Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Регуляция активности G-белков

    Мембранные ферменты отличаются от растворимых ферментов одним важным свойством все они прочно связаны с липидным бислоем соответствующих мембран. Поэтому помимо субстратов, активаторов или ингибиторов их регуляторами являются сами мембранные липиды. Белок-липидные взаимодействия играют важную роль в регуляции активности мембранных ферментов, причем действие многих биологически активных соединений реализуется через изменение структурного состояния липидного бислоя. [c.358]


    На первый взгляд схема комбинационной регуляции активности генов, представленная на рис. 10-7. дает основание для вывода о постепенно накапливающихся различиях межд> клетками последующих поколений. Например, можно предположить, что добавление регуляторного белка 2 к клеткам С и Е приведет к появлению в этих клетках одного и того же набора дополнительных белков (тех, которые кодируются генами, активируемыми белком-регулятором 2). Подобная точка зрения неверна по очень простой причине. Комбинационная регуляция гена гораздо сложнее этой схемы потому, что различные регуляторные белки взаимодействуют друг с другом. Даже у бактерий для включения одного-единственного гена иногда бывает необходимо взаимодействие двух различных регуляторных белков (см. разд. 10.2.2). У высших эукариот транскрипция какого-либо гена обычно требует совместного действия целого кластера активаторных белков (см. разд. 10.2.9). Например, белок 2 при взаимодействии с активаторным белком 1 может включать в клетке Е иной набор генов, нежели тот, который он включает в клетке С. По-видимому, именно поэтому единственный белок-рецептор стероидного гормона (пример белка-регулятора) в различных типах клеток млекопитающих определяет синтез разных наборов белка (см. разд. 12.2.2). В целом, специфические изменения в экспрессии гена, возникающие в результате синтеза регуляторного белка, зависят от предыстории клеток, так как именно эти предьщущие события и определяют, какие белки-регуляторы уже имеются в клетке (рис. 10-8). [c.181]

    Гипотеза один ген-один фермент получила прочное экспериментальное подтверждение. Как показали работы последующих десятилетий, она оказалась удивительно плодотворной. Анализ дефектных ферментов и их нормальных вариантов позволил вскоре выявить такой класс генетических нарушений, которые приводили к изменению функции фермента, хотя сам белок по-прежнему обнаруживался и сохранял иммунологические свойства. В других случаях менялся температурный оптимум активности фермента. Некоторые варианты можно было объяснить мутацией, влияющей на общий регуляторный механизм и изменяющей в результате активность целой группы ферментов. Подобные исследования привели к созданию концепции регуляции активности генов у бактерий, которая включала и концепцию оперона. [c.9]

    Указанная регуляция активности ГС дополняется регуляцией на уровне биосинтеза фермента немодифицированный белок РП через посредство других специальных белков подавляет транскрипцию локусов ГС. В свою очередь, эти белковые регуляторы могут [c.94]


    Полная регуляция активности белков-ферментов липидами не может быть осуществлена только гидрофобными белок-липидными взаимодействиями. Во взаимодействии молекул белков и липидов помимо гидрофобных взаимодействий между ацильными остатками молекулы липида и неполярными группами белковой молекулы принимают участие и другие. Это ионные взаимодействия, водородные связи, связи с образованием мостиков через двухвалентные катионы и др. [c.255]

    Аллостерические белки, в том числе и рецепторы лекарств, могут существовать в двух альтернативных конформациях, участвуя в регуляции потока веществ, в то.м числе и лекарственных, по принципу обратной связи. Одна из конформаций — активная. Белок в активной кон-фор.мации связывает в активном центре субстрат и либо переводит его через мембрану вовнутрь клетки, либо превращает его в следующий метаболит данного пути. [c.123]

    БЕЛОК ХОЛОДОВОГО ШОКА С МОЛЕКУЛЯРНОЙ МАССОЙ 310 КД МЕХАНИЗМ РЕГУЛЯЦИИ АКТИВНОСТИ И НЕКОТОРЫЕ ФУНКЦИИ [c.53]

