Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бензол кислотность

Рис. 1. Экстракция элементов из хлоридных растворов 0,2 Ж раствором ТТЛ в бензоле. Кислотность водной фазы от 4 iV H l до pH 9 о — [но] от 4 N до 0,1 N-, д — pH от 1 до 5 П — рН от 5 до 9 Рис. 1. <a href="/info/433763">Экстракция элементов</a> из <a href="/info/329710">хлоридных растворов</a> 0,2 Ж раствором ТТЛ в бензоле. <a href="/info/347434">Кислотность водной</a> фазы от 4 iV H l до pH 9 о — [но] от 4 N до 0,1 N-, д — pH от 1 до 5 П — рН от 5 до 9

    При проведении первой стадии (получение мононитробензола) на заводах взрывчатых веществ полностью используют отработанную кислоту от второй стадии. Мононитробензол, предназначенный для анилина, получают нитрованием бензола кислотной смесью, составленной из чистых кислот, что предотвращает загрязнение мононитросоединения динитросоединением. [c.265]

    Ионитовое сито Содержание и-дивинил-бензола, % Кислотное число,. иг-же г Коэффициент набухания Насыпной вес, г/си<з [c.372]

    Другой путь решения вопроса о деалкилировании побочных продуктов состоит в том, что весь остаток, кипящий выше этилбензола, в отдельной системе в присутствии кислотных катализаторов на носителе пропускают в паровой фазе при высоких температурах (т. е. выше 200°). Суммарный выход этилбензола в процессе Дау составляет 95,5 % на бензол и 96,8% на этилен. Расход катализатора 1—3 кг АЮЦ/ЮО кг [c.493]

    Следует упомянуть о другом технологическом процессе, который, как сообщают, был позднее использован фирмой Копперс [2]. В этом процессе применяется кислотный алюмосиликатный катализатор [18, 22] при условиях реакции, аналогичных режиму, применявшемуся при использовании катализатора иОР сравнимыми получаются и выходы при одинаковом соотношении олефинов ароматический углеводород. Быть может, наиболее интересными особенностями этого катализатора являются его стабильность и легкость регенерации при помощи регулируемого сжигания. Поэтому процесс желателен для реакции деалкилирования тяжелых алкилатов, чтобы образующийся бензол возвращался в систему алкилирования. [c.495]

    Так же, как и при синтезе дифенилолпропана с использованием серной кислоты, в описываемом способе кислоту можно отмыть водой, а остатки ее нейтрализовать щелочным агентом, например гидроокисью кальция. Однако при этом образуется большое количество фенолсодержащих сточных вод кислотного характера. Поэтому в некоторых способах перед промывкой водой рекомендуется добавлять в реакционную массу растворитель, не смешивающийся с водой (хлорбензол, бензол). Добавка растворителя способствует лучшей отмывке дифенилолпропана от кислоты, и, кроме того, при этом большая часть фенола остается в растворителе. Далее массу нейтрализуют и отгоняют от нее фенол, воду и хлорбензол. Полученный дифенилолпропан-сырец очищают известными методами. [c.126]

    Нафтеновые кислоты — малолетучие, маслянистые жидкости плотностью 0,96—1,0 с резким неприятным запахом. Они не растворяются в воде, но легко растворимы в нефтепродуктах, бензоле, спиртах и эфирах. Содержание нафтеновых кислот в нефтяных фракциях принято характеризовать кислотными числами, т. е. числом миллиграммов едкого кали, расходуемого на нейтрализацию 1 г вещества в спирто-бензольном растворе в присутствии фенолфталеина. Нафтеновые кислоты широко применяются в технике для пропитки шпал, при регенерации каучука из вулканизированных изделий, как заменители жирных кислот в производстве мыла и как антисептические средства для борьбы с гнилостными грибками. Металлические соли нафтеновых кислот, в частности кальциевые, используются в производстве консистентных смазок. Для механизмов, работающих под большим давлением (например, планетарных шестерен задней оси автомобиля), готовят смазки из нафтената свинца, серы и минерального масла. [c.31]


