Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дипольные моменты функциональных групп молекул

    Дипольные моменты алканов как нормальных, так и разветвленных обычно очень малы. Таким образом, практически они почти неполярны. Молекулы 1-алкенов, их цис-изомеров, 1-алкинов, алкилциклоалканов и алкилбензолов характеризуются небольшим дипольным моментом и таковых углеводородов относят к слабополярным соединениям. Ассиметрией и, как следсп вие дипольным моментом, обладают обычно молекулы, состоящие из двух и более атомов различных элементов или функциональных групп. По этой причине углеводороды, содержащие гетероатомы (кислород, азот, сера и др.), практически всегда полярны. [c.24]


    В повседневной практике химика-органика несравненно большее значение имеют спектроскопические методы, и здесь на первое место выдвинулся (открыт в 1946 г.) метод ядерного магнитного резонанса (ЯМР), основанный на взаимодействии магнитных моментов ядер (например, ядра водорода) с внешним магнитным полем. Метод протонного магнитного резонанса дает исчерпывающие сведения о химической природе, пространственном положении и числе атомов водорода в молекуле и тем самым о ее строении. Методы инфракрасной (ИКС) и электронной спектроскопии в ультрафиолетовой и видимой областях спектра, а также спектров комбинационного рассеяния света (СКР) выявляют функциональные группы, распределение электронной плотности, пространственное строение молекул органических соединений. Метод электронного парамагнитного резонанса (ЭПР) для определения природы свободных радикалов, образующихся при химических реакциях, обусловлен взаимодействием неспаренного электрона парамагнитного соединения со внешним магнитным полем. Масс-спектроскопия (спектрометрия) путем определения массы и относительных количеств ионов, возникающих при бомбардировке электронами молекул, исследует их строение. Метод дипольных моментов устанавливает конфигурацию молекул и отчасти распределение в них электронной плотности. Повысился интерес исследователей к методу полярографии органических соединений (изучение пространственного строения, кинетики, таутомерии и т. д.). Большое значение имеет исследование термодинамических свойств органических соединений (например, при оценке их взрывчатых свойств). [c.10]

    Дипольные моменты функциональных групп молекул [c.22]

    Дипольные моменты функциональных групп торфа примерно равны, а в некоторых случаях превышают дипольный момент молекул воды в свободном состоянии [208]. Именно функциональные группы органического вещества торфа, обеспечивающие реализацию водородных связей, являются первичными центрами сорбции молекул воды. В дальнейшем первично сорбированные молекулы воды становятся вторичными центрами сорбции. [c.65]

    Наличие у кислорода двух неподеленных электронных пар придает ему способность к образованию водородных связей с молекулами воды, создает значительные электрические дипольные моменты функциональных групп. Другими словами, кислородсодержащие функциональные группы сильно гидратируются. Энергия гидратации этих функциональных групп превышает энергию их водородных связей с водой на 10—15 кДж/моль. Это придает биомолекулам хорошую растворимость в воде, т. е. свойство, обеспечивающее способность биомолекул вступать в биохимические реакции в растворах. [c.469]


    Взаимодействие функциональных групп молекул адсорбата с гидроксильными группами поверхности адсорбента увеличивает энергию адсорбции молекул, имеющих дипольные и квадруполь-ные моменты или я-электронные связи, и мало изменяет энергию адсорбции молекул с симметричными электронными оболочками. Следовательно, если удалить с поверхности адсорбента гидроксильные группы, то снизится адсорбция адсорбата, молекулы которого имеют дипольные и квадрупольные моменты или л-электронные связи, и мало изменится активность адсорбента для соединений с симметричными электронными оболочками. [c.107]

    В газовой фазе и неполярных растворителях, не обладающих функциональными группами, способными к ассоциации с пероксидом, молекулы последнего находятся в конформации, близкой к конформации в минимуме свободной энергии. Это позволяет использовать, наряду с данными экспериментального определения, расчетные величины дипольных моментов пероксидов для характеристики распределения электронной плотности. [c.133]

    Зависимость дипольного момента от размера молекулы можно проследить на первых членах гомологических рядов спиртов и кетонов (табл. 4). Как видно из таблицы, дипольные моменты соединений, принадлежащих одному и тому же гомологическому ряду, примерно одинаковы. Таким образом, дипольный момент соединения определяется в основном моментом полярной функциональной группы (ОН, СО и др.) длина углеводородного ра- [c.62]

