Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение никеля в черновой меди

    Атомно-абсорбционный метод является достаточно чувствительным для определения кальция, магния и калия в природных и сточных водах, железа, никеля, кобальта, меди, хрома и цинка в сточных водах машиностроительного и приборостроительного производства, цветной и черной металлургии. Отсутствие влияния основы сточных вод на фоне большого количества взвешенных веществ, цианидов и нефтепродуктов позволяет определять примеси в данных сточных водах по водным растворам сравнения. [c.68]


    Определению титана при помощи диантипирнлметана не мешают ионы магния, алюминия, цинка, кадми , марганца, меди, циркония, редкоземельных элементов, молибдена, ниобия и тантала, поэтому метод можно применять для определения титана в легких, черных и цветных сплавах. Ионы никеля, хрома и кобальта не реагируют с диантипирилметаном, но мешает собственная окраска ионов поэтому раствор сравнения должен содержать все компоненты, кроме диантипирилме-тана. Ионы железа (III) и ванадия (V) предварительно восстанавливают гидроксиламином. [c.374]

    Давыдов А. Л. и Вайсберг 3. М. Фотоэлектрические методы анализа черных, цветных металлов и руд. Руководство к пользованию прибором А. Л. Давыдова и инструкции к определению кремния, фосфора, молибдена, ванадия, никеля, хрома, меди, углерода, ниобия и железа, Киев, Изд-во АН [c.57]

    ДЦТА предложена для определения никеля в присутствии меди, цинка и кадмия [1695], так как комплекс никеля с ДЦТА не взаимодействует или очень медленно взаимодействует с цианидом калия в щелочной среде. Комплексы меди, цинка и кадмия, напротив, разрушаются быстро и количественно при добавлении к раствору цианида калия. Выделившуюся из комплекса ДЦТА оттитровывают раствором магния с индикатором эриохромом черным Т. [c.229]

    Сначала при 0,02-0,05 А/дм рекомендуется осадить определенный слой обычного никеля в качестве подслоя, а потом повысить до 1,3 А/дм и нанести черный никель. Благодаря этому повышается адгезия покрытия с основой. Для работы в условиях умеренного климата (помимо подслоя меди и никеля по стали) черные никелевые покрытия дополнительно обрабатывают в горячем растворе двухромовокислого калия. [c.118]

    Эриохром черный Т можно только до известной степени считать универсальным комплексометрическим индикатором. Некоторые металлы (кобальт, никель, медь, алюминий и т. д.) образуют слишком прочные комплексы, что проявляется в образовании необратимого окрашивания, на которое не оказывает влияния присутствие комплексона. Указанные катионы нельзя непосредственно титровать по этому индикатору, а также в их присутствии нельзя проводить определения других катионов. В таких случаях говорят, что индикатор блокирован . Тогда прибегают к косвенному определению. К исследуемому раствору прибавляют известный объем титрованного раствора комплексона и избыточное количество последнего определяют титрованием установленным раствором соли магния или цинка. Аналогичным образом поступают при определении катионов, образующих слабо-окрашенные комплексы с индикатором (свинец, ртуть, индий, галлий и т. п.). [c.287]


    Пирокатехиновый фиолетовый применяют в качестве индикатора в щелочном растворе, аналогично эриохрому черному Т, при определении меди, кобальта и никеля. Переход окраски — от синей к красно-фиолетовой. Главное значение этого индикатора состоит в возможности его применения в качестве специфического индикатора на висмут и торий в кислых растворах. При титровании висмута происходит переход окраски от синей к интенсивной желтой, при титровании тория окраска меняется от краснофиолетовой к желтой. [c.290]

    В По сравнению с эриохромом черным Т пирокатехиновый фиолетовый имеет некоторые преимущества. В первую очередь с помощью этого индикатора можно титровать медь, кобальт и никель, которые с эриохромом черным Т образуют слишком прочные комплексные соединения. Главное же его значение, однако, заключается в возможности его использования для титрования в кислых растворах, особенно для комплексометрического определения висмута и тория. Обычно применяют 0,1 %-ные водные растворы индикатора, устойчивые в течение многих месяцев. [c.329]

