Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Эффективность кристаллов

    Влияние геометрии. Форма амплитудного распределения зависит от расстояния источник — кристалл. С изменением расстояния меняются телесный угол и соответственно средняя длина пробега у-квантов в кристалле. От величины средней длины пробега зависит вероятность событий многократного рассеяния, а следовательно, и эффективность кристалла. По этой причине спектры анализируемых образцов и стандартов измеряют в одинаковых геометрических условиях. [c.232]


    Уровень фона, обусловленный космическим излучением в не-экранированном детекторе, довольно велик, что объясняется высокой эффективностью кристаллов Ма1(Т1) к уизлучению н сравнительно большим объемом используемых кристаллов. Для подавления фона от космического излучения и других внешних источников приходится сооружать вокруг детектора специальную защиту. Сталь толщиной 15—20 см или другой материал эквивалентной толщины обеспечивает оптимальную защиту от внешнего ионизирующего излучения. [c.162]

    Для проверки теории механизма сцинтилляции, описанной в разделе III, были вычислены абсолютная и практическая сцинтилляционная эффективность кристаллов антрацена, трамс-стильбена и п-терфенила [21] при использовании соответствующих уравнений [c.208]

Рис. 26. Бинарные и тройные растворы в поливинилтолуоле [139]. Зависимость относительной сцинтилляционной эффективности (эффективность кристалла антрацена принята за 100) от концентрации растворенного вещества. Обозначения веществ Рис. 26. Бинарные и <a href="/info/593934">тройные растворы</a> в поливинилтолуоле [139]. <a href="/info/40214">Зависимость относительной</a> <a href="/info/1844554">сцинтилляционной эффективности</a> (<a href="/info/860678">эффективность кристалла</a> антрацена принята за 100) от <a href="/info/375394">концентрации растворенного</a> вещества. Обозначения веществ
Рис. 93. Зависимость эффективности кристалла N81(11) размером 7,6 X 7,6 см от анергии -квантов (для двух различных расстояний между источником и детектором). Рис. 93. <a href="/info/822055">Зависимость эффективности</a> кристалла N81(11) размером 7,6 X 7,6 см от анергии -квантов (для <a href="/info/1696521">двух</a> <a href="/info/312404">различных расстояний</a> между источником и детектором).
    Вымораживание является менее эффективным способом борьбы с кристаллообразованием в топливах по сравнению с добавкой этилцеллозольва. Даже длительное вымораживание при низких температурах не устраняет полностью образования кристаллов льда. Оно только уменьшает количество растворенной воды в топливе и тем самым уменьшает потенциальную возможность образования кристаллов льда в топливе, залитом в баки самолета. [c.52]

    Эффективные радиусы определяют при изучении строения молекул и кристаллов. [c.38]

    Эффективные радиусы атомов и ионов в соединениях определяют по ра ности межъядерного расстояния и известного эффективного радиуса одной из частиц. Так, разными методами установлено, что ионный радиус иона F составляет 0,133 нм. С другой стороны, расшифровка рентгенограмм кристалла NaF дает значение d = = 0,231 нм. Следовательно, радиус иона Na+ равен 0,098 нм. [c.153]


    Процесс отстойного центрифугирования протекает эффективно, в том случае, если частицы твердой фазы разделяемой суспензии представляют компактные образования, не связанные между собой и имеющие возможность свободно перемещаться в жидкой среде суспензии. Такими суспензиями являются растворы парафинистых продуктов, содержащие выделившийся твердый парафин в виде дендритных кристаллов или кристаллических агрегатов, например растворы многих парафинистых продуктов остаточного происхождения или дистиллятных продуктов с добавкой депрессаторов и др. [c.131]

    Изучена [101] каталитическая активность в реакциях гидрирования бензола и этилена граней монокристаллов никеля и кристаллографически хорошо определенных частиц нанесенного Ni-катализатора диаметром 5,0 нм. Химически полированные кристаллы никеля, ориентированные по граням (110), (111), (100) очищали последовательным окислением и восстановлением прн 495 и 439°С. Показано, что каталитическая активность грани (111) несколько выше, чем для других граней. Активность ориентированного по грани (111) нанесенного катализатора несколько меньше, чем для случайно ориентированного. Эффективная энергия активации равна 46 кДж/моль. На основании этих данных был сделан вывод [101], что реакция гидрирования этилена более [c.55]

