Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

СОДЕРЖАНИЕ J I От авторов

    Почвы предгорий несколько беднее боро.м, чем почвы равнин. При наличии даже слабого засоления сероземов и луговых почв содержание бора в них становится более высоким. Содержание воднорастворимого бора в почвах сероземной зоны колеблется в большинстве случаев от 4 до 12% от общего содержания. Автор отмечает, что с увеличением выщелочен-ности почвы содержание в ней воднорастворимых соединений бора уменьшается с появлением же и увеличением засоленности, наоборот, увеличивается. Особенно высокое содержание воднорастворимого бора отмечается у солончаков, причем s верхнем слое оно достигает очень больших величин, являющихся безусловно токсическими для растений (40 лг/кг). [c.20]


    Большинство нефтей исследовано на содержание в них ксилолов сульфированием и гидролизом сульфокислот с целью идентификации отдельных изо.меров. Прн этом некоторые авторы, на основании применения указанной методики, приходят к выводу, что метаксилол, по сравнению с орто- и параксилолами, содержится в преобладающем количестве. При исследовании ароматических углеводородов нефтей Грузии тем же методом, нами также замечено, что метаксилол выделяется в преобладающем количестве, ио об этом факте умалчивали по следующим соображениям. [c.23]

    По содержанию книга оригинальна и целеустремленна. Она базируется на единой концепции авторов, которая заключается в неразрывности процесса с его аппаратурным оформлением. Введенное авторами новое понятие аппаратурно-процессная единицам подчеркивает единство технологического осуществления процесса во всем его разнообразии. К этому следует добавить рассмотрение химикотехнологических процессов с общих экономических позиций. [c.5]

    В своей недавней работе Эльбе, Льюис и Рот получили новые данные, которые согласуются с уравнением (XIV.8.3), особенно по влиянию процентного содержания Оо на второй предел воспламенения. Авторы были вынуждены ввести реакцию 4 и стадию обрыва цепи СО + Оа + М СОа + + Оа + М для того, чтобы экспериментальные данные не противоречили их механизму. [c.397]

    Авторы будут благодарны за все замечания и пожелания, способствующие улучшению содержания книги. [c.4]

    Обобщение данных по содержанию порфиринов в нефтях, проведенное автором (рис. 14), показало наличие четких различий в содержании и соотношении ванадий-никелевых порфириновых комплексов в нефтях из разных мегациклов (в пределах одного мегацикла они близки). [c.107]

    Исследовано [42] влияние размеров металлических кластеров на скорость гидрирования циклогексена и бензола в присутствии Р1-и Р1—Аи-катализаторов. (Сплавы Р1—Аи содержали от 4 до 98% Р1. Скорость и энергию активации гидрирования определяли в интервале температур 20—160 °С.) Установлено, что гидрирование циклогексена происходит в 10 —10 раз быстрее, чем гидрирование бензола. Скорость гидрирования зависит от содержания Р1 в катализаторе и резко падает с его уменьшением, причем при малом содержании Р1 гидрирование бензола не происходит совсем. При повышении температуры (до 250 °С) идут дегидрирование и изомеризация. Сплавы Р1—Аи обладают более высокой селективностью, чем Р1. На основании полученных данных авторы [42] делают предположение, что активация молекул бензола происходит на более крупных кластерах, чем активация циклогексена, что возможно только на катализаторах с большим содержанием Р1. [c.35]


    В работе [123] обсуждаются условия, в которых проявляется положительное и ингибирующее влияние водорода на реакции дегидроциклизации, гидрогенолиза, скелетной изомеризации и D—Н-обмена в присутствии Pt- и Ni-катализаторов. Показано, что скорость и направление превращений углеводородов, катализируемых металлами, зависят от содержания водорода в системе. Небольшие количества адсорбированного на поверхности катализатора водорода положительно влияют на превращение углеводородов (см. рис. 43). Так, водород, по мнению авторов [123], замедляет процесс диссоциативной хемосорбции углеводородов на поверхности металла  [c.228]

    Некоторые авторы (например, [18]) применяют при теоретическом анализе процесса экстракции смазочных масел растворителем треугольные диаграммы, в которых по одной стороне откладывается не процентное содержание компонентов, а вязкостно-весовая константа (ВВК) (рис. 12) или индекс вязкости, удельный вес, анилиновая точка и т. п. Точка внутри такого треугольника характеризует одновременно и состав и соответствующее свойство. Содержание растворителя пропорционально длине перпен- [c.174]

