуре пропорциональна произведению концентраций реагирующих веществ, возведенных в степень их стехиометрических коэффициентов . Найдите ошибки и неточности е определении. [c.119]


Рис. 7.10. Зависимость коэффициента поля скоростей от коэффициента сопротивления решетки при центральном входе потока вверх аппарата Рис. 7.10. Зависимость <a href="/info/335998">коэффициента поля скоростей</a> от <a href="/info/3757">коэффициента сопротивления</a> решетки при <a href="/info/1462712">центральном входе потока</a> вверх аппарата
    При описании макрокинетики каталитической реакции на составных зернах применяют двойную диффузионную модель, вводя отдельные эффективные коэффициенты диффузии для системы транспортных макропор и для микропор в мелких гранулах 19]. При этом сначала определяют зависимость скорости реакции в мелких гранулах от локальных концентраций реагентов в транспортных макропорах, а затем вычисляют макроскопическую скорость реакции в зерне в целом с учетом диффузионного торможения в макропорах. Описывать составное зерно как квазигомогенную среду с эффективным коэффициентом диффузии, найденным в отсутствие химической реакции, можно только в предельных случаях, когда реакция либо не тормозится диффузией в микропорах, либо протекает настолько быстро, что локализуется па внешней поверхности малых гранул. [c.102]

    Чтобы представить в явном виде уравнения ( 11.90)—( 11.94) нужно определить коэффициенты В и раскрыть структуру зависимости скорости поверхностной реакции от вектора концентраций. [c.307]

    Наблюдаемая в некоторых случаях 1к зависимость скорости реакции от температуры, выражающаяся равенством температурного коэффициента единице, указывает 1ш простоту механизма реакции. Действительно, обращаясь к приведенному выше механизму реакции разложения иодистого водорода, для скорости стационарной реакции найдем [c.169]

    Чтобы вся внутренняя поверхность катализатора была равнодоступна реагирующим молекулам, надо уменьшать размеры таблеток, но при этом быстро возрастает сопротивление слоя катализатора движению газовой смеси и возрастают энергетические затраты на продувку большой массы газа через слой катализатора. Для определения оптимальных размеров таблеток катализатора и основных параметров процессов в химическом реакторе надо знать зависимость скорости реакции от размеров таблеток, их пористости, активности катализатора, скорости движения газовой смеси и ряда других факторов. Особенно велико влияние размеров таблеток катализатора на скорость гетерогенно-каталитических процессов в жидкой фазе, так как коэффициенты диффузии в этой фазе примерно на четыре порядка меньше коэффициентов диффузии в газовой фазе. Если на катализаторе протекают параллельные или последовательные реакции, то размеры таблеток могут повлиять на селективность процесса. [c.648]

    Для иллюстрации на рис. 4. 2 приведены экспериментальные кривые изменения степени реактивности в зависимости от коэффициента расходной скорости фг., для трех колес с разными выходными углами по опытам, проведенным автором в ЦКТИ. Кривые построены по результатам измерения статического и полного напоров, создаваемых колесами с выходными углами Ра = 90, 50 и 32° [13]. [c.97]

    Из этих уравнений видно, что характер изменения напора в зависимости от степени диффузорности Kw при данном коэффициенте расходной скорости фо различен для колес различного типа. Действительно, для колеса с радиальным выходом (Ра = 90°, os Ра = 0) вторые члены в скобках в правых частях уравнений (4. 31) и (4. 32) превращаются в нуль. Для такого колеса изменение степени диффузорности не отражается на теоретическом напоре. Для колес с лопатками, загнутыми в сторону вращения, [c.131]

    Каталитическое гидрирование этилена на никеле, согласно взглядам Хориути, представляет собой последовательность четырех элементарных реакций, а именно хемосорбции реагирующих веществ с образованием адсорбированного этилена (1а) и адсорбированных атомов водорода (Ib), реакции (II) между этими адсорбированными соединениями с образованием полугидриро-ванных молекул и присоединения второго адсорбированного атома водорода с образованием этана (III). В этом механизме при низких температурах стадией, лимитирующей скорость процесса, является стадия (Ib), а при высоких температурах — стадия (III). Указанный механизм позволяет объяснить найденные опытным путем зависимости обращение температурного коэффициента, зависимость скорости реакции от давления и изменение температуры, при которой гидрирование протекает с максимальной скоростью, при изменении давления. [c.371]

    Сравнение температурной зависимости скорости реакций хлориро-ваьшя этана и хлористого этила, измеренной но количеству прореагировавшего хлора, показало, что температурный коэффициент скорости реакции для этана значительно больше, чем для хлористого этила. Это-отчетливо видно из кривых рис. 29, где по оси абсцисс отложены температуры, а по оси ординат — количества израсходованного хлора. [c.156]