    Процессы мокрой обработки предопределяют адсорбционную способность и пористую структуру силикагелей. Они включают стадии синерезиса, кислотной обработки и обезвоживания. Большое влияние на структуру силикагелей оказывают условия созревания гидрогелей. Одним из методов регулирования структуры силикагелей является изменение глубины созревания их гидрогелей. Гидрогели, не претерпевшие синерезиса, образуют более тонкую структуру, чем вполне созревшие. С увеличением степени созревания гидрогелей, сформованных в нейтральной среде, наблюдается повышение адсорбционной снособности по бензолу. Насыпная плотность при этом уменьшается, но резко увеличиваются пористость и объем пор. В соответствии с этим сформованный гидрогель выдерживают в промывочном чане 1,5—2 ч в тех условиях, в которых он был сформован, т. е. в нейтральной формовочной воде. В течение этого времени происходит дальнейшее уплотнение мицелл (вторичная коагуляция) с образованием крупных агрегатов, сопровождающееся сокращением скелета гидрогеля и выделением из него интермицеллярной жидкости. От вторичной коагуляции зависят размеры образующихся агрегатов. [c.117]

    На рис. 21-14 представлены структурные формулы некоторых производных бензола. Фенол обладает слабой кислотностью в отличие от спиртов, ароматическим аналогом которых его можно считать. Способность фенола и его производных отщеплять гидроксильный протон обусловлена тем, что в результате электроны атома кислорода принимают некоторое участие в делокализации. Связь бензольного кольца с атомом кислорода приобретает частично двоесвязный характер, а водород, частично лишенный связывающей электронной пары, легко диссоциирует. Однако кислотность фенолов обьино ниже, чем у карбоновых кислот. [c.305]

    От паров органических ве ществ — бензина, керосина, бензола и его гомологов, ацетона,, сероуглерода, спиртов, эфиров, нитро- и галогенпроизводных углеводородов От кислотных окислов и летучих кислот — диоксида серы, окислов азота, хлористого водорода, синильной кислоты и др. [c.185]

    Ассоциация молекул в водной фазе вызывает уменьшение коэффициента распределения при увеличении концентрации металла, ассоциация же в органической фазе—увеличение этого коэффициента. Комплексы металла, имеющего хорошо ассоциирующие частицы, отличаются очень слабой растворимостью в воде, большой—в неполярных растворителях (бензол, четыреххлористый углерод, хлороформ и метилизобутилкетон) и слабой в полярных (спирты, эфиры). Металлы со слабо ассоциированными молекулами особенно хорошо экстрагируются кетонами, простыми и сложными эфирами и другими растворителями типа доноров при добавлении кислот. В таких системах коэффициент распределения увеличивается с повышением количества свободной кислоты, а в некоторых системах имеет максимум при известных ее концентрациях, так как при низких концентрациях из частиц кислоты и экстрагируемого вещества образуется мало комплексов, а при высоких концентрациях количество комплексов сильно увеличивается. Нов некоторых системах при определенной кислотности одновременно начинает расти взаимная растворимость фаз, что может ухудшить коэффициент распределения. [c.425]

    Способность цеолитов, не имеющих в своей структуре металлов переменной валентности и не обладающих полупроводниковыми свойствами, катализировать не только реакции кислотно-основного типа, по и окислительно-восстановительные. В качестве примера приводим данные по гидрированию бензола на различных формах морденита  [c.40]

    Предположение о раздельном существовании гидрирующих и кислотных центров побудило даже экспериментально определять необходимый минимум гидрирующей активности катализаторов (между 20%-ным превращением бензола на катализаторе Со [c.312]

    При металлировании ароматических соединений решающее значение имеет индуктивный эффект заместителя в ароматическом кольце. Если заместителем является электроотрицательная группа (например, СГ3) или электроотрицательный атом (F, С1, Вг, J, а также атомы О, S, N, входящие в состав групп, например, OR, SR, NR3), то смещение электронов вызывает поляризацию СН-связей кольца, при которой увеличивается подвижность атомов водорода по сравнению с незамещенным бензолом. Кислотность СН-связей в ароматическом кольце уменьшается по мере удаления от заместителя в нодследовательпости орто > мета > пара. Поэтому обычно на металл замещается преимущественно самый кислый, т. е. орто-атом водорода. Индуктивное влияние заместителя электронодонора сказывается противоположным образом, наиболее затрудняя металлирование прежде всего в орто-положение. [c.320]