    При этом образуется значительное количество углерода. Так, при отношении Оа/С, равном 0,63 получалось 0,02%, а при отношений Оа/С, равном 0,53 около 0,2% углерода (от его содержания в сырье) в виде элементарного углерода в полученном газе. Процесс проводился также при давлении от 18 до 20 ат и температурах выходящего газа 1427 и 1343° С, рассчитанных для отношений OJQ. 0,63 и 0,53 соответственно. Экстраполяция кривых на рис. 1 для приведенных условий показывает,, что углерод при равновесии не должен образовываться. Авторы [19] предполагают, что охлаждение выходящего газа было достаточно медленным,. чтобы получить некоторую конверсию окиси углерода в углерод и углекислый газ. [c.316]

    В области отрицательных значений температурного коэффициента по мере повышения температуры и снижения скорости реакции уменьшается выход кислородных соединений и увеличивается содержание олефинов, особенно пропилена. Согласно наблюдениям автора, при высоких отношениях углеводорода к кислороду, т. е. в условиях очень ограниченной конверсии углеводорода, минимальная скорость реакции соответствует максимальному образованию пропилена относительно превращенного углеводорода. Эта закономерность справедлива также для случая получения н-бутилена из н-бутана и изобутилена из изобутана. [c.330]

    В 1946 г. была опубликована статья Воге и Мэй [28], в которой сообщалось об измерениях равновесия реакции (IX). Применив спектральный метод анализа (исследование спектров поглощения в инфракрасной области), авторы имели возможность количественно определить в равновесных смесях содержание всех трех изомеров бутена с прямой цепью , т. е. бутена-1, г ыс-бутена 2 и транс-бутена-2. [c.309]

    Авторы считают, что в равновесной смеси должно содержаться около 80% изоолефинов. Они не приводят содержания отдельных пентенов в продуктах реакции. [c.311]

    Однако при температурах от 265 и до 375° С содержание пентена-1 в равновесной смеси, по данным указанных авторов, колебалось около 10—15% поэтому результаты этих опытов могут быть учтены только для приблизительной оценки равновесных соотношений между пентенами. [c.313]

    В результате своих опытов авторы получили не только водный раствор спирта, но и некоторое количество продуктов полимеризации. Для того чтобы снизить до минимума содержание полимеров, авторы проводили опыты с избытком водяного нара в исходной газовой смеси. [c.338]

    Под влиянием нистатина и амфотерицина В в изолированных ядрах почек собак наблюдаются (Асиновская, 1976 Аси-новская и др., 1976 Асиновская, Оксман, 1976) изменения в составе белков ядерных мембран, выражающиеся в элиминации ряда фракций с низкой электрофоретической подвижностью и уменьшение их количественного содержания. Авторы отмечают более выраженный эффект амфотерицина В по> сравнению с эффектом нистатина и объясняют изменения фракционного состава белков ядерных мембран усилением- [c.188]

    Существует точка зрения, что схема II более экономична, чем схемы I и III. Одпако это положение далеко не всегда верно. Так, исследования автора по фракционировке газов каталитического крекинга показали, что когда содержание наиболее тяягелого компонента — бензина — в смесп намного больше, чем нодле кащих выделению компонентов, а температура кипения его много выше, наиболее экoнoмичнoii является не схема II последовательного выделения легких компонентов, а схемы I н III предварительного выделения наиболее легких компонентов с последующей их фракциопировкой, [c.222]

    В 80-х годах XVIII столетия Лавуазье пытался определить относительное содержание углерода и водорода в органических соединениях. Он сжигал изучаемое соединение и взвешивал выделившиеся углекислый газ и воду. Результаты такого определения были не очень точными. В первые годы XIX в. Гей-Люссак (автор закона объемных отношений, см. гл. 5) и его коллега французский химик Луи Жак Тенар (1777—1857) усовершенствовал этот метод. Они сначала смешивали изучаемое органическое соединение с окислителем и лишь потом сжигали. Окислитель, например хлорат калия, при нагревании выделяет кислород, который хорошо смешивается с органическим веществом, в результате чего сгорание происходит быстрее и полнее. Собирая выделяющиеся при сгорании углекислый газ и воду, Гей-Люссак и Тенар могли определить соотношение углерода и водорода в исходном соединении. С помощью усовершенствованной к тому времени теории Дальтона это соотношение можно было выразить в атомных величинах. [c.74]