    Молекула, представляющая собой систему из двух и более атомов или ионов, соединенных посредством межмолекулярных связей в одно целое, электрически нейтральна. Часто имеет место, когда частицы (или функциональные группы) молекулы обладают противоположными (+ или -) зарядами. Алгебраическая сумма этих- зарядов равна нулю. Когда молекула ассиметрична, происходит смещение центра тяжести заряда связующих электронов к более электроотрицательному атому связи, то в этом случае возникает электрический дипольный момент (/ ), величина которого определяется соотношением [c.23]

    При отсутствии взаимодействия между сорбированными молекулами среди окружающих молекулу частиц можно выделить функциональную группу сорбента, с которой она образует Н-связь. Это взаимодействие определяет положение молекулы в структуре сорбента. Взаимодействие молекулы с другими близлежащими частицами сорбента, наряду с Н-связью, определяет ориентационную свободу или заторможенность сорбированной молекулы. Эту заторможенность можно учесть на основе модели Л. Н. Курбатова [641], согласно которой дипольный момент сорбированной молекулы может ориентироваться в пределах некоторого телесного угла. При отсутствии внешнего электрического поля все направления внутри этого угла равновероятны. Очевидно, что такая модель упрощает реальное взаимодействие и движение молекул, однако она позволяет оценить ориентационную поляризацию молекул с учетом их заторможенности. Вклад таких молекул в поляризацию системы равен вкладу свободных, незаторможенных молекул, эффективный дипольный момент которых определяется соотношением [c.252]

    Зависимость удерживания компонентов от особенностей локальной электронной структуры молекул при разделении на полярных сорбентах, содержащих эфирные функциональные группы, проявляется и в элюировании полярных соединений (табл. 10). В отличие от удерживания на поли-сорбе-1 удерживание соединений на полисорбатах определяется не только величиной общей поляризуемости молекул, но зависит и от дипольного момента молекул (время удерживания н-пентана меньше времен удерживания диэтилового эфира, ацетона, ацетонитрила), а также от способности соединений к образованию водородных связей [c.41]

    Если отношение квадрата дипольного момента к мольному объему функциональных групп молекул неподвижной фазы равно то энергия ориентационного взаимодействия диполя [c.89]

    С. А. Войткевич показал, что существует связь между способностью органических веществ восстанавливаться на ртутном капельном электроде и значениями их дипольных моментов. Те вещества, молекулы которых обладают ббльшим дипольным моментом (по сравнению с водой), сравнительно легко восстанавливаются. К ним относятся кетоны, предельные и непредельные альдегиды, нитросоединения н др. Внутри каждой группы молекул восстановление идет тем легче (при более положительных потен- циалах полуволны), чем больше днпольный момент данной молекулы. При восстановлении молекул с несколькими функциональными полярными группами имеет значение дипольный момент только восстанавливаемой группы, однако эта закономерность осложняется взаимным индуктивным влиянием полярных функциональных групп. Например, о- и п-изоме-ры нитросоединений имеют резко различные значения дипольных мо-. ментов, а восстанавливаются они прн близких или равных значениях потенциала. [c.417]


    На процессы образования осадков оказывают влияние количество образующихся коллоидных частиц. Вид, размеры и количество различных механических примесей, температура, электрическое поле, наличие высокомолекулярных продуктов окисления с активными функциональными группами. Молекулы, имеющие активные функциональные фуппы, высокую полярность, большой дипольный момент, способствуют укрупнению частиц не растворимого в горючем осадка. [c.79]

    Необходимо отметить, что увеличение протонной поляризации за счет роста в процессе сорбции длины цепочек из сорбированных молекул и функциональных групп сорбента может иметь место в том случае, если образование таких цепочек повышает вероятность или расстояние перескока протона Н-мос-тика при включении электрического поля. При этом у сорбентов с частотной зависимостью ао особую роль в переносе протонов играют окружающие КВС молекулы и полярные функциональные группы. Ориентация их дипольных моментов, изменение положения отдельных ионов может существенно влиять на характеристики водородной связи и динамику движения протона Н-мостика [665]. [c.248]

    Большое практическое значение имеют механические и электрические сво1 -ства монослоев. Сильные взаимодействия между длинными углеводородными цепями параллельно ориентированных молекул плотного нерастворимого монослоя придают ему высокую прочность, а наличие дипольных моментов в функциональных концевых группах—свойства двойного электрического слоя. [c.475]