    Плавление наступает тогда, когда эффективное поперечное сечение, приходящееся на одну цепь, становится больше,-чем это допускается силами межмолекулярного притяжения, скрепляющими кристалл. [c.230]

    Процесс очистки экстракцией основан на явлениях диффузии и поэтому его эффективность зависит от размера гранул очищаемого продукта. Более того, показано что при одинаковых размерах гранул эффективность экстракции зависит от характера кристаллов. Авторы работ описали интересные опыты. Проведя синтез дифенилолпропана в присутствии H I и отделив непрореагировавшие компоненты дистилляцией, они кристаллизовали расплавленный дифенилолпропан-сырец двумя путями быстрым охлаждением на барабане и медленным охлаждением естественным путем, для чего расплавленный дифенилолпропан выливали на стеклянный поднос тонким слоем. В последнем случае застывший дифенилолпропан [c.167]

    Селективная способность — одно из наиболее замечательных свойств цеолитов. В отличие от обычных катализаторов, цеолиты имеют два типа пор одни определяются размерами пор кристалла цеолита, другие — внутрикристаллической системой, существующей и в промышленных катализаторах крекинга. В зависимости от кристаллической структуры и формы пор цеолиты обеспечивают высокую селективность (избирательность) каталитического крекинга. Например, цеолиты с маленькими порами (4 и 5 А для типа А) эффективны в реакциях, в которых участвуют реагенты с небольшими размерами молекул такие цеолиты избирательно действуют только на пропилен, если, например, он находится в смеси с изобутиленом. При селективном крекинге смеси парафиновых углеводородов на цеолитах, размер пор которых ненамного превышает 5 А, крекинг изопарафинов незначителен. При каталитическом крекинге с использованием цеолитов типа X и У, диаметр пор которых от 9 до 10 А, углеводородные молекулы частично крекируются на внешней поверхности кристалла цеолита, а образующиеся фрагменты подвергаются дальнейшему крекингу внутри полостей. [c.101]

    Азид тетрабутиламмония можно приготовить в виде чистых кристаллов путем -прямой экстракции из водной смеси бисульфата тетрабутиламмония, азида натрия и избытка гидроксида натрия [86]. Его, в свою очередь, можно превратить в ацилазид при взаимодействии с ацилхлоридом в толуоле при 25 °С. При более высоких температурах (50—90 °С) происходит перегруппировка Курциуса и образуются с выходом 52—89% различные изоцианаты [86]. Используя метод МФК, можно провести эту реакцию путем прямого взаимодействия водного раствора азида натрия с ацилхлоридом в присутствии четвертичного аммоний-хлорида и последующим пиролизом. Эта методика была запатентована, так как она эффективна даже при реакции с малорастворимыми хлорангидридами кислот [87]. [c.141]

    Проводимость таких веществ, как кремний и германий, можно повысить, вводя в них небольшое количество определенных примесей. Например, введение в кристаллы кремния примесей бора или фосфора приводит к эффективному сужению межзонной щели. Небольшие количества бора или фосфора (несколько миллионных долей) удается включить в структуру кремния при выращивании кристалла. Атом фосфора имеет пять валентных электронов, и поэтому, после того как четыре из них используют- [c.631]

    Простейший пример механизма сопряжения — совместная работа двух катализаторов (например, с помощью прямого взаимодействия промежуточных продуктов частных реакций различного типа, адсорбированных на соприкасающихся кристаллах (зернах) контактов разных функций, через перемещение адсорбированных промежуточных продуктов с контакта на контакт посредством поверхностной диффузии, а также через газовую фазу с десорбцией с одного контакта и адсорбцией на другом). Преимущественное использование смешанных катализаторов перед простыми и необходимость применения носителей и модификаторов вызваны необходимостью обеспечить скрытое сопряжение, требуемое для получения определенного продукта. Для эффективного сопряжения, как правило, требуются сложные каталитические системы. До сих пор их находят в основном эмпирически. Сознательный подбор и конструирование таких систем — одна из насущных задач теории катализа. Его частный и особенно важный вид — морфологический катализ — состоит в обеспечении определенного строения продуктов реакции. [c.306]


    Использование кристалл-дифракционного спектрометра требует значительно больших токов пучка, чем при использовании 51 (Ь1)-спектрометра, вследствие более низкой геометрической и квантовой эффективности кристалл-днфракционного спектрометра. Для легкоповреждаемых образцов, например биологических, такие большие токи нежелательны. [c.292]