    Следует отметить, что не во всех главах книги Ф. Азингера трактуемые вопросы освещены с достаточной полнотой. Подробно иэложен материал в главах хлорирование (глава П1), нитрование (глава IV), сульфохлорирование (глава V), окисление (глава VI), сульфоокисление (глава VII). Особый интерес представляет содержание главы IX, в которой автор сумел систематизировать и обобщить вопросы, связанные с выяснением закономерностей в реакциях замещения парафиновых углеводородов. [c.5]

    В предыдущих сообщениях [I—41 нами были приведены результаты исследования грузинских нефтей на содержание Б них ароматических и гексагидроароматнческих углеводородов, Работы других авторов, касающиеся исследований аро- [c.23]

    Б предыдущих работах одного из авторов [1,2] были приведены результаты исследования грузинских нефтей на содержание в них ароматических н гидроароматических углеводородов. Цель настоящей статьи— исследовать групповой состав нефти месторождения Норио с использованием метода дегидрогеиизационного катализа акад. Н. Д. Зелинского [3] для определения содержания гексагидроароматичес-ких углеводородов и прочих цикланов. [c.131]

    За границей -проведено. много тщательно подготовленных экспериментальных исследований для того, чтобы получить надежную базу для расчета поверхностей нагрева и охлаждения. Этому вопросу было посвящено несколько трудов. В них излагается содержание весьма обширного научно-исследовательского материала. В большинстве случаев авторы не ограничиваются какими-либо определенными формулами. В некоторых оправочииках в главах, посвященных теплопередаче, -приведены формулы, которые в настоящее время являются уже устаревшими или слишком упрощенными для того, чтобы можно было, пользуясь ими, правильно рассчитывать теплообмен. [c.27]

    В гл. XIV автор рассматривает большое количество вопросов, связанных с цепным воспламенением и тепловым взрывом, распространением пламени и детонацией. Изложение этих сложных вопросов ни по форме, ни по содержанию не может полностью удовлетворить читателя. К счастью, советский читатель имеет возможность изучить теоретические вопросы горения и взрывов по известным трудам Н. Н. Семенова, В. Н. Кондратьева, Я. Б. Зельдовича и других. [c.6]

    Весьма инетересное применение метода ГПХ нашли авторы работы [32], которые оценили, как исключаются асфальтены из пор катализатора, применяемого при каталитическом гидрообессеривании остатков. Образец катализатора с известным распределением по размерам пор, погружают в нефтяной остаток с известным содержанием асфальтенов. Объем взятой навески остатка в 3 раза превышает общий объем пор взятой навески катализатора. Катализатор с остатком вьщерживают в автоклаве при постоянной температуре в течение 4 ч до установления равновесия, перемешивая каждые 1,5 ч. Для исключения возможности окисления воздухом свободное пространство автоклава заполняется азотом. После достижения равновесия жидкость, не проникшая в поры катализатора (наружная), сливают через сетку и анализируют методом ГПХ с получением распределения по размерам молекул и частиц и определением содержания металлов (ванадия, никеля). Жидкость, проникшая в поры катализатора (внутренняя), экстрагируется из катализатора последовательно бензолом и смесью метанола и бензола (1 1). После отгонки растворителя, оставшуюся жидкость анализируют так же, как и наружную часть остатка. [c.38]

    Вопросу подбора для разных условий карбамидной депарафинизации растворителей-активаторов и установлению величины их оптимальной добавки посвящено большое количество исследований как советских, так и зарубежных авторов [40—46, 37—39, 31, 29]. В перечисленных работах можно найти дальнейшие по- дробности по выбору активаторов. В работе А. М. Кулиева с сотрудниками [38] указывается, в частности, что потребное количество активатора зависит от его природы (табл. 18). Так, при депарафинизации дистиллятов сураханской нефти в растворе углеводородного растворителя оптимальное количество вводимого активатора составляет метилового спирта — 2%, этилового спирта — 4%, изопропилового спирта — 25% и ацетона или метилэтилкетона — 50%. При применении в качестве активатора изопропилового спирта важное значение имеет содержание в нем воды, которое должно составлять 8—9% [38]. Роль воды в этом активаторе заключается, по мнению авторов, в повышении растворимости в нем карбамида, который в безводном изопропиловом спирте, особенно в присутствии углеводородного растворителя, растворяется недостаточно. [c.145]