    На основании пленочной теории, согласно которой имеется линейная зависимость скорости массопередачн от коэффициента молекулярной диффузии, /п = 1. В соответствии же с теорией проникновения, независимо от вида функций распределения возрастов, элементов т — 0,5. Значит, из пенетрационной теории следует, что скорости массопереноса пропорциональны квадратному корню из коэффициента диффузии. Фридландер и Литт [13] при рассмотрении задачи массопереноса от твердой поверхности к ламинарному пограничному слою, при наличии мгновенной реакции, получили уравнение, напоминающее уравнение (5.14). При этом т= /з, чего и следовало ожидать, принимая скорость массопереноса в пограничных слоях пропорциональной величине коэффициента молекулярной диффузии в степени Va- [c.63]

    Наиболее общепринятой единицей для выражения концентраций является число молей (иди молекул) в единице объема. Поскольку скорость реакции представляет собой изменение концентрации в единицу времени, то типичными единицами для скорости являются моль1л-сек и молекула/см -сек. В уравнение, определяющее зависимость скорости реакции от других концентраций, входит коэффициент пропорциональности к, называемый константой скорости реакции. Отсюда, единицы для константы скорости реакции зависят от порядка реакции. Эти единицы для реакций различных порядков представлены в табл. 11.1 [c.20]

    Для несферических частиц величина коэффициента присоединенной массы может эначительно отличаться от 0,5. Расчеты, проведенные в работе [48], показывают, что для эллипсоидального пузыря с отношением малой и большой полуосей эллипса х =0,4 значение коэффициента присоединенной массы в три раза превышает значение этого коэффициента для сферической частицы, а при х = 0.1 - в двенадцать раз. Таким образом, общепринятая идеализация формы газовых пузырьков сферами при нестационарном движении может приводить к значительным погрешностям. Эксперименты, проведенные в работе [49], в которых с помощью лазерного доплеровского анемометра проводились измерения скорости пузырей на начальном участке их движения, показывают, что зависимость скорости движения пузыря от высоты подъема резко отличается от такой же зависимости для сферической твердой частицы. На первом участке, составляющем примерно lOi/g. скорость пузыря резко возрастает, достигая значения, в полтора раза превышающего значение установившейся скорости. На втором участке скорость начинает падать, приближаясь к установившемуся значению. В зависимости от диаметра пузыря протяженность второго участка составляет 50 — 1(Ю диаметров. По-видимому, некоторое время после отрыва пузырь имеет еще сферическую форму. [c.31]

    Основными недостатками пленочной теорти, как уже указывалось в разделе 4.1, являются неопределенность в выборе толшлны пленки и линейная зависимость скорости массопередачи от коэффициентов диффузии, противоречащая эксперименту. [c.266]

    Это уравнение предполагает, что свободный радикал ОН, диффундируя к стенке, может адсорбироваться ею и в конечном счете разрушаться в результате гетерогенной рекомбинации с другим свободным радикалом. Ускорение реакции в присутствии инертного газа, как полагают, связано с уменьшением скорости диффузии ОН к поверхности сосуда. Согласно диффузионной теории [22] предполагается, что способность стенки к обрыву цепи е, т. е. среднее число столкновений активного центра со стенкой до его разрушения значительно больше, чем отношение длины свободного пути к диаметру сосуда скорость реакции (V) в этом случае обратно пропорциональна давлению и квадрату дйаметра сосуда. Принимая скорость реакции (V) равной произведению средней концентрации ОН на коэффициент К , можно выразить зависимость скорости реакции ог давления п диаметра сосуда уравнением  [c.243]

    Характер зависимости скорости реакции от линейной скорости потока или температуры позволяет определить наличие диффузионной стадии. Влияние диффузии на скорость реакции можно проанализировать при помощи соотношений, выведенных для коэффициентов массопередачи. Такая методика предложена Янгом и Хоу-геном . Пример числового расчета приведен ниже. [c.222]

    Скорость химических реакций с повышением температуры резко растет. Для гетерогенных реакций температурный коэффициент скорости обычно ниже, чем для гомогенных, так как при этом накладывается влияние других факторов, и наиболее медленной стадией процесса является не сама химическая реакция, а процессы диффузии, адсорбции и т. и. Зависимость скорости гомогенной реакции от температуры приближенно описывается эмииргшеским правилом Вант-Гоффа нри нагревании на 10 констаита скорости увеличивается в два-четыре раза, т. е. [c.338]