    Комплексные соединения указанного состава образуются с двухвалентной ртутью, кадмием, цинком, никелем и кобальтом. Одновалентное серебро образует цианидный комплекс состава Ag( N)7, а двухвалентная медь, восстанавливаясь одновременно до одновалентной, образует также бесцветный цианидный комплекс Си(СК) . Марганец образует комплекс состава Mn( N) -, легко окисляющийся в Mn( N)i-. Платиновые металлы и золото также связываются цианидом в прочные комплексные соединения. Все эти цианидные комплексы более устойчивы, чем соответствующие комплексонаты, за исключением комплексного цианида марганца, который в достаточной степени диссоциирует в растворе и потому количественно реагирует не только с комплексоном, но и с эриохромом черным Т. По этой причине комплексометрическое определение марганца в аммиачном растворе цианида калия проводится легко даже в присутствии всех упомянутых выше катионов, полностью маскирующихся цианидом по отношению к комплексону. [c.413]

    Поступают так же, как описано в предыдущих параграфах. После прибавления буферного раствора и цианида калия определяют магний комплексометрическим титрованием в присутствии эриохрома черного Т в качестве металлиндикатора. Затем прибавляют формальдегид, который выделяет из цианидного комплекса весь цинк, и определяют последний комплексометрическим титрованием. Медь, ртуть, никель, кобальт и мышьяк определению не мешают. Не мешают также следы железа. Сурьму связывают винной кислотой. [c.418]

    Растворы соединений других элементов взаимодействуют со всеми производными дитиофосфорной кислоты следующим образом. Белый осадок вольфрамовой кислоты, образующийся при добавлении соляной кислоты к раствору вольфрамата натрия, медленно восстанавливается всеми реагентами до вольфрамовой сини, а желтый солянокислый раствор ванадата аммония довольно быстро переходит в зеленый. Соли уранила и титана не дают реакций окрашивания. Серебро, двухвалентная ртуть, свинец, одновалентный таллий, кадмий, мышьяк выделяются в виде белых, а висмут и олово — желтых аморфных осадков. Сурьма образует осадки желтого или слабо-желтого цвета. Одновалентная ртуть и трехвалентное железо дают черные, а медь желто-зеленые осадки. Соли никеля образуют муть сиреневого цвета, растворимую в этиловом эфире с образованием красно-фиолетового раствора. Соли кобальта образуют соединения грязно-оранжевого цвета, растворимые в эфире с образованием оранжевого раствора. Соли многих других элементов не дают осадков или окрашивания. Таким образом, большинство изученных производных дитиофосфорной кислоты можно считать селективными реагентами на молибден, поскольку при определенных условиях они образуют с молибденом характерное малиновое или красное окрашивание. [c.79]

    Определение меди. Отвешивают на аналитических весах 15—20 Г сернокислого никеля, растворяют примерно в 50—60 мл теплой воды, смывают в мерную колбу на 100 мл и доводят объем раствора водой до отметки. Отсюда пипеткой отбирают 50 мл, переносят в колбу Эрленмейера, добавляют несколько капель соляной кислоты, подогревают до 50—60° С и в течение 15—20 мнн. пропускают через раствор сероводород. Если в растворе содержится медь, то она, выпадает в виде черного осадка uS. Осадок отфильтровывают, промывают водой и растворяют в азотной кислоте. Раствор выпаривают досуха на водяной или песочной бане, сухой остаток увлажняют 1—2 каплями азотной кислоты и разбавляют 150—170 мл воды. Из полученного раствора медь осаждают электролитическим способом на платиновую или. медную сетку. Содержание меди подсчитывают по формуле [c.316]


    Кинетический эффект используют также при определении маг-лия, кальция, меди, никеля или цинка в присутствии алюминия, замаскированного триэтаноламином. В таком растворе замаскированный алюминий медленно реагирует с индикатором эриохромом черным Т и блокирует последний. Но при охлаждении раствора до температуры ниже 5° С этого явления не наблюдается. [c.140]

    Еще в 20-х годах им был обнаружен параллелизм между способностью твердого тела катализировать определенные реакции и его электронными свойствами , проявляющимися в различной окраске твердого тела [115]. Хорошими катализаторами разложения окиси ртути, перманганата калия, бертолетовой соли и других веществ оказались только интенсивно окрашенные окислы — закись никеля, двуокись марганца, окись меди, окись железа, окись хрома, окись кобальта, черная окись урана. Слабо окрашенная окись кадмия заняла промежуточное положение, а далее следовала белая при обычных и желтая при повышенных температурах ZnO. [c.93]