    Следует выбрать самые интенсивные пики в коротковолновой области сканирования кристалла LiF и найти их длины волн. Используя полный справочник рентгеновских лучей, например [113], определить возможные элементы, которые могут дадать рассматриваемые пики в излучении Kai, 2 или Lai, 2-В параллель, используя данные о серии линий, полученные при качественном анализе с помош,ью спектрометра с дисперсией пО энергии, если какой-либо элемент уже предварительно связан с пиком Kai,2(n= ), исследователь должен сразу же отыскать сопутствующий им пик И снова отнощение интенсивностей Ка и должно равняться приблизительно 10 1. Однако из-за изменений в эффективности кристалла и детектора ожидаемое отношение может выполняться не всегда. Например, в спектре d (рис. 6.12) эффективность детектора с коротковолновой стороны Л"-края поглощения аргона приблизительно 2 раза выше. Следовательно, пик L i, интенсивность которого должна составлять примерно 60% от интенсивности La, на самом деле больше. Удвоение эффективности до /(-края поглощения аргона обусловлено тем, что в проточном пропорциональном детекторе рентгеновского излучения этого спектрометра используется газ Р-10 (90% Аг—10% метана). При заданных размерах детектора и давлении газа Р-10 некоторая часть рентгеновского излучения с длиной волны, большей, чем длина волны края поглощения, проходит через газ, не взаимодействуя с ним. Для рентгеновского излучения с длинами волн короче длины волны края поглощения большая часть (приблизительно в 2 раза) будет взаимодействовать с газом и, следовательно, будет обнаружена. Следует также отметить, что разрешения кристалл-ди-фракцнонного спектрометра с некоторыми кристаллами, например LiF и кварцем, дое-таточно, чтобы продемонстрировать по крайней мере некоторое разделение пика Ка на Kai и Ка.2 с отношением интенсивностей Ка. Ка2=2 . Если подобно этому рассматривать пик La, то следует искать полную L-серию. Необходимо отметить, что кроме тех L-линий, которые указаны на рис. 6.1 (т. е. Lai, 2, Lfiu L 2, L 3, L u Lyz, Li, Lv), благодаря прекрасному разрешению и отношению пик/фон можно обнаружить их больше. При идентификации серии линий возможна ситуация, когда из-за ограничений использования кристаллов по длине волны может быть обнаружен только главный пик (например, Gex с LiF, а Ge/ g лежит за пределами диапазона кристалла). С учетом этого факта в спектре, полученном с по- [c.294]

    Излучение регистрируют монокристаллическими щелочногалогенидными люминофорами, активированными Т1, например Ка1Т1 или К1-Т1. Максимум на кривой Спектрального распределения этих люминофоров лежит при 410 нм, длительность послесвечения составляет 0,25 10 в с. Конверсионная эффективность кристаллов NaI Tl может достигать 8%. Недостаток указанных люмино- [c.165]

    Поскольку при практическом использовании гамма-спектрометра уровень активности анализируемых образцов может изменяться в значительных пределах, для подбора оптимальных условий измерения служит стойка, которая позволяет изменять расстояние образец — детектор. Увеличение расстояния уменьшает эффективность прибора [произведение эффективности кристалла 1Ма1(Т1) на телесный угол]. Наибольшая эффективность оказывается при помещении образца непосредственно на торец кристалла. [c.221]

    Космическое излучение создает в неэкранированном детекторе высокий уровень фона, что обусловлено высокой эффективностью кристаллов Ка1(Т1) к у-излучению и срав-232 [c.232]

    Эффективность кристаллов, применяемых в рентгеновских спектрометрах, довольно низкая интенсивность света, отраженного от кристалла, в 1000 раз меньше интенсивности падаюш,его света. Коллимация такихе приводит к потере интенсивности. Можно создать очень компактную рентгеновскую установку без коллиматора и кристалла. Основное преимущество таких рентгеновских установок без диспергирующих систем — простота [c.220]

    Липсет [198] продолжил публикование библиографии работ по переносу энергии в твердых растворах аценов. Ю. В. Набойкин с сотр. [199] обнаружил, что кристаллы нафталина, содержащие п-фенилстильбен (0,5 вес. %), 1,2-ди-( 3-нафтил)-этилен (0,1%) или 1-(р-нафтил)-2-(п-дифенил)-этилен (0,5%), имеют практическую сцинтилляционную эффективность, составляющую 150% эффективности кристалла чистого транс-стильбена. [c.222]