    Например, дипольные моменты таких распространенных в промышленной практике растворителей, как фурфурол и фенол, составляют соответственно 3,57 и 1,70 Д, в то время как по растворяющей способности фурфурол значительно уступает фенолу. Это объясняется тем, что растворяющая способность растворителей зависит также от структуры углеводородного радикала их молекул, которым определяются дисперсионные силы растворителя. Так, с увеличением длины углеводородного радикала в молекулах кетонов растворяющая способность возрастает, хотя дипольный момент даже снижается. Растворители, в молекулах которых при одной и той же функциональной группе содержатся углеводородные радикалы различной химической природы, отличаются друг от друга по растворяющей способности. Углеводородные радикалы по способности повышать растворяющую способность таких растворителей можно расположить в следующий ряд алифатический радикал >бензольное кольцо >тиофеновое кольцо >фурановое кольцо. Растворяющая способность растворителей второй группы снижается с увеличением числа функциональных групп в их молекуле, особенно если эта функциональная группа способна к образованию водородной связи. [c.75]

    Степень адсорбции органических веществ на полярных адсорбентах зависит в основном от наличия -функциональных групп, двойных связей, ароматических и гетероциклических колец, от конфигурации молекулы, величины ее дипольного момента, поляризуемости и т. д. и относительно мало зависит от величины молекулы. [c.338]

    Влияние на смачивание функциональных групп, обладающих дипольным моментом, изучалось, например, при контакте различных жидкостей (полярных, неполярных) с насыщенным монослоем стеариновой кислоты или монослоем фторпроизводных этой кислоты, адсорбированным на поверхности платины. У трифторстеа-рпновой кислоты на наружной поверхности монослоя находились группы —СРз, обладающие сравнительно большим дипольным моментом, который не компенсируется взаимодействием с группами —СНг— в углеводородной цепочке молекулы кислоты. В результате под действием наружных диполей значительно улучшалось смачивание глицерином, формамидом и другими жидкостями с водородными связями (по сравнению со смачиванием монослоя стеариновой кислоты). Напротив, жидкие предельные углеводороды смачивают монослой стеариновой кислоты лучше, чем слой трифторстеариновой кислоты (табл. П1.7) [141]. При более глубоком фторировании стеариновой кислоты дипольный момент наружной группы —СРз постепенно компенсируется взаимодействием с фторированными —СРг-группами внутри молекулы, а при замещении водорода на фтор в семи группах монослой смачивается так же плохо, как монослой перфторированной кислоты [33]. [c.98]

    Для всех монофункциональных соединений коэффициент был принят равным 1 и для растворителей с двумя функциональными группами, способными самостоятельно образовать водородную связь, равным 0,5 (считая, что энергия диполя локализована в двух местах). В тех случаях, когда в молекуле ассоциированного соединения имеется функциональная группа, не способная самостоятельно образовать водородную связь, но образующая ее в сочетании с другими молекулами, значение принято при допущении, что такая группа в распределении дипольного момента оказывает влияние наполовину меньше, чем группа, способная образовать водородную связь самостоятельно. [c.258]

    На избирательную способность полярных растворителей также влияют величина дипольного момента и особенности молекулярной их структуры. Исследования показали, что у органических соединений одного и того же класса, различающихся только функциональной группой, избирательная способность увеличивается с ростом дипольного момента их молекул. Такая закономерность характерна как для ароматических, так и для алифатических растворителей. Функциональные группы по их влиянию на избирательную способность растворителя располагаются в следующей последовательности  [c.271]

    Слой зарядов, адсорбированных на поверхности твердого вещества или жидкости, вызывает изменение потенциала между этой поверхностью и другой фазо , с которой она находится в контакте. Органические молекулы содержат полярные группы, в которых центры положительных и отрицательных зарядов не совпадают. Такие молекулы или функциональные группы могут притягивать или отталкивать другие полярные группы и, таким образом, ориентироваться на поверхности, с которой входят в соприкосновение. Двойной электрический слой, возникающий при адсорбции дипольных молекул, индуцирован этими диполями, расположенными на поверхности параллельно друг другу. Для органических материалов, обладающих полярными группами с. большим дипольным моментом, характерны высокие адгезионные свойства. Ориентированные слои диполей образуют двойной слой с малой толщиной. К нему притягиваются подвижные заряженные частицы, поэтому могут образовываться вторичные слои, простирающиеся вглубь по обе стороны раздела. [c.161]

    Дисперсионные взаимодействия с тцсствуют между любой парой соседних молекул. Эти взаимодействия тем сильнее, чем легче поляризуются электроны молекул образца и растворителя. В хорошем приближении поляризуемость электронов увеличивается с ростом показателя преломления, т. е. в случае нефтепродуктов дисперсионные взаимодействия увеличиваются при переходе от насыщенных к ароматическим полициклическим углеводородам (для одного и того же растворителя). Дипольное взаимодействие существует в том случае, если молекулы образца и растворителя обладают постоянным дипольным моментом, т. е. такие взаимодействия могут наблюдаться при элюировании гетероатомных соединений нефтепродуктов полярными растворителями. Дипольные моменты функциональных групп, которые могут входить в состав молекул нефтепродуктов или растворителей, приведены в табл. 6. [c.35]