    Многие из. тяжелых металлов дают с диэтилдитиокарбам том труднорастворимые продукты, большинство из которых более или менее растворимо в перечисленных выше органических растворителях. Некоторые из них бесцветны или почти бесцветны [цинк, индий, кадмий ртуть(П), серебро, свинец, олово, сурьма], другие сильно окрашены. Титан и редкоземельные металлы не дают окраски. Железо(1П) в кислой или нейтральной среде образует буро-черный осадок, но в небольших количествах не реагирует в аммиачном растворе, содержащем цитрат при рН> 9. Определению меди мешают в основном никель, кобальт и висмут которые в аммиачно-цитратном растворе дают соответственно зеленовато-желтый, бледно-зеленый и желтый осадки и сообщают такие же окраски органическому растворителю, применяемому для экстрагирования меди. Однако [c.398]

    I. Микрокристаллоскопическое исследование и определение цвета. Мелко измельченную пробу твердого веп1ества распределяют тонким слоем на предметном стекле так, чтобы можно было под микроскопом установить различие или обш,ность форм отдельных мельчайших частичек и их цвет, по которому можно приближенно установить состав соединения. Так, в черный цвет окрапдены, например, сульфиды железа, никеля, кобальта, меди (II), ртути, серебра, свинца, висмута и оксиды меди и никеля в коричневый цвет — оксид кадмия и диоксиды свинца и марганца в зеленый — оксиды и соли хрома (III), соли железа (И), карбонат гидроксомеди, некоторые соли никеля в желтый — оксид ртути (II) и свинца (И), сульфиды кадмия, олова (IV), мышьяка (ИГ) и (V), мно- [c.329]

    Хан [744] предложил метод прямого титрования РО/ раствором магнезиальной смеси в присутствии индикатора 1,2,5,8-тет-раоксиантрахинона. Титруют до появления синей окраски. Разработан метод титрования РО/ раствором соли магния в присутствии эриохрома черного [115, 544, 545], фталеинового фиолетового [1135] при pH 10 или лучше хромкислотного синего при pH 9 [1122]. При использовании этих индикаторов кальций маскируют добавкой ЭДТА железо, никель, кобальт, медь и другие ионы также мешают определению, для маскирования их применяют K N. Алюминий связывают триэтаноламином. Кроме того, мешают титрованию окислители, их предварительно восстанавливают аскорбиновой кислотой или гидроксиламином. [c.36]

    Абрамов В. Л. Быстрый метод определения серы в черных металлах. Бюлл. литейщика, 1946, № 2, с. 13—14. 2811 Абрамов В. Л., Богданова В. Т. и Таганов К. И. Спектральный метод количественного анализа ковкого чугуна на кремний и углерод. Зав. лаб., 1950, 16, № 10, с. 1218—1224. Библ. 5 назв. 2812 Абрамович А. Я. Экспресс-метод определения концентрации плава амселнтры. Зав. лаб., 1941, 10, № 5, с. 541—542. 2813 Абрамович Я. 3. и Мейер Л, П. Применение сульфата закиси меди [с] р-нафтолом при тазовом анализе. Электр, станции, 1950, № 2, с. 55—56. 2814 Абросимов Е, В. и Строганов А. И. Предпосылки к развитию экспресс-анализа на содержание кислорода в жидкой стали. Зав. лаб., 1951, 17, № 10, с. 1169—1174. Библ. 6 назв. 2815 Абуладзе К. Л. Определение никеля и кобальта в марганцевой руде методом внутреннего электролиза. Научно-исследовательские работы химических институтов и лабораторий АН СССР за 1940 г. Сборник рефератов. М.— Л., Изд-во АН СССР, 1941, с. 191. 2816 [c.119]

    Титрование раствором ЭДТА. Индикатор — эриохром черный Т. Титруют в присутствии цианида н 2,3-меркаптопропанола. Цинк, кадмий, никель, кобальт, медь, ртуть (II), а также малые количества свинца, висмута и железа (III) не мешают определению. [c.1013]