    Другой пример белка-модулятора — кальмодулин он участвует в регуляции активности многих ферментов. Кальмодулин — небольшой белок (148 аминокислотных остатков), содержит два глобулярных домена, соединенных а-спиральным доменом. Каждый глобулярный домен имеет два центра связывания ионов кальция (рис. 2.31). [c.96]

    Велики заслуги генной инженерии в изучении раковых заболеваний 1) открыты ретровирусы (РНК-вирусы), содержащие ревертазу, - фермент, катализирующий синтез ДНК на основе РНК. РНК-вирусы могут долго размножаться в клетках, не делая их злокачественными. При переходе в форму ДНК, эти вирусы интегрируются в геном и кодируют белок, который трансформирует нормальную клетку в злокачественную. Такие вирусы называют онковирусами. Последовательности генов, кодирующих трансформирующие белки, получили название онкогенов и именно на подавление их активности сейчас направлены основные усилия в борьбе с онкологическими заболеваниями. Сегодня все исследователи пришли к выводу, что причиной рака является нарушение регуляции работы генов. [c.63]

    Распознавание, ответ и регуляция — аспекты биологических функций белковых структур в клетке. Хотя клетка мышцы высоко, специализирована, тем не менее она проявляет большинство черт, типичных для живых систем (табл. 11.1). Так, она обладает способностью к деятельности и к контролю своей деятельности 1687]. Сигнал, попадающий в эту систему (нервный импульс), вызывает мощный ответ (движение или напряженность), который строго контролируется во времени, пространстве и по своей интенсивности и который координируется с функционально родственными системами, например с процессами, поставляющими химическую энергию. В этом отношении функции этих белков подпадают под категории клеточной биологии распознавание (с какими молекулами взаимодействует белок ), отклик (как белок реагирует на раздражение или сигнал ) и регуляция (как контролируется активность белка или какой процесс осуществляет этот контроль ). Однако все эти выражения описывают различные стороны структуры белка, и, следовательно, между ними нельзя провести четкой границы. [c.284]

    По-видимому, большое значение в процессах регуляции клеточного деления имеет группа белков, программируемых так называемыми онкогенами. Измененные (мутантные) формы этих генов обнаруживаются в опухолевых клетках и входят в ряде случаев в виде соответствующих РНК-копий в состав онкогенных (т.е. вызывающих опухоли) ретровирусов. Первым открытым онкогеном был ген sr , входящий в состав вируса саркомы Рауса. Программируемый им белок, продукт гена sr , оказался протеинкиназой, которая в отличие от протеинкиназ класса А и протеинкиназы С катализировала фосфорилирование определенного спектра клеточных белков по остаткам тирозина, а не по остаткам серина и треонина, Дальнейшие исследования показали, что такая активность присуща некоторым рецепторам факторов роста, в частности рецептору эпидермального фактора роста. Ген erd, программирующий аналог этого рецептора, был обнаружен в составе онкогенного вируса птичьего миелобластоза, В настоящее время открыто несколько десятков онкогенов. В большинстве изученных случаев продукты этих онкогенов в здоровых клетках являются участниками передачи митогенных (т. е. управляющих, митозами) сигналов. В ряде опухолей, в том числе человеческих, найдены онкогены, программирующие аналоги белка G,воспринимающего сигна-, лы от комплексов эффектор - рецептор (в частности, онкогены Н—ras и К—ras) онкогены, программирующие синтез аналогов самих факторов роста, например онкоген sis, входящий в состав вируса саркомы обезьян, продукт которого является аналогом фактора роста, выделяемого тромбоцитами (клетками крови, участвующими в процессе свертывания) онкогены, продуктами которых являются аналоги ядерных белков, по-видимому, участвующих на заключительных этапах каскада превращений, возникающего в ответ на митогенный сигнал (онкогены туе, fos и др.). [c.428]

    Выяснение механизмов, регулирующих биосинтез ферментов и их активность, стало возможным благодаря выделению мутантов с дефектами регуляции. Выделены мутанты нескольких типов, в том числе 1) не образующие функционально полноценного репрессорного белка или содержащие его в сильно повышенном количестве 2) с оператором конститутивного типа, который не способен связывать репрессорный белок 3) с аллостерической нечувствительностью, у которых определенный фермент не может распознавать эффектор. Мы опишем некоторые методы, с помощью которых выделяют таких мутантов. [c.497]