    Уксусная кислота является дифференцирующим, а аммиак, так же как и вода, нивелирующим растворителем ио отношению к кислотам. Их действие на диссоциацию оснований будет обратным. В ап-ротных растворителях, не сиособны отдавать или воспринимать протон, например в бензоле, кислоты и основания будут находиться в недиссоциированном состоянии. Если, одиако, оии присутствуют совместно, то между ними возможно кислотно-основное взаимодействие. [c.71]


    Реакции (изомеризации, циклизации) представленные на рис. 10. параллельно оси абсцисс, протекают на кислотных центрах, а изображенные параллельно оси ординат — на металлических цен — трах гидрирования—дегидрирования. Согласно этой схеме, н — гексан сначала дегидрируется на металлических центрах с образо — ванием н —гексена, который мигрирует к соседнему кислотному це1 тру, где протонизируется с образованием вторичного карбени — евого иона, затем изомеризуется в изогексен или циклизуется в мепилциклопентан с последующей изомеризацией в циклогексан (возможна циклизация изогексена сразу в циклогексан). Последний на металлических центрах дегидрируется с образованием конечного продукта — бензола. Возможны и другие маршруты образования ароматических углеводородов. [c.181]

    Фракции смол, извлеченные смесью спирта и ацетона, имеют большую кислотность и в соответствии с этим большее содержание кислорода. По сравнению со спирто-ацетоновыми фракциями смол, СМОЛЫ1 извлеченные бензолом, характеризуются большим содержанием сернистых соединений и меньшим — азотистых. Разумеется, такое распределение сернистых, кислородных и азотистых соединений является результатом применения частной методики, однако можно утвернгдать, что по сравнению с азотистыми и кислородными соединениями сернистые соединения характсри-луются меньшей полярностью и большей нейтральностью. [c.67]

    Роль дегидроизомеризации алкилциклопентанов при образовании аренов специально исследовалась на примерах метил-, этил- и 1,2-диметилциклопентанов [49]. В присутствии Р1/А120з эти углеводороды дегидроизо-меризуются с образованием аренов, подвергаются гидрогенолизу в алканы и частично дегидрируются с образованием циклопентенов и циклопентадиенов. Из метилциклопентана и н-гексана образуются примерно одинаковые количества бензола. Из 1,2-диметилциклопентана выход толуола значительно ниже, а из этилциклопентана примерно в два раза выше, чем из н-гептана. Таким образом, очевидно, что алкилциклопентаны в изученных условиях (Pt/AbOa, 350—520 °С) являются промежуточными продуктами при ароматизации н-алканов. При этом несомненно следует учитывать то обстоятельство, что вклад циклопентанового пути ароматизации алканов в значительной степени зависит от применяемого катализатора (кислотность носителя, природа модификаторов, дисперсность и содержание активной металлической фазы) и условий проведения опыта (температура, газ-носитель, давление и т. д.). [c.195]

    Исследовались [51] превращения метилциклопентана в присутствии Pt/AljOa в условиях, близких к условиям риформинга (470—515°С, давление Нз 0,6—4,0 МПа). Полученные результаты объясняют [51] известной схемой последовательного дегидрирования метилциклопентана в метилциклопентен, изомеризацией последнего в циклогексен с последующим превращением его в бензол и циклогексан. При этом допускается, что а) присутствие водяного пара влияет только на кислотную функцию катализатора б) старение катализатора обусловлено главным образом снижением активности Pt-центров в) лимитирующей стадией реакции является стадия изомеризации метилциклопентена в циклогексен. [c.196]