    Многие из тяжелых металлов дают с диэтилдитиокарбамина--том труднорастворимые продукты, большинство которых более или менее растворимо в перечисленных выше органических рас--творителях. Растворы некоторых из них бесцветны или почти бесцветны [цинк, кадмий, ртуть (II), серебро, свинец, олово] в то время как другие сильно окрашены. Железо (III) в кислой или нейтральной среде образует буро-черный осадок но не реагирует в аммиачном растворе, содержащем цитрат при pH, который равен или больше 9. Главными металлами, мешающими определению меди, являются никель, кобальт и висмут 1 , которые в аммиачно-цитратном растворе дают соответственно зеленовато-желтый, бледнозеленый и желтый осадки и сообщают такие же окраски органическому растворителю, применяемому для их экстрагирования. Однако окраски, обусловленные соединениями этих металлов, значительно слабее (1/20—1/30 окраски, вызываемой соединением меди) Помехи со стороны никеля и кобальта можно устранить, добавляя к анализируемому раствору [c.313]

    Детали и полуфабрикаты из металлических и керамических материалов. Методы капиллярной дефектоскопии. — Взамен РТМ 3—410—73 Сплавы черных и цветных металлов. Методы испытаний на растяжение и сжатие Швы паяные. Технические требования. Правила приемки и контроля. — Взамен ОСТ 4 ГО.054.035. (Ред. 1—71) Сплавы, полученные методами порошковой металлургии, электролитическим и металл)фгическим. Общие технические требования к методам анализа Сплавы черных, цветных и тугоплавких металлов. Метод определения углерода и серы Сплавы 47НД, 32НКД и стали марки 03-ВИ, 03-ВД. Методы определения никеля, марганца и меди Сталь. Метод контроля макроструктуры непрерывнолитой заготовки для производства сортового проката и трубных заготовок. — Взамен ОСТ 14 4—73 в части непрерывнолитой заготовки квадратного сечения Сталь. Метод контроля макроструктуры литой заготовки (слитка), полученной методом непрерывной разливки (в части непрерывной заготовки квадратного сечения заменен ОСТ 14 1—235—91) [c.18]

    Гармон и Рейли [35, 361 применили разработанный ими метод пропорциональных уравнений для определения нескольких смесей. Гликолевую кислоту и а,а-оксиддаие-тилуксусную кислоту они определяли одновременно по реакции этих соединений с 2,7-диоксинафталином. Они определили также галлий в присутствии хрома, железа и других металлов. Это определение выполнялось на основе реакции взаимодействия этилендиаминтетрауксусной кислоты (EDTA) с комплексами, образованными данными металлами и эриохромом черно-синим R. В этом случае большинство металлов реагировало быстро, кобальт и ванадий реагировали очень медленно, а галлий реагировал со средней скоростью. Таким образом, выбрав подходящее время реакции, можно было определить галлий. Аналогично определяли ионы многих других металлов, таких, как кобальта, ванадия, урана, галлия, никеля и меди. Диллон, Янг и Лукас [26] одновременно определили тройную смесь бромистых алкилов. [c.188]

    Микрокристаллоскопическое исследование и определение цвета. Мелко измельченную пробу твердого вещества распределяют тонким слоем на предметном стекле так, чтобы можно было под микроскопом установить различие или общность форм отдельных мельчайших частичек и их цвет, по которому можно приближенно установить состав соединения. Так, в черный цвет окрашены, например, сульфиды железа, никеля, кобальта, меди (II), ртути, серебра, свинца, висмута и оксиды меди и никеля в коричневый цвет — окись кадмия и двуокиси свинца и марганца в зеленый — оксиды и соли хрома (III), соли железа (II), карбонат гидроксомеди, некоторые соли никеля в желтый — окись ртути (II) и свинца (II), сульфиды кадмия, олова (IV), мышьяка (III) и (V), многие хроматы в оранжевый — сульфиды сурьмы (III) и (V) в красный или оранжево-красный — сурик, многие дихроматы, модификации окиси и сульфида ртути (II), соли кобальта, в синий — многие соли меди (II) и некоторые обезвоженные соли кобальта (II). [c.347]