    Аллостерические свойства белка, способность его изменять активность под влиянием метаболитов, очень убедительно свидетельствуют о том, что уже в молекуле белка заложены основные механизмы, позволяющие осуществлять регулирование на более высоком уровне,— белок словно предназначен для того, чтобы служить средством для построения более сложных систем регуляции. [c.188]

    Др. тип регуляции активности ключевых ферментов-их хим. модификация (напр., обратимое ковалентное фосфорилирование, гликозилирование). Нек-рые ферменты активны в модифицированном, а ряд ферментов - в немодифици-рованном состоянии. Хим. модификация и превращение модифицированного фермента в исходную форму катализируются разными ферментами, чаще всего аллостерич. природы, к-рые, т. обр., выступают в роли регуляторов активности ферментов. Так, катализирующая фосфорилирование белков, в т. ч. ферментов, цАМФ-зависимая протеинкиназа-тетрамерный белок, состоящий из двух типов субъединиц (полипептидов). Фермент активен лишь после связывания двух молекул циклич. аденозинмонофосфата (цАМФ) с двумя регуляторными субъединицами в результате такого связывания фермент диссоциирует на две каталитически активные субъединицы и димер, с к-рым связаны две молекулы цАМФ. Т. обр., изменение активности ферментов путем их хим. модификации дополняет аллостерич. регуляцию и составляет часть каскадного механизма регуляции. Хим. модификацию ферментов осуществляют также специфич. протеазы, катализирующие ограниченный протеолиз и тем самым инактивирующие ферменты (напр., разрушая апоформы ферментов) или, наоборот, превращающие неактивные проферменты (напр., проферменты пищеварит. протеаз-пепсина и трипсина) в каталитически активные формы. [c.219]

    Еще сравнительно недавно протеиназы традиционно связывали только с процессами переваривания. В настоящее время появляется все больше данных о более широкой биологической роли протеолитических ферментов органов и тканей в регуляции ряда вне- и внутриклеточных процессов. Некоторые протеиназы выполняют защитную функцию (свертывание крови, система комплемента, лизис клеток), другие генерируют гормоны, токсины, вазоактивные агенты (ангиотензин, кинины). Ряд протеиназ регулирует образование пищеварительных ферментов, взаимодействие между клетками и клеточными поверхностями, процессы фертилизации (хитин-синтетаза) и дифференциации. Регуляция в большинстве случаев предусматривает превращение неактивного предшественника в активный белок путем отщепления ограниченного числа пептидов. Этот процесс, впервые описанный К. Линдерстрем-Лангом еще в 50-е годы, в последнее время называют ограниченным протеолизом. Значение его очень важно для понимания сущности биологического синтеза в клетках неактивных пре-и пробелков. Кроме того, этот процесс нашел широкое практическое применение в лабораториях и промышленности. В регуляции действия протеолитических ферментов участвуют также ингибиторы протеиназ белковой природы, открытые не только в поджелудочной железе, но и в плазме крови, курином яйце и т.д. [c.423]

    На основе рентгеноструктурного анализа с высоким разрешением проведено сравнение стереохимических свойств трех типов взаимодействий металл—белок. Для установления структурных и электронных факторов, ответственных за регуляцию активности иона металла, рассмотрены координационные центры металл — лиганд в белках и прослежена связь между молекулярной структурой, стереохимией и электронной структурой и биологической ролью функции иона металла. Гидро( бное взаимодействие порфиринового кольца гемоглобина и миоглобина рассмотрено по данным измерений магнитной восприимчивости, спектроскопии парамагнитного резонанса и исследования поляризационных спектров поглощения монокристаллов. С точки зрения электронной конфигурации (1-орбиталей и геометрии координации обсуждается взаимодействие замещенных ионов металлов в карбоксипептидазе А с карбонильной группой субстратов при гидролизе пептидов. Предполагается, что спектральные изменения, зависящие от pH и наблюдаемые в спектре электронного поглощения, замещенного иона Со(П), каталитически активного в карбоангидразе, обусловлены образованием упорядоченной структуры растворителя вблизи иона Со(И), Корреляция между молекулярной структурой, определенной методами рентгеноструктурного анализа, и электронной структурой координационного центра металл — лиганды, оцененной из спектроскопических данных, указывает на происхождение структурной регуляции реакционной способности иона металла в белках и ферментах. [c.123]