    А.Н. Гусева и Е.В. Ск>болев разработали классификацию, основанную на представлениях о нефти как природном углеводородном растворе, в котором содержится наибольшее количество хемофоссилий (унаследованных структур) и меньше всего компонентов, изменяющихся под влиянием условий среды существования нефти в залежи, условий отбора пробы, транспортировки и хранения. Однако авторы почему-то назвали классификацию геохимической, хотя в основе ее лежат генетические признаки — хемофоссилии. В этой классификации нефти подразделялись по растворителю на классы — алкановый, циклано-алкановый, алкано-циклановый и циклановый, т. е. по химическому признаку, а классы — на "генетические" типы нефти, обогащенные парафином, затронутые вторичными процессами (осернение), обогащенные легкими фракциями. Однако это в большей мере признаки вторичных изменений нефтей, а не генетических различий. Кроме того, авторы классификации выделяли нефти разной степени катагенеза. Таким образом, А.Н. Гусева и Е.В. Соболев предложили много разных показателей, но их трудно использовать для четкой классификации нефтей. Они ценны главным образом для раскрытия механизма преобразования нефти при тех или иных процессах. Интересны предложенные этими авторами коэффициенты, отображающие соотношения содержания метановых УВ и твердых парафинов с долей углерода в ароматических структурах, которые увеличиваются с возрастанием степени катагенеза. [c.8]

    В основе большинства классификаций лежат данные об углеводородном составе различных фракций нефти. Ряд авторов в своих классификациях учитывали и другие компоненты нефти. Первые классификации нефтей, когда еще не были разработаны методы определения их углеводородного состава, были составлены по преобладающему компоненту. Так, К.В. Харичков в основу разделения нефтей положил содержание парафинов и смол, а Г. Гефер — содержание УВ. Последний подразделяет нефти на метановые (более 60 % метановых УВ), нафтеновые (более 60 % нафтеновых УВ), нафтено-метановые (метановых и нафтеновых УВ более 60 %), ароматические. [c.12]

    В основу классификации нефтей по химическому составу автором положены данные по углеводородному составу бензиновой фракции (н. к. — 200 °С). Кроме того, учитывают плотность, содержание смолис-то-асфальтеновых компонентов, серы, твердого парафина. Принимают также во внимание информацию о соотношении парафино-нафтеновых и нафтено-ароматических УВ во фракции с температурой кипения свыше 200 °С. Подобный принцип классификации нефтей был предложен М.А. Бестужевым [27] (не учитывался только углеводородный состав фракции выше 200 °С). [c.18]

    Влияние -носителя на гидрогенолиз циклопропана и метилциклопропана исследовалось на нанесенных катализаторах Р1/А120з и Р1/(5102—АЬОз) [88]. Показано, что начальные скорости гидрогенолиза обоих углеводородов на Р1/А1г0з пропорциональны поверхности Р1. В присутствии катализаторов Р1/(5102—А 2О3), содержащих менее 1% Pt, активными компонентами являются как Р1, так и носитель. При большем содержании Р1 в катализаторе селективность, выраженная отношением изобутан/к-бутан, сохраняет постоянное значение по мнению авторов [88], это указывает на то, что гидрогенолиз протекает исключительно на металлических центрах. [c.103]

    В дальнейшем [89] подробно изучены закономерности гидрогенолиза метил- и 1,2-диметилциклопентанов. На Pt-катализаторах гидрогенолиз может протекать одновременно по трем независимым механизмам, каждый из которых характеризуется специфическим распределением продуктов реакции. По первому, по терминологии авторов [89], неселективному, механизму гидрогенолиз проходит почти с равной вероятностью по всем связям кольца. Такой механизм характерен для Pt- и Pd-пленок при достаточно высоких температурах по этому же механизму проходит гидрогенолиз метил- и 1,2-диметилциклопентанов на Р1/А1гОз с содержанием Pt около 0,2%. Второй, так называемый селективный, механизм наблюдается на Pt-пленках при более низких температурах, а также при 220°С на (10% Pt)/АЬОз. Для этого механизма характерен разрыв лишь неэкраниро-ванных Свтор—Свтор-связей. Наконец, по третьему, частично селективному, механизму происходит гидрогенолиз главным образом неэкранированных, но в какой-то мере и экранированных, связей кольца. Распределение продуктов гидрогенолиза в этом случае не является линейной комбинацией двух первых типов. Однако значение энергии активации при этом механизме является промежуточным между значениями энергий активации гидрогенолиза по двум первым механизмам. Поскольку первый механизм затрагивает все связи кольца, как экранированные, так и неэкранированные, то соответствующие промежуточные соединения являются, по мнению [c.132]