    Для фотометрического титрования множества других металлов используют самые разнообразные индикаторы. Например, торий определяют в присутствии хромазурола S [55(71)], пирокатехинового фиолетового [59(76)], ализаринового красного S [59(95)], арсеназо I [62(19)], нафтолового пурпурового [56(19)] или SNADNS [62(5)] барий [56(10), 56(71)], цинк [56(25), 63(47)] и кадмий [63(47)] определяют с применением эриохрома черного Т стронций определяют в присутствии фталеинкомплексона [60 (Т09)], редкоземельные металлы —в присутствии ализаринового красного 8[59 (95)] и арсеназо I [61 (54) 62 (19)] (только эрбий определяют с ПАР [60 (130)]. Для определения висмута и меди применяют пирокатехиновый фиолетовый [59 (21)], висмута и свинца — ксиленоловый оранжевый [60 (47)], никеля — мурексид [57 (63)] с одновременным маскированием кобальта нитрозо-Р-солью к титрованию никеля сводится определение серебра [57(75)] и палладия [55 (1)] —после обменной реакции любого из этих металлов с циа-нидным комплексом никеля. [c.104]

    Ход определения. К слабокислому исследуемому раствору, содержащему цинк (кадмий), медь, никель и кобальт, прибавляют несколько миллилитров буферного раствора и малыми порциями вводят столько твердого цианида калия, чтобы связать все присутствующие катионы. Требуемое для маскирования количество цианида легко определяют по изменению окраски раствора в присутствии меди раствор обесцвечивается, в присутствии никеля и кобальта — желтеет и при дальнейшем прибавлении цианида цвет раствора не меняется в присутствии ртути образуется сначала ссадок, который затем легко растворяется. Избыток цианида не мешает. После прибавления эриохрома черного Т раствор окрашивается в синий цвет (в присутствии никеля и кобальта — в зеленый). Затем к раствору прибавляют несколько милли . литров 10%-ного раствора формальдегида и тотчас же титруют выделившийся цинк (кадмий) раствором комплексона до перехода окраски из винно-красной в интенсивно-синюю. Согласно опытам автора монографии, вместо формальдегида можно применять также твердый хлоралгидрат. Выделение цинка из цианидного комплекса при этом протекает медленнее титрование тогда проводят через несколько минут после прибавления хлоралгидрата. Преимуществом последнего является возможность его получения в химически чистом виде, а также в отсутствие полимеризации, которая протекает в старых растворах формальдегида. [c.417]

    Увеличение pH раствора приводит к выпадению осадка гидроксида магния. Ввиду того что комплекс ионов магния с ЭДТА относится к неустойчивым комплексам, определению будут мешать почти все металлы, образующие комплексы с ЭДТА, однако они будут находиться в очень незначительных количествах, так как титрование проводят в щелочной среде. Металлы, ионы которых образуют с эриохромовым черным Т комплексы более устойчивые, чем магний, будут блокировать индикатор и мешать определению, например медь, никель, алюминий и железо. Для устранения их влияния вводят маскирующие реагенты. [c.372]

    Никель образует нерастворимую соль Ы12Р207 светло-зеленого цвета. В присутствии больших количеств никеля и железа (например, при анализе никелевых сплавов, сталей и т. п.) этот метод непригоден. В этом случае кобальт отделяют от сопутствующих элементов. Отделение кобальта от железа, никеля, хрома и других элементов производят нитрито калия, осаждая его в виде Кз[Со(Ы02)в]- Железо отделяют иногда при помощи гидроокиси цинка, большие количества никеля — осаждением совместно с гидроокисью никеля в присутствии окислителя. Однако эти методы дают менее надежные результаты и требуют много времени. В данном случае значительно проще экстрагировать роданидный комплекс кобальта амиловым спиртом, связывая железо фторидом. Присутствие меди, особенно в больших количествах, мешает колориметрическому определению кобальта, так как образуется роданид меди (II) бурого, почти черного цвета. Влияние меди (П) устраняют, восстанавливая ее сульфитом, до одновалентной. Однако большой избыток сульфита тоже вреден, так как ослабляет окраску ро- [c.130]