    Физико-химические методы предотвращения образования кристаллов льда в топливе и обмерзания топливных фильтров основаны на устранении обратимой гигроскопичности нефтяных топлив и перевода их в гигроскопичность необратимую. Практически это достигается путем введения в топливо различных присадок, растворяющихся в топливе и обладающих высокой необратимой гигроскопичностью. Такими присадками могут быть Некоторые спирты, эфиры и другие соединения. Наиболее эффективным из них оказался этилцеллозольв — моноэтиловый эфир этиленгликоля, предложенный Б. А. Энглиным. [c.51]

    Из формулы О — 5)/5 следует, что чем выше будет растворимость образующегося осадка и чем ниже концентрация осаждаемого веш ества, тем меньше будет относительное пересыщение, тем ченьшее число первичных кристаллов будет возникать и тем круптее они будут. Таким образом, для получения крупнокристаллических осадков необходимо в процессе осаждения повышать растворимость осадка и понижать концентрации осаждаемого и осаждающего ионов. Существует ряд способов понижения концентрации реагирующих ионов при формировании осадков. Самым простым из них является разбавление растворов перед осаждением и медленное (по каплям) при постоянном перемешивании прибавление раствора осадителя к исследуемому раствору (перемешивание нужно для того, чтобы в отдельных местах раствора не повышалась концентрация осадителя, т. е. не возникало так называемое местное пересыщение). Очень эффективным способом понижения концентрации осаждаемого иона является связывание его в комплексное соединение средней прочности. В этом случае достаточно низкая концентрация осаждаемого иона в растворе создается за счет частичной ионизации комплексного соединения. При добавлении иона-осадителя из-за образования малорастворимого соединения равновесие ионизации комплекса будет сдвигаться, но концентрация осаждаемого иона все время будет оставаться низкой. Например, если связать Со2+ в комплексное [c.101]

    При пропановой депарафинизации дистиллятных рафинатов из-з. образования мелкокристаллических парафинов скорость филь — трования, по сравнению с депарафинизацией, с полярными раство — ригелями ниже. Повысить эффективность этого процесса в данном случае можно добавлением некоторых присадок, способствующих образованию более крупных кристаллов. Благодаря низкой избирательности пропана процесс депарафинизации проходит с высоким ТГД (15-25 °С) и потому требует глубокого охлаждения, что ЯВЛ5 ется его основным Е1едостатком. [c.267]

    Процесс депарафинизации "Дилчил" применяется для депарафинизации дистиллятных и остаточных рафинатов с использованием смеси МЭК с метилизобутилкетоном или толуолом. Процесс отличается от традиционных использованием весьма эффективных кристаллизаторов "Дилчил" оригинальной конструкции. В кристаллизаторах этого процесса используется прямое впрыскивание предварительно охлажденного в аммиачном холодильнике растворителя в поток нагретого в паровом подогревателе депарафинируемого сырья. В результате такой скоростной кристаллизации образуются 1)азрозненные компактные слоистые кристаллы сферической фор — мы. Внутренний слой этих кристаллов состоит из первичных зародышей из высокоплавких парафинов, а внешний слой образован из кристаллов низкоплавких углеводородов.. Суспензия из кристаллизатора "Дилчил" затем направляется после охлаждения до требуемой температуры в скребковых аммиачных кристаллизаторах в вакуумные фильтры. [c.268]

    Содержание парафина в парафиновом дистилляте определяет выход товарного парафина при его переработке, а следовательно, и его ценность как сырья для парафинового производства. Кристаллическая структура охлажденного парафинового дистиллята имеет решающее значение при его фильтрации, поскольку от величины кристаллов парафина зависят скорости фильтрации, а следовательно, и производительность фильтровального оборудования, а также эффективность процессов обезмасливания гачей, получаемых после фильтрации, особенно процесса потения. [c.24]