    При Сб-дегидроциклизации алканов и Сз-циклизациц алкенов на Pt/AbOa показано [84, 126], что скорость реакции в отсутствие Нг быстро падает, доходя фактически до нуля, и наоборот, в токе Нг проходит успешная циклизация как алканов, так и алкенов. Роль водорода при образовании циклопентанов в присутствии алюмоплатиновых катализаторов с низким содержанием Pt пока недостаточно ясна. Возможно, что влияние водорода на протекание реакции осуществляется по нескольким направлениям, часть которых обсуждалась выше. Не исключая этих возможностей и в случае нанесенных Pt-катализаторов, следует также обсудить ассоциативный механизм действия водорода [84], представляющийся авторам книги одним из наиболее вероятных. В соответствии с обсуждаемой схемой водород в случае реакции Сб-дегидроциклизации алканов играет ту же роль, что и в ряде других реакций, протекающих в присутствии металлсодержащих катализаторов, в частности в реакции миграции двойной связи в алкенах [127] и в конфигурационной изомеризации диалкилциклоалканов [128]. В этих реакциях водород входит в состав переходного комплекса, образующегося на поверхности катализатора по ассоциативной схеме. Можно полагать, что реакция Сз-дегидроциклизации, также протекающая при обязательном присутствии и, по-видимому, с участием Нг, проходит через промежуточные стадии образования и распада переходного состояния  [c.230]

    В работе [166] исследована активность промотиро-ванных катализаторов Pt/AljOa в реакциях С5- и Сб-де-гидроциклизации изобутилбензола и обсуждена связь между электронным состоянием и каталитическим действием этих катализаторов. В качестве исходного применяли промышленный катализатор Pt/AbOs, содержащий 0,35% Pt, и промотировали его добавками Pd, Ir, Со, Re или Аи (до суммарного содержания металлов 0,6%). Для сравнения был приготовлен катализатор, содержащий 0,6% Pt, добавлением 0,25% Pt к исходному промышленному катализатору. Исходя из электронной структуры полученных катализаторов, авторы раз- [c.249]

    Ароматические углеводороды. Для количественного анализа типов ароматических углеводородов или структурных групп колебательные спектры применялись лишь в ограниченном числе случаев. Метод определения общего содержания ароматических соединений был описан Хейглем н др. [21], использовавшими линию комбинационного рассеяния в области 1600 см— , относящуюся к колебаниям сопряженной С=С связи ароматического кольца. Метод измерений аналогичен методу, предложенному этими авторами для определения общей непредельности. Для снижения влияния изменения положения линии в спектре для различных индивидуальных ароматических соединений бралось произведение коэффициента рассеяния на ширину линии у основания. Эта величина линейно связана с площадью под регистрируемым пиком. Среднее отклонение этой величины для 22 алкилбензолов составляло приблизительно 10%. [c.333]