    Наиболее очевидный метод определения свойств сорбатов базируется на широко используемой в аналитической практике зависимости между логарифмом удерживаемого объедга и температурой кипения,. логарифмом давления насыщенного пара или числом углеродных атомов в молекуле [1—5]. Такие зависимости являются практически линейными (в определенных пределах) для гомологов и могут быть использованы при определении различных характеристик, коррелирующихся с числом углеродных атомов. Так, рядом авторов установлена связь между логарифмом относительного удержх ваемого объема и молекулярным весом [6, 7], молярной рефракцией [8, 9], парахором [9, 10], дипольным моментом [11], абсолютной энтропией [12] и другими свойствами нормальных парафинов и гетероорганических соединений. В ряде случаев зависимости такого типа могут быть справедливы не только д.ля гомологов. В настоящее время в литературе имеется большое число работ, посвященных определению характеристик удерживания веществ по аддитивной схеме [13—17]. Действительно, как указано Мартином [18], свободная энергия сорбции с некоторым приближением может быть рассчитана путем суммирования инкрементов А функциональных групп молекулы сорбата [c.76]

    Дихроизм ИК-спектра. В ориентированных образцах степень поглощения поляризованного ИК-излучения может сийьно изменяться в зависимости от направления плоскости поляризации. Если деформационные колебания определенных функциональных групп осуществляются с изменением дипольного момента относительно оси молекулы, то соответствующие полосы поглощения оказываются более сильными для излучения, поляризованного перпендикулярно оси цепочки, и более слабыми для излучения, поляризо]ванного параллельно этой оси. Иногда удается наблюдать раздельно поглощение для кристаллических и аморфных областей тогда коэффициент дихроизма такой полосы позволяет получить сведения" относительно ориентации элементов в обоих участках. [c.320]

    НЫМ образом благодаря дисперсионным (вандерваальсовым) взаимодействиям между адсорбентом и недиссоциированными молекулами. При адсорбции на полярных адсорбентах решающее значение имеют число и характер полярных функциональных групп в молекуле адсорбированного вещества. В табл. 4.3 функциональные группы расположены в порядке возрастания адсорбируемости (определенной на силикагеле) тех соединений, в состав которых входят эти группы [65] такое распределение носит очень приближенный характер, поскольку существует еще различие между алифатическими и ароматическими соединениями. Далее, оказывают влияние величины дипольного момента и поляризуемости молекул. Влияние двойных или тройных связей на адсорбционные свойства ничтожно мало по сравнению с влиянием числа упомянутых функциональных групп. Влияние данной функциональной группы соединения на его адсор-бируемость различно для разных адсорбентов. Среди других факторов, в большей или меньшей степени влияющих на адсор-бируемость, следует упомянуть pH адсорбента, стерические факторы и полярность элюирующей системы. На адсорбцию на неполярных адсорбентах влияют главным образом размеры молекул (они возрастают с возрастанием молекулярной массы, достигая определенного максимума, а затем убывают) и стерические факторы. [c.159]

    Дипольные моменты алканов, как нормальных, так и разветвленных, обычно очень малы, т.е. практически почти неполярны. Молекулы 1-алкенов, их цис-изомеров, 1-алкинов, алкилциклоалканов и алкилбензолов характеризуются небольшим дипольным моментом и такие углеводороды относят к слабополярным соединениям. Асимметрией и, как следствие, дипольным моментом обладают обычно молекулы, состоящие из двух и более атомов различных элементов или функциональных групп. По этой [c.21]

    Ароматические углеводороды масляных фракций растворяются как в парафино-нафтеновых углеводородах, так и в полярном растворителе, за счет действия однотипных дисперсионных сил. В последнем случае при контакте с неполярной частью молекул растворителя ароматические углеводороды растворяются в нем вследствие дисперсионного притяжения при соприкосновении с функциональной группой в молекулах этих углеводородов индуцируется дипольный момент и растворение происходит в результате ориентации диполей. Следовательно, преимущественное растворение ароматических углеводородов в шолярном растворителе объясняется большей энергией притяжения диполей по сравнению с энергией взаимодействия неполярных соединений и, кроме того, наличием дисперсионных сил между неполярной частью молекул распворителя и молекулами этих углеводородов. В связи с вышеизложенным растворимость ароматических углеводородов в полярных растворителях при прочих равных условиях уменьшается по мере увеличения длины боковых цепей и усложнения их структуры (рис. 6), так как при этом затрудняются индуцирование в их молекулах дипольного момента и ассоциация с молекулами растворителя [5]. В этом случае растворение является в основном следствием дисперсионного взаимодействия молекул. Повышение степени цикличности ароматических углеводородов приводит к увеличению их растворимости в результате большей поляризуемости таких м олекул, и энергия притяжения диполей превышает энергию дисперсионного цритяжения молекул. [c.49]