    Диспропорционирование метильных групп в ароматических углеводородах. Метильные группы могут смещаться от одной ароматической молекулы к другой также при нагревании в контакте с катализаторами кислотного типа. Так, Натансон и Каган [28] наблюдали диспропорционирование метильных групп, пропуская толуол над алюмосиликатным катализатором при 430° С. Полученный нродукт содержал 15,2% бензола, 62,5% толуола и 13,4% ксилолов. Гансфорд, Мейерс и Саханен [18] получили толуол, пропуская над алюмосиликатным катализатором при 540° С смесь бензола и мета-ксилола, а леета-ксилол сам по себе дал толуол и триметилбензолы. Интересно отметить, что при нагревании а-метилнафталина с бензолом переход метильной группы к бензолу не происходил, в то время как при нагревании одного метилнафталина были получены нафталин и диметилнафта-лин. Псевдокумол превращался в толуол, ксилол и полиметилбензолы. Гринсфельдер и др. [14] нашли, что при пропускании пара-ксилола над алюмо-циркониево-кремниевым катализатором при 550° С превращению подвергались 53% продукта. Кроме 24% толуола, были получены [c.110]

    Уже в более ранней работе было показано, что такие ароматические соединения, как бензол, толуол, ксилол, фенол, крезолы, могут легко алкилироваться олефинами, циклоолефинами, некоторыми циклопарафинами, галоидалкилами, спиртами и эфирами, а также соединениями, дающими в результате разложения указанные выше соединения или являющимися промежуточными соединениями при образовании таковых. В качестве катализатора при проведении реакции в жидкой фазе используются галоидметаллы и сильные кислоты, при проведении же реакции в паровой фазе — кислотные катализаторы или кислоты, отлол енпые на носителе. [c.489]

    Сырой продукт из кислотного отстойника подвергается контактированию с 5%-ным раствором едкого натра и прокачивается вместе со свежей порцией 5%-ного раствора едкого натра в депропанизатор. При контакте продукта с раствором едкого натра в нижней части депропаниза-тора происходит гидролиз эфиров сульфокислоты, присутствующих в небольшой концентрации. Депропанизация проводится при давлении 14 ат и температуре в рибойлере около 170° в качестве источника тепла используется горячее масло. Депропанизированный продукт поступает в колонну для рециркулирующего бензола. Фракции кумола отделяются от вышекипящих полиалкилированных бензолов в колонне вторичной перегонки простой конструкции, работающей при атмосферном давлении.  [c.501]

    Продукт реакции и катализатор выводятся в сепаратор, из которого нижний кислотный слой поступает повторно в контактор. Углеводородный слой, состоящий из алкилата, избытка бензола и некоторого количс- [c.505]

    Так как в катализаторном слое постепенно накапливаются нежелательные побочные продукты, то его время от вре.мони необходимо очищать. Поэтому часть его выводится из системы, добавляется бензол, затем отпариваются НГ и беизол, которые и возвращаются в систему. Бензол применяется для того, чтобы избежать образования нежелательных постоянно кипящих смссей с водой или другими побочными продуктами, содержащимися в кислотном слое. [c.505]

    И в этом случао наиболее подходящим сырьем являются бензол и полимер пропилена. Реакция проводится в жидкой фазе в непрерывно действующем смесителе-отстойнике, подобном тому, который используется при производстве кумола в присутствии этого же катализатора. Продукт реакции легко разделяется на углеводородный и- кислотный слои. Углеводородная часть перед перегонкой должпа быть тщательно нейтрализована, чтобы но ухудшить цвета продукта. [c.505]

    Пример 1У-4. Нитрование бензола смесью водных растворов азотной и серной кислот проводилось в пятиступенчатом реакторе мeшeния . Рабочие условия указаны на рис. 1У-8. В реакторе при помощи водяной рубашки поддерживается температура 30 °С. Объем системы в процессе реакции остается по существу постоянным. В соответствии с приведенными расходами реагентов количество кислотной фазы составляло 31,414 кмольЫ смеси, а количество органической фазы—2,5151 кмоль1м смеси. Объем каждой ступени равен 0,103-10 м . Для данной концентрации серной кислоты скорость реакции определяется концентрацией азотной кислоты в кислотной (водной) фазе и концентрацией бензола в органической фазе. На рис. 1У-9 представлены результаты периодических опытов при концентрации серной кислоты [c.127]