    И, наконец, при третьем режиме, рассматриваемом Уике, константа скорости становится настолько большой, что реакция существенно локализуется на внешней поверхности зерна, и, таким образом, массопередача через гидродинамический пограничный слой становится лимитирующим фактором. Температурный коэффициент наблюдаемой скорости реакции становится, следовательно, даже еще меньше и соответствует температурной зависимости отношения 0 х, где О — соответствующий коэффициент диффузии через пограничный слой, а х — его эффективная толщина. [c.43]

    Теория расчета реакторов с неподвижным слоем катализатора была далее усовершенствована Динсом и Лапидусом [10], а также Биком [11], В настоящее время эта теория уже довольно основательно разработана, однако имеются сомнения в надежности экспериментального. материала, лежащего в ее основе, и отсюда сомнения в возможности ее использования для расчета реакторов с неподвижным слое.м катализатора . Это за.мечание, в частности, относится к расчету распределения температур, учитывая очень сильную зависимость скорости реакции от температуры, Несомненно, большое влияние может оказать и неполнота наших представлений о механизме теплопроводности слоя и неточный выбор температурного коэффициента. Достаточно разработанная теория должна учитывать разность темпе- [c.58]

    Для аргона, плохо растворимого в полиэтилене, коэффициент диффузии практически постоянен, поэтому слабое уменьшение Л(Т, Р) с ростом Р вызвано небольшой деформацией матрицы под воздействием давления и связанным с этим уменьшением свободного объема в полимере. Более растворимые газы F4, 2H2F2 и SFe отличаются устойчивым ростом скорости диффузии с повышением концентрации в полимере и этот эффект определяет барическую зависимость скорости проницания А(Т,Р). [c.101]

    Сначала рассмотрим более общий случай исключения влияния межфазного массопереноса. Характер температурной зависимости (энергия активации) не может служить в жидкофазных реакциях надежным критерием оценки по ряду причин. Вследствие возможного клеточного диффузионно-контролируемого механизма или ионного характера реакции истинная энергия активации реакции может быть малой. Далее, как указывалось в предыдущем разделе, наблюдаемая температурная зависимость может быть следствием изменения коэффициентов распределения реагентов между фазами. Вблизи критической области такое влияние может быть особенно сильным и сказывается такнлб на соотношении объемов фаз. Наконец, в жидкостях, в отличие от газов, сам коэффициент диффузии зависит от температуры экспоненциально, причем эффективная энергия активации диффузии в вязких жидкостях составляет заметную величину. Поэтому обычно о переходе в кинетическую область судят ио прекращению зависимости скорости реакции от интенсивности перемешивания или барботажа. Здесь, однако, есть опасность, что при больших скоростях перемешивания может наступить автомодельная область, а ири очень интенсивном барботаже измениться гидродинамический режим. В результате объемный коэффициент массопередачи может стать инвариантным к эффекту перемешивания и ввести, таким образом, в заблуждение исследователя. В трехфазных каталитических реакторах этот прием более надежен ири условии неизменности соотношения фаз в потоке. [c.74]

    Тогда математическая модель трехфазного реактора переходит в 51атематическую модель двухфазного прямоточного реактора, описанную в гл. 7, с той лишь разницей, что величина р (кр, с ), выра-жаюш,ая зависимость скоростп реакции от концентрации компонента, заменяется на величину (g , Кр, Ь, с, 5 °), в которой должна быть представлена зависимость скорости реакции от концентрации катализатора константы скорости поверхностной реакции (Кр), внутренней поверхности катализатора (5 ), вектора сорбционных коэффициентов компонентов смеси на новв] хности катализатора (Ь) и вектора концентрации компонентов смеси (с). Зависимость скорости реакции от концентрации катализатора в отсутствие диффузионных помех является линейной. Остальные же функциональные зависимости скорости реакции от названных параметров подробно рассмотрены в гл. 3. [c.187]

    Рассмотрено влияние переплетения нитей в ткани на проницаемость монофиламентных и полифиламентных тканей [436]. Обсуждено влияние структуры пор ткани на характер отложения осадка и условия образования сводиков над устьями пор. Отмечено, что результаты определения эквивалентного размера пор микроскопическим наблюдением, пузырьковым методом и измерением проницаемости для монофиламентных тканей согласуются лучше, чем для полифиламентных в последних тканях пористость более сложная и состоит из пористостей внутри волокон и вне волокон. Применительно к фильтрованию чистой жидкости (воды) через моно-филаментные ткани различного переплетения зависимость скорости потока от разности давлений выражена с использованием коэффициента расхода в особой форме и модифицированного числа Рейнольдса теоретические расчеты проницаемости полифиламентных тканей не достигают достаточного соответствия экспериментальным данным вследствие ряда существенных упрощений при выводе уравнений. Для суспензий с концентрацией более 20% [c.381]