    Растворяющая способность полярных растворителей по отношению к компонентам масляных франций обусловлена не только значением их дипольного момента, зависящего от фу нкциональной группы при углеводородном радикале, но и структурой самого радикала,-определяющего величину дисперсионных сил растрорите-ля."Веяние Длины углеводородного радикала при одной.-и той же функциональной группе в молекуле растворителя показано ниже [13] на примере растворения масда 8АЕ-10 в ряде кетонов при постоянном соотношении кетона и масла (2 1)  [c.54]

    Введение в состав звеньев макромолекул различных функциональных или полярных групп вызывает поляризацию этих звеньев и придает им свойства диполя. Величины дипольного момента каждого звена макромолекулы зависят от степени поляризации, вызванной присутствием полярных групп, от количества полярных групп и их взаимного сочетания. В тех случаях, когда межмолекулярные расстояния сравнимы с расстояниями между зарядами, между молекулами, имеющими структуру диполей, возникают дополнительные связи, вызванные притяжением противо-. положиых полюсов соседних молекул, т. е. дипольные силы межмолекулярного притяжения. Взаимной ориентации молекулярных диполей противодействует тепловое движение молекул, поэтому величина дипольных сил в значительной степени зависит от температуры. Макромолекулы, состоящие из полярных звеньев, представляют собой совокупность диполей, создаваемых каждым звеном. Взаимодействие таких макромолекул в полимере вызывает взаимную ориентацию звеньев соседних цепей и притяжение их друг к другу. Чем больше дипольные моменты отдельных [c.28]

    НИН Известно, что молекулы, в которых центры сосредоточения положительного и отрицательного зарядов не совпадают, обладают дипольным моментом. Чем больше заряды и чем больше расстояние между ними, тем выше дипольный момент. В монофункциональных органических соединениях типа R—X величина дипольного мо> мег1та определяется природой функциональной группы X. Сопоставим величины дипольных моментов некоторых соединений бензольного ряда.СвНа—X  [c.220]

    Учет закономерностей образования молекулярных структур и применение спец. датчиков, обладающих, напр., избирательностью к разл. функц. группам, позволяет создать универсальную систему анализа, обеспечивающую идентификацию и количеств, определение компонентов сложных смесей. В основе такой системы должна быть совокупность сведений об определяемых компонентах о характерных функц. группах, атомном составе, мол. массе, дипольном моменте молекул, электронодонорных и электроноакцепторных св-вах, индексах хроматографич. удерживания и т.д. Методология универсальной системы предполагает также набор устройств для хроматографич. или иного разделения пробы. Прн этом в каждом из этих устройств разделение должно происходить преим. на основе одного общего функционального нли структурного признака (напр., т-ры кипения, способности к образованию водородных связей). [c.471]

    Особое положение занимают растворители, молекулы которых имеют более одной функциональной группы, способной образовать водородную связь. В случае образования водородной связи силы, действующие между молекулами, строго локализованы [11]. Поэтому суммарный дипольный момент растворителя (носитель постоянного электрического поля вокруг молекул) можно рассматривать как совокупность более мелких дипольных моментов, создающих вокруг себя менее интенсивное электрическое поле. Так как образование индуцированных диполей в молекулах углеводородов зависит от интенсивнности электрического поля диполя, дипольный момент молекул растворителя должен быть умножен на коэффициент меньше единицы, который зависит от числа и характера фунциональных групп в молекуле, способных образовать водородную связь. [c.255]


Смотреть страницы где упоминается термин Дипольные моменты функциональных групп молекул: [c.161]    [c.159]    [c.57]    [c.75]    [c.37]    [c.306]   
Смотреть главы в:

Краткий справочник физико-химических величин Издание 8 -> Дипольные моменты функциональных групп молекул

Краткий справочник физико-химических величин Изд.8 -> Дипольные моменты функциональных групп молекул




ПОИСК





Смотрите так же термины и статьи:

Группы функциональные, дипольные моменты

Дипольные молекулы

Дипольные моменты групп

Дипольный момент

Молекула дипольный момент

Функциональность молекул

Функциональные группы



© 2025 chem21.info Реклама на сайте