    Хорошо известным примером реакций между двумя несмеши-вающимися жидкостями является нитрование бензола концентрированной азотной кислотой в присутствии в качестве катализатора серной кислоты. Реакция протекает в обеих фазах, но скорость реакции в кислотной фазе в несколько раз выше, чем в органической. Если поверхность раздела фаз недостаточна, чтобы обеспечить взаимное насыщение их, скорость реакции резко снижается. Льюис и Шун измеряли скорость реакции при постоянной поверхности раздела фаз и обнаружили, что скорость реакции является линейной функцией скорости перемешивания это примерно соответствует общему соотношению, согласно которому диффузия возрастает с увеличением линейной скорости потока в степени 0,8. Обе фазы приводились во вращение в противоположных направлениях отдельными мешалками. [c.177]

    С 3 ч Бензол Активированная глина, серная кислота или другие кислотные агенты Moho-, ди- и более замещенные дифенилолпропана — 70—72 [c.21]

    Ароматические углеводороды легче алкилируются олефинами, чем изопарафины. Наиболее благоприятными термодинамическими условиями термической реакции между бензолом и этиленом являются атмосферное давление и температуры до 540° [566], в то время как для изопарафинов — около 300° С. Признаки термического алкилирования бензола с этаном, пропаном и бутанами, проходящего, вероятно, по механизму свободных радикалов, получены при 475—550° С иод давлением 323 — 337 кПсм , наряду с другими продуктами (бифенилом, флуоре-пом, антраценом, дифенилбензолом и т. п.) образуются толуол, этилбензол, Сз и С4-алкилбензолы и ксилолы [567]. Алкилирование бензола проходит полностью в присутствии кислотного катализатора. Кремний-алюминиевые комплексы применяются под давлением нри 240—260° С для алкилирования бензола с этиленом и при 190—240° С с пропиленом в результате реакций образуются этил-и изопронилбензолы [568]. С крепкими кислотами реакция проходит еще легче. Цимол получают алкилированием бензола с пропиленом над катализатором (фосфорная кислота на кизельгуре) [569, 570] или серной кислотой [571, 572]. Фтористоводородная кислота также является эффективным катализатором [573, 574] может применяться и алкан-серная кислота [575], хотя и с металлическим натрием [576] в качестве промотора. [c.133]

    Если растворитель присоединяет протон, т, е. обладает свойствами основания, то он называется протофильным. Растворитель, отдающий протон, т, е. обладающий кислотными свойствами, называется протогенным. К первым относятся вода, спирты, ацетон, эфиры, жидкий аммиак, амины и до некоторой степенн муравьиная и уксусная кислоты. Ко вторым — тоже вода и спирты, ио наиболее типичными являются чистые кислоты (ук усная, серная, муравьиная), а также жидкие хлористый и фтористый водород. Растворители, способные как отдавать, так и присоединять протон, называются амфипротонными. Раство-ритзли, ие способные ни отдавать, ни присоединять протон (например, бензол), называются апротонными. [c.469]

    Асфальтогеновые кислоты и их ангидриды по внешнему виду похожи на нейтральные смолы. Это маслянистые, весьма вязкие, иногда твердые черные вещества, нерастворимые в петролейном эфире и хорошо растворимые в бензоле, спирте и хлороформе. Природа асфальтогеновых кислот практически не изучена. Предполагается, что в них содержатся три активные группы, вероятно, две гидроксильные и одна кислотная. Их можно назвать полинафтено-выми кислотами. Плотность асфальтогеновых кислот больше единицы. [c.33]

    В присутствии межфазных катализаторов ускоряется также образование бисульфитных производных ароматических альдегидов [1729]. Более необычным является опубликованный недавно трехфазный метод, который осуществляется в условиях кислотного катализа на полистиролсульфокислотной смоле растворенные в бензоле ароматические кетоны конденсируются с формальдегидом (водным), давая 4-арил-1,3-диоксаны с почти количественным выходом [1652]. При комнатной температуре и перемешивании в течение 30 мин был осуществлен синтез гли-цидных нитрилов О с выходом 55—80% из ароматических или алифатических альдегидов и кетонов и хлорацетонитрила в стандартной системе концентрированный раствор гидроксида натрия/катализатор [448, 1492, 1759]. При этом несимметрична [c.233]