    Представления, согласно которым ощутимое изменение, окраски происходит в пределах бщ от 0,1 до 0,9 (т. е. в интервале 0,9—0,1 для бмш), могут быть признаны пригодными в качестве приближенного критерия для некоторых металлиндикаторов и их комплексов с металлами. Однако эти представления основаны на общепризнанном, но, по существу, неверном мнении о том, что глаз человека не способен различать изменение окраски, если в смеси с окрашенным веществом В находится менее 10% окрашенного компонента А, и наоборот. Это предположение приводит к выводу о том, чfo функциональный интервал перехода окраски металлохромного индикатора охватывает две единицы рМ и что положение этого интервала на шкале рМ зависит от pH, так как, согласно определению, АрМ = 1дРм1п 1, где Рмш= (рН). Интервал пере-, хода для мурексида, используемого при титровании никеля(II) и меди (И) (при pH 6—12), соответствует этой концепции однако, если в присутствии того же индикатора титровать кальций, то ДрМл 2,5 3 (для интервала pH 7—12). Для зрх охрома черного Т, употребляемого в титровании магния, АрМ 2—2,5 (при pH 9). С другой стороны, в том случае, когда при титровании кальция применяют металлфталеин, АрМ возрастает от 2 до 4 при изменении pH от 9,5 до И (см. кривые титрования бщ=/(рМ) для различных pH, левая часть рис. 4.31). [c.316]

    Для контроля качества чистого продукта или его смеси были рекомендованы два объемных метода. Первый основан на титровании 0,5 М раствором хлорида кальция в присутствии оксалата аммония в качестве индикатора [130], по второму методу применяется 0,1 М раствор хлорида магния и эриохром черный Т. В первом методе к 100 мл анализируемого раствора прибавляют 10жл 5%-ного раствора оксалата аммония и титруют при комнатной температуре 0,5 М раствором хлорида кальция до появления заметного помутнения. Второй метод аналогичен комплексометрическому определению магния [134] (стр. 56). Из колориметрических методов применяется колориметрическое определение меди [130] или никеля [131], связанных в комплекс комплексоном. [c.170]

    К кисломуанализируемому раствору прибавляют 10—20%-ный спиртовой раствор димеркапрола (иногда достаточно нескольких капель). Образовавшийся осадок при прибавлении буферного раствора легко растворяется. Присутствующий магний (или кальций и магний) определяют титрованием 0,05 Ж раствором комплексона в присутствии эриохрома черного Т в качестве металлиндикатора. К концу титрования рекомендуется титровать медленно. Переход окраски из винно-красной в темно-синюю в большинстве случаев более отчетлив, чем при определении одного магния. Это можно объяснить полным связыванием незначительных следов некоторых элементов, мешающих переходу окраски (примеси в реактивах, например, Си и т. д.). Увеличение концентрации димеркапрола не влияет на переход окраски индикатора, что, например, имеет место при применении цианида. Концентрация сопутствующих элементов практически может быть любой. Только содержание висмута не должно превышать 50 мг в 100 Jчл, так как комплекс висмута с димеркапролом слишком интенсивно окрашен в желтый цвет. Малые количества меди (до 30 мг) не мешают определению. Нет сомнения в том, что при проведении микроопределений малые количества кобальта и никеля не будут мешать определению. [c.426]

    Реагент представляет собой фиолетово-черные иглы с зеленым металлическим блеском (т. пл. 187—188 ). N,N -бг i -(2-Oк и-5- yльфoфeнил)- -циaнфopмaзaн был рекомендован для фотометрического определения галлия в присутствии меди и никеля, которые можно отделить от галлия экстракцией бензолом [1632]. [c.282]

    Рубеановодородная (амиддитиощавелевая) кислота [7—9] интересна тем, что позволяет определять медь(11) и никель(П) раздельно при их совместном присутствии в растворе. С медью она образует черный осадок в аммиачной или слабокислой среде. Реакция считается весьма чувствительной и может быть применена для определения меди в некоторых промышленных объектах — в алюминиевых сплавах, легиров анных сталях и латуни. [c.206]