    Для определения порядка окислительно-восстановительной реакции в водном растворе между ионами ЗгОз н I" (офазуются Ь и 504 ) изучались скорости процесса при различных концентрациях. Результаты представлены в табл. 40. Составьте выражение зависимости скорости от концентраций реагирующих веществ. Каковы порядки процесса по реагентам и общий Напишите уравнение окислительно-восстановительной реакции и сравните сте-хиометрические коэффициенты с порядками реакции. [c.128]

    Для получения зависимости коэффициента очистки т] от коэффициента поля скоростей /И искусственно создавалась различная степень неравномерности распределения скоростей по сечению электрофильтра. Для этого использовались газораспределительные решетки 8, размещенные в у()оркамере электрофильтра, и специально установленный в подводящем газоходе шибер 4. Опыты проводились при следующих вариантах работы элементов  [c.74]

    Отметим, что исследование кинетики сложных каталитических реакций чаще всего может дать основания лишь для неоднозначных соображений о ее механизме, но, не будучи связано с более детальными физическими и физико-химическими исследованиями, не может выявить характера элементарных стадий процесса. С другой стороны, знание кинетики реакций, какой бы механизм ни лежал в их основе, является необходимой предпосылкой всех расчетов промышленных процессов. Для расчетных целей безразлично, ootBOT TByeT ли форма кинетических уравнений детальному механизму каталитического процесса. Зависимость скорости реакций от концентраций реагентов и температуры часто представляют (в некоторой ограниченной области) выражениями типа (П.6) — (П.8) с эмпирическими коэффициентами при этом в формулу (II.8) должны также входить концентрации веществ, тормозящих реакцию, с отрицательными порядками a . Для приближенного формального описания кинетики реакций в широком интервале изменения значений переменных более пригодны уравнения лангмюровского типа. [c.96]

    При исследовании макрокинетики химических реакций в пористом зерне нерационально рассматривать процесс в отдельной поре. Поры реальной частицы катализатора неодинаковы по размеру и, пересекаясь друг с другом, образуют запутанную сеть более того, форма свободного объема частицы может напоминать скорее совокупность каверн неправильной форшл, чем сеть капилляров. Поэтому пористое зерно рационально рассматривать как квазигомогенную среду, характеризуя скорость диффузии реагентов эффективным коэффициентом диффузии О, а скорость химической реакции — эффективной кинетической функцией г С, Т). Последняя выражает зависимость скорости реакции в единице объема пористого зерна от концентраций реагентов и температуры в данной точке объема зерна и связана со скоростью реакции на единице активной поверхности р соотношением г = ар (С, Т). [c.100]

    Закон действия масс. Основным законом химической кинетики является открытый в 1864—1867 гг. Гульдбергом и Вааге (Норвегия) закон действия масс, согласно которому скорость элементарной реакции пропорциональна произведению концентраций реагирующих веществ в степенях, равных стехиометрнческим коэффициентам. Такая зависимость скорости реакции от концентрации обусловлена тем, что вероятность столкновения молекул и, следовательно, нх взаимодействия, пропорциональна произведению концентраций реагентов. [c.214]

    Снижение скорости реакции при возрастании температуры имеет в настоящее время лишь качественные объяснения. Согласно [599], приводящий к уменьшению скорости реакции обрыв цепей происходит в основном в двух процессах, один из которых можот быть обычным обрывом цепей на стенке, и другой, имеющий большую энергию активации,— например, обрыв цепей по реакциям ВОз —> олефин + НОз и НОз —стенка. Отметим, что на связь отрицательного температурного коэффициента с поверхностью указывается также в работе [328]. При переходе в область отрицательного температурного коэффициента сильно возрастает скорость обрыва цепей по второму пути. При повышении температуры область отрицательного температурного коэффициента сменяется областью высокотемпературного окисления с нормальной зависимостью скорости реакции от температуры. Предполагается [599], что активные центры, образующиеся в реакции обрыва цепей по второму пути, вступают в реакцию продолжения цепей, которая протекает с заметной скоростью только в высокотемпературной области окисления. [c.222]


Смотреть страницы где упоминается термин Коэффициент зависимость от скорости: [c.40]    [c.115]    [c.76]    [c.216]    [c.91]   
Вибрационные массообменные аппараты (1980) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Коэффициент зависимость

Коэффициент скорости

Скорость зависимость



© 2025 chem21.info Реклама на сайте