    В большинстве работ по изучению каталитической активности оксида алюминия затрагивается связь ее с поверхностной кислотностью. Обширная дискуссия о природе кислотных центров оксида алюминия в настоящее время решена в пользу утверждения, что кислотность оксида алюминия связана с кислотой типа Льюиса и обусловлена ионами алюминия с координационным числом 4. Некоторые авторы предполагают наличие на поверхности оксида алюминия двух типов кислотных центров до 300 °С имеет место кислотность типа Льюиса, а выше 300 °С - Брен-стеда. В серии рабо т, где высказана эта же точка зрения, одновременно сформулированы требования к химическому составу оксида алюминия, обеспечивающему его максимальную кислотность. Кислотность оксида алюминия зависит также от содержания в нем щелочноземельных и особенно щелочных металлов (натрия). На примере реакций изомеризации олефинов установлена зависимость между содержанием натрия в оксиде алюминия и изомеризующей активностью и кислотностью. Максимальные активность в реакции изомеризации олефинов и кислотность соот-вествуют минимальному содержанию натрия в оксиде алюминия. Каталитическую активность оксида алюминия в реакциях кислотного тлпа можно усилить путем введения в его состав галогенов. Единое мнение о характере взаимодействия оксида алюминия и галогенов заключается в том, что поверхностные гидроксильньге группы оксида алюминия и, возможно часть атомов кислорода замещаются ионами хлора и фтора. Природа ак тивных центров оксида алюминия, возникающих при введении галогена и механизм влияния фтора и хлора на его поверхностную кислотность являются предметом дискуссии. Согласно Ал. А. Петрову [5, с. 72], ок сид алюминия, обработанный хлороводородом, увеличивает кислотность и приобретает каталитическую активность в том случае, когда хлорид-ион замещает одну из парных гидроксильных групп, причем водород другой гидроксильной группы, благодаря соседству электроотрицательного атома хлора, становится подвижным и способным к диссоциации в форме протона. При замещении галогеном одиночной гидроксильной группы активный центр не образуется. Структура активного центра хлорзаме-щенного оксида алюминия может быть представлена формулой [c.44]

    Максимум изомеризующей активности достигается у образцов с минимальным содержанием натрия, полученных путем сочетания кислотной обработки и обмена с аммонийными солями. Что касается влияния степени деалюминирования на изомеризующую активность алюмоплатинового катализатора, то, рассматривая зависимость глубины изомеризации о-ксилола и н-пентана при изменении мольного отношения 5102 А12О3 в пределах от 13,0 до 28,6 (рис, 2,8), можно видеть, что максимум изомеризующей активности соответствует мольному отношению 5102 - МтО, 16-ь 18, Впоследствии это было подтверждено и в работах дру их авторов [Ы]. [c.61]

    Смис и Брантинг [6] исследовали равновесие реакции синтеза метанола при температуре 303,8° С и атмосферном давлении динамическим методом. В качестве катализатора эти авторы применяли окись цинка или смесь окиси цинка с окисью хрома. Равновесие исследовано с двух сторон, т. е. со стороны синтеза метанола из окиси углерода и водорода и со стороны метанола в последнем случае в реакционную камеру подавали газовую смесь, насыщенную парами метанола при 38° С, содержащую паров спирта больше, чем должно быть в равновесной смеси. Содержание спирта в равновесной смесп при атмосферном давлении и указанной выше температуре (303,8° С) было незначительным найденные численные значения констант сильно колебались средняя величина, полученная этими авторами, приведена в табл. 1. [c.348]

    Буквы и номера в круглых скобках, после фамилии автора, совпадают с о бозначениями раздела Монографии и обзоры . Разделы для удобства про-нумерованы в соответствии с их местом в каждой главе (см. Содержание). [c.411]

    Для синтеза дифенилолпропана алкилированием фенола метилацетиленом в качестве катализаторов исследовались сильнокислотные ионообменные смолы, но полученные данные противоречивы. В работах сообщается, что на катионитах амберлит ХЕ-100, дауэкс 50 X 4, пермутит рН и чемпро С-20 в статических условиях получен дифенилолпропан-сырец с выходом 80% на введенный метилацетилен (содержание целевого вещества в сыром продукте 71 %). В работе отмечалось, что на катионите КУ-2, который идентичен вышеуказанным катионитам амберлит ХЕ-100 и дауэкс 50 х 4, дифенилолпропан получен не был, хотя метилацетилен и поглощался. При опытах удалось выделить небольшое количество смол, и авторы считают, что они образовались за счет полимеризации метилацетилена. [c.98]


Библиография для СОДЕРЖАНИЕ J I От авторов: [c.8]   
Смотреть страницы где упоминается термин СОДЕРЖАНИЕ J I От авторов: [c.9]    [c.52]    [c.136]    [c.164]    [c.199]    [c.415]    [c.55]    [c.64]    [c.35]    [c.17]    [c.149]    [c.307]   
Смотреть главы в:

Органическая химия -> СОДЕРЖАНИЕ J I От авторов




ПОИСК





Смотрите так же термины и статьи:

АВТОРОВ



© 2025 chem21.info Реклама на сайте