    Мешающие влияния. Многие из тяжелых металлов дают с диэтилдитиокарбаминатом соединения, окрашенные или бесцветные. Железо в кислой и нейтральной среде образует буро-черный осадок, но в небольших количествах не реагирует с диэтилдитиокарбаминатом в аммиачном растворе с pH 9 в присутствии цитрата. Мешают определению меди никель, кобальт, висмут, которые образуют в аммиачном растворе соединения, окрашенные соответственно в зеленовато-желтый, бледно-зеленый и желтый цвета, переходяшие в органический растворитель, который применяют для экстрагирования. Однако окраска соединений этих металлов значительно слабее окраски соединении меди. [c.132]

    Из водных растворов диэтилдитиокарбаминат хорошо экстрагируется хлороформом, четыреххлористым углеродом, ксилолом, амиловым спиртом, амилацетатом, окрашивая их в желто-коричневый цвет. Для экстракции комплекса меди предпочтительно применяют четыреххлористый углерод и хлороформ. Окраска экстрактов устойчива в темноте. Поэтому определение рекомендуется производить при ослабленном дневном или при искусственном свете. Определению меди в основном мешают ионы никеля, кобальта, висмута и железа (III). Для устранения мешающего действия этих ионов применяют комплексообразователи и подбирают оптимальное значение pH. Железо (III) в кислой и нейтральной средах образует с диэтилдитиокарбаминатом б> о-черный осадок, но в небольших количествах в аммиачном растворе, содержащем цитрат-ион, при pH > 9 не реагирует с диэтилдитиокарбаминатом натрия. Интенсивность окраски комплекса никеля, кобальта и висмута значительно слабее интенсивности окраски комплекса меди. Устранение влияния ионов железа, никеля и кобальта при определении меди можно достигнуть, применяя этилендиаминтетрауксусную кислоту в качестве маскирующего комплексообразователя. Для устранения влияния ионов висмута при определении меди пользуются в качестве комплексообразователя цианид-ионом, который разрушает карбаминат меди и не влияет на карбамииат висмута. Измеряют прозрачность двух растворов одного после обработки цианид-ионом другого без обработки и определяют количество меди по разности. [c.335]

    Титрование ряда металлов (кальция, стронция, бария, магния, цинка, кадмия, меди, никеля, кобальта и марганца) проводят в различных условиях, но их кривые титрования почти одинаковы. Титрование кальция и магния в боратном буферном растворе используют для определения общей жесткости воды. Метод имеет особое преимущество, если в растворе присутствуют окислители (например, гипохлорит-ионы), разрушающие индикаторы (например, эриохром черный Т), применяющиеся при визуальной индикации конечной точки [57(35)]. Определение жесткости воды кон-дуктометрическим методом предложила также Пасовская, [57(28)]. [c.112]

    Разработаны методы определения различных элементов, например марганца, хрома, ванадия, никеля в черных металлах, магния, молибдена, никеля, цинка и меди в алюминиевых сплавах меди, никеля и цинка в электролитах гальванических ванн, цинка в латуни и бронзе аниона 80 в электролитах гальванических ванн, ваннах анодирования, фторосолях и алюминатных растворах, воднорастворимой фосфорной кислоты в суперфосфатах 6 и многих других. [c.455]

    Лучший комплексонометрический метод определеиия свинца — титрование свинца в слабокислых растворах, содержащих уротропин с индикатором ксиленоловым оранжевым [1120, 1121]. Этот метод отличается четким переходом окраски от красной к желтой и более высокой селективностью по сравнению с другими методами определения, особенно с титрованием в щелочной области и эриохромом черным Т в качестве индикатора. Тем не менее определение в щелочной области с эриохромом черным Т имеет определенное значение, так как в этих условиях можно использовать K N для маскирования меди, никеля и кобальта. Свинец можно отделить от большинства элементов осаждением в виде PbSOi. Осадок растворяют в ЭДТА и содержание свинца определяют обратным титрованием избытка ЭДТА титрованным раствором свинца [1048]. [c.249]


Смотреть страницы где упоминается термин Определение никеля в черновой меди: [c.432]    [c.160]    [c.146]    [c.211]    [c.389]    [c.316]    [c.211]    [c.194]    [c.254]    [c.409]    [c.196]   
Смотреть главы в:

Полярографический анализ -> Определение никеля в черновой меди




ПОИСК





Смотрите так же термины и статьи:

Медь, определение

Никель определение

Чернов

Чернь



© 2025 chem21.info Реклама на сайте