    Использование углеводородных разбавителей не устраняет трудности, связанные с кристаллической структурой перерабатываемого сырья. При переработке высококипяпщх фракций кристаллическая структура выделяющегося парафина, несмотря на разбавление этих фракций маловязкими растворителями, остается настолько мелкой, что полученные растворы по-прежнему с большим трудом поддаются фильтрации и центрифугированию. Для придания этим растворам приемлемой фильтруемости приходится прибегать к созданию условий для агрегатной или дендритной кристаллизации, добавляя к ним соответствующие активные вещества (денрессаторы). Возникающие под действием этих активных веществ кристаллические агрегаты или дендритные кристаллы обладают более крупными размерами и более компактным строением, чем монокристаллические образования, что позволяет более легко и эффективно отделять их от маточного раствора. При переработке же таких продуктов, как остаточные рафинаты, а также тяжелые дистилляты некоторых нефтей, содержащих естественные активные вещества, которые могут вызывать агрегатную кристаллизацию, ввод депрессаторов не обязателен. Но тем не менее в большинстве случаев добавка депрессаторов и здесь будет полезной, поскольку она будет усиливать агрегати- [c.96]

    Одной из форм совершенствования процесса является порционная подача растворителя, при которой создаются условия для разделения кристаллизацией высоко- и низкоплавких углеводородов. При первом разбавлении сырья расход растворителя должен быть таким, чтобы из раствора выделялись самые высокоплавкие углеводороды, образующие кристаллы наибольших размеров. При порционном разбавлении (2—4 порции) каждая порция вводимого растворителя должна иметь температуру на 2—3 °С выше температуры смеси в точке, куда подается растворитель. Порционная подача растворителя эффективна при депарафинизации и обез-масливании дистиллятного сырья широкого фракционного состава. [c.80]

    Можно предположить, что существует оптимальное количество глобул в скоплениях между кристаллами льда, которые в дальнейшем при оттаивании способны агломерировать без заметной коагуляции. Для увеличения эффективности агломерации нолезно понижать pH латекса ниже 9. Увеличение скорости оттаивания способствует повышению устойчивости латекса. Олеат калия в качестве эмульгатора обеспечивает хорошую агломерацию латекса [c.597]

    Но даже в типичных ионных соединениях, например, в гало-генидах щелочных металлов, не происходит полного разделения отрицательного и положительного зарядов, т. е. полного перехода электрона от одного атома к другому. Например, в кристалле ЫаС эффективный отрицательный заряд атома хлора составляет лншь 0,94 заряда электрона таким же по абсолютной величине положительным зарядом обладает и атом натрия. [c.151]

    Для борьбы с забиванием топливных фильтров кристаллами льда предложены различные конструктивные меры, методы обезвоживания топлив и специальные присадки, устраняющие кристаллообразование. Все эти мероприятия были разработаны применительно к самолетным двигателям, работающим на бензине или керосине. Наиболее эффективной мерой является добавление в топлива специальных присадок. В качестве таких присадок испытано много соединений, но наиболее эффективными соединениямц оказались спирты, в частности, этилцеллозольв [7]. [c.317]

    В последние годы в химической, нефтеперерабатывающей и нефтехимической промынгленности широкое распространение получили высокоэффективные сорбенты — синтетические цеолиты. Дегидратированные цеолиты представляют собой пористые кристаллы. В решетке цеолита, как и в других алюмосиликатах, часть ионов четырехвалентного кремния замещена трехвалентными ионами алюмипия, благодаря чему реснетка цеолита обладает некоторым остаточным отрицательным зарядом. Катионы, компенсирующие отрицательную валентность анионных каркасов, располагаются во внутренних полостях решетки, чем обусловлены ионообменные свойства цеолитов. Эффективные диаметры окон, соединяющие большие полости решетки цеолитов, в значительной степени зависят от природы и размеров катионов, расположенных в непосредственной близости к этим окнам. [c.310]

    Иллюстрацией данного положения может послужить исследование, проведенное автором и его коллегами [21] в годы войны. Речь идет о разработке метода нитрования гексаметилентетра-мина (гексамина) с целью получения взрывчатого вещества цик-лонита (R. О. X.). Мелкие кристаллы гексамина добавляли к 97—100%-ной азотной кислоте при соответствующей температуре. Кинетика реакции была неизвестна, но было обнаружено, что суммарный выход, полученный в лабораторном реакторе периодического действия, весьма чувствителен к соотношению гексамина и азотной кислоты в реакционной смеси. По-видимому, это связано с влиянием эффективной концентрации нитрующей среды. По мерс протекания реакции расходуется азотная кислота и выделяется вода. При этом происходит постепенное растворение и взаимодействие все новых и новых количеств твердого гексамина при непрерывном разбавлении кислоты. Логичное объяснение экспериментальных наблюдений дает гипотеза, согласно которой мгновенный выход, т. е. выход на каждую вновь добавляемую порцию гексамина, почти полностью определяется мгновенной концентрацией кислоты. [c.124]