    Кислотно-основной характер системы определяется типом заместителей и электроноакцепторные группы усиливают кислотность соли или основность соответствующего илида. В этих случаях для отрыва а-протона пригодны слабые основания, например карбонат калия. В более общем случае, когда заместителей, сильно повышающих кислотность, мало или они отсутствуют, используют, как правило, сильные щелочи литий-органические соединения, амид натрия в жидком аммиаке, ал-ко сиды щелочных металлов в гидроксильных растворителях или в диметилсульфоксиде либо димсильный анион в ДМСО. Стабилизованные (наличием групп Р = СООР, СМ и др.) илиды можно выделить. В то же время хорошо известно, что обычные фосфониевые илиды чувствительны и к воде, и к кислороду, поэтому стандартная методика требует применения тщательно высушенных растворителей и инертной атмосферы. Под действием воды происходит необратимый распад с образованием ал-килдифенилфосфина и бензола. На воздухе протекают следующие реакции  [c.251]

    По Кисслингу 50 г исследуемого масла и 50 см спиртовой щелочи (100 см 50%-го спирта и 7,5 г едкого натра) нагреваются в течение 5 минут при взбалтывании до 80°. Щелочь при этом растворяет кислотные примеси. Отделив спиртовый слой, уже хорошо отстоявшийся, при помопщ делительной воронки, его подкисляют соляной кислотой с прибавкой бензола для растворения смолистых частей. Этот бензол после отгонки оставляет взвешиваемое затем 1 5личество веществ кислого или по крайней ме ре растворимого в щелочах характера. Простое смоляное число, или, как его называет Кисслинг, коксовое смоляное число , определяется после того, как обработкой спиртовой щелочью масло освобождено от кислых смолистых частей. Для этого навеску масла (около 50 г) обрабатывают нефтяным эфиром (нормальным бензином), нерастворимые примеси отфильтровываются, промываются на фильтре тем же нeфтiftIым эфиром и взвешиваются. Как и в общем случае определения асфальта, качество бензина имеет существенное значение в нем безусловно не должно быть примеси ароматических углеводородов. По варианту того же способа, предложенному Крамером (67), смолистость определяется после исчерпывающего окисления примесей масла, способных окисляться, воздухом. Для этого Крамер берет 150 г масла в конической колбе, емкостью на 400 см , затем Б масло пропускается струя кислорода (или воздуха) в течение 70 час., со скоростью в 2 пузырька в секунду. При этом масло нагревается на масляной бане до 120° 50 г обработанного таким образом продукта еще 20 мин. нагреваются в колбе с обратным холодильником, после предварительного взбалтывания с 50 см спиртовой щелочи (состав как и у Кисслинга). После нагревания снимают холодильник, пять минут встряхивают смесь, дают отстояться и ио возможности весь спиртовый раствор отделяют помощью делительной воронки. Этот раствор экстрагируют затем 30 сл нефтяного эфира, подкисляют остаток соляной кислотой и экстрагируют раствор бензолом. [c.295]

    Эта схема предполагает наличие в катализаторе платформинга двух типов активных центров [дегидрирования Д и изомеризации — И (кислотный)] и миграцию реагирующего метилциклопентана от центра Д к центру И и снова к центру Д. Иногда эту схему распространяют на все катализаторы, обладающие свойствами ускорять как реакции гидрирования и дегидрирования, так и реакции изомеризации (см., например, обзор Однако наличие двух родов активной поверхности в одном катализаторе вряд ли является распространенным явлением и такие представления подвергались справедливой критике. Тем более невероятно наличие двух центров в катализаторе без носителя (ХУЗд). Схема на стр. 235 предполагает, что все превращения, отмеченные в скобках, идут на одной и той же активной поверхности катализатора. Это доказывается экспериментально получением метилциклопентана из бензола, минуя промежуточное образование циклогексана и десорбцию с этой активной поверхности. [c.236]


Смотреть страницы где упоминается термин Бензол кислотность: [c.144]    [c.552]    [c.42]    [c.474]    [c.169]    [c.248]    [c.77]    [c.258]    [c.287]    [c.288]    [c.417]    [c.417]    [c.440]    [c.38]    [c.127]    [c.287]   
Общая органическая химия Т.1 (1981) -- [ c.547 ]

Теория резонанса (1948) -- [ c.253 , c.258 ]




ПОИСК







© 2025 chem21.info Реклама на сайте