    Если м0родом ЭПР исследуется монокристалл, то при наличии анизотропного д-фактора измеряемая величина д является функцией ориентации кристалла относительно направления поля, поскольку мы определяем эффективный д-фактор, ориентированный вдоль поля. Если мы определим молекулярные оси X, и 2, которые приводят к диагональному виду д-тензор, и возьмем в качестве примера такую систему, где они совпадают с осями кристалла, эффективная величина д-фактора для произвольной ориентации кристалла выражается как [c.32]

    В тех случаях, когда осадок является не отходом, а целевым продуктом, после фильтрования его необ-< ходимо тшательно промыть чистым растворителем Назначение промывки — удаление оставшегося в Ma ji се кристаллов маточного раствора и растворенных в нем примесей. Чтобы избежать потерь осадка за счет, его растворимости, обычно стремятся использовать минимальное количество промывной жидкости. Часто по этой же. причине промывку осуществляют предаач рительно охлажденным растворителем. Если же оса< док совершенно нерастворим в промывной жидкости, для более качественной промывки ее подогревают Чтобы обеспечить наиболее эффективное промыва- ние,. следует взятое для этой цели кодачество рас- творит ля использовать не в один прием, а в виде нескольких небольших порций. Перед приливанием каждой новой порции растворителя важно как меж но более полно отжать жидкость из осадка на фильтре. [c.107]

    Особый интерес представляет кристаллизация твердых углеводородов из растворов в полярных растворителях, применяемых в процессах депарафинизации и обезмасливаиия при производстве нефтяных масел, парафинов и церезинов, так как эффективность этих процессов зависит от размеров и формы кристаллов твердых углеводородов, образующихся при охлаждении растворов сырья в [c.129]

    При малой кратности растворителя к сырью, когда вязкость раствора велика, даже при малой концентрации твердых углеводородов и медленном охлаждении образующиеся кристаллы невелики, так как передвижению молекул к центрам кристаллизации препятствует выделяющийся из раствора парафин. В результате сужается область, из которой молекулы твердых углеводородов поступают к первично образовавшимся зародышам, что вызывает возникновение новых центров кристаллизации, увеличение числа кристаллов и, в конечном счете, образование мелкодисперсных труднофильтруемых осадков. Слишком большое разбавление сырья растворителем снижает концентрацию твердых углеводородов в растворе. При этом средняя длина диффузионного пути молекул настолько увеличивается, что даже при медленном охлаждении в начальный момент образуется слишком много центров кристаллизации, в результате чего конечные размеры кристаллов уменьшаются. Следовательно, и в этом случае эффективность процессов снижается. В работе [АТ] исследовалось влияние кратности растворителя на растворимость в нем нафтеновых и ароматических углеводородов (рис. 50). Повышение кратности растворителя приводит к увеличению растворимости в нем углеводородов, причем растворимость ароматических углеводородов, обладающих большими молекулярной поляризацией и дисперси- [c.146]

    Порционная подача растворителя эффективна при депарафинизации и обезмасливании дистиллятного сырья, причем широкого фракционного состава. При депарафинизации рафинатов узкого фракционного состава или остаточных [32, 59] такой способ подачи растворителя менее эффективен в силу большей однородности состава твердых углеводородов и сравнительно низкого содержания в остаточном сырье углеродородов парафинового ряда. Содержащиеся в нем твердые циклические углеводороды образуют мелкие кристаллы смешанного типа. В то же время лабораторные исследования [55] изменения структурной вязкости суспензий твердых углеводородов остаточного рафината в растворе ацетон (35%)—толуол (65%) показали, что в зависимости от способа подачи растворителя структурная вязкость суспензии изменяется в широких пределах (рис. 52). Это объясняется тем, что при небольшом пересыщении раствора в начальный момент охлаждения на образовавшихся центрах кристаллизации начинается рост кристаллов, при этом вязкость суспензии почти не изменяется. [c.151]


Смотреть страницы где упоминается термин Эффективность кристаллов: [c.78]    [c.213]    [c.131]    [c.151]    [c.65]    [c.155]    [c.44]    [c.69]    [c.287]    [c.166]   
Смотреть главы в:

Физические методы анализа следов элементов -> Эффективность кристаллов




ПОИСК







© 2024 chem21.info Реклама на сайте