    Кальций-зависимый регуляторный белок назван кальмодулином его мол. масса 17000, по структуре и функции он гомологичен мышечному белку тропо-нину С. Кальмодулин содержит четыре участка связывания Са +. Связывание Са + по всем четырем участкам ведет к заметному изменению конформации белка больщая часть молекулы приобретает структуру а-спирали. Эти конформационные переходы определяют, видимо, способность кальмодулина активировать или инактивировать определенные ферменты. Взаимодействие ионов кальция с кальмодулином (и соответствующее изменение активности последнего) в принципе сходно с процессом связывания сАМР с протеинкиназой, обеспечивающим активацию этого фермента. Кальмодулин часто оказывается одной из многочисленных субъединиц сложных белков и, как правило, участвует в регуляции активности различных киназ, а также ферментов синтеза и распада циклических нуклеотидов. Список некоторых ферментов, прямо или косвенно (по-видимому, через кальмодулин) регулируемых Са +, приведен в табл. 44.5. [c.167]

    К белкам, регулируемым кальмодулином при участии Са (таких белков становится известно все больше), относятся некоторые фосфодиэстеразы циклических нуклеотидов и аденилатциклаза, а также мембранные Са -АТРазы, киназа фосфорилазы и киназа легких цепей миозина мьпиечных и немьпиечных клеток. Типичная животная клетка содержит более 10 молекул кальмодулина, что составляет до 1% суммарного клеточного белка. Некоторое количество кальмодулина связано с митотическим веретеном, пучками актиновых филаментов и промежуточными филаментами толщиной 10 нм таким образом, возможно, что этот белок участвует в регуляции активности структур цитоскелета. [c.276]

    Тиоредоксин и сходный с ним белок, называемый глутаредокснном, обнаружены в высоких концентрациях во всех исследованных прокариотических и эукариотических клетках [37]. Весьма вероятно поэтому, что регуляция активности ферментов путем тиол-дисульфидного обмена осуществляется не только в высших растениях. Восстановленные тиоредоксин и глу-таредоксин могут также выступать в качестве доноров водорода при функционировании ряда ферментов, например рибонуклеотидредуктазы, катализирующей образование дезоксирибонуклеотидов для синтеза ДНК [38] Они могут осуществлять также восстановление случайно образующихся дисульфидных мости-, ков в белках. [c.124]

    Открыт особый низкомолекулярный белок, содержащий Са,—кальмодулин. Он состоит из остатков 148 аминокислот и связывает четыре иона кальция, играет большуЕо роль в регуляции активности ряда ферментов. [c.295]

    В интеграции участвует только один фаговый белок Int, но обратная реакция - эксцизия - нуждается в двух белках. Int и Xis. Гены, кодирующие эти два бедка, соседствуют в хромосоме, и их экспрессия в нужный момент обеспечивается двумя регуляторными механизмами. В одном из них участвует белок СП, способствующий установлению лизогении, другой представляет собой новый способ регуляции, который мы еще не обсуждали,-регуляцию активности мРНК. [c.73]

    В большинстве тканей животных функционирует форма фосфодиэстеразы, которая непосредственно активируется Са + (см. рис. 66). В настоящее время эта форма (ФДЭ-1) очищена от гомогенного состояния. Показано, что она существует преимущественно в виде димера, построенного из двух идентичных субъединиц,. молекулярный вес которых равен 57 000. При повышении концентрации Са + в цитоплазме к ферменту присоединяются две молекулы кальмодулина — Са-связывающего белка, имеющего молекулярный вес 18 500. После образования такого комплекса активность фос-фодиэстеразы возрастает в 6—10 раз. Снижение концентрации Са + в цитоплазме приводит к его отщеплению от кальмодулина, и активный белок-белковый комплекс распадается (рис. 73). Регуляция активности фос- фодиэстеразы ионами Са + — быстрый и обратимый процесс. [c.190]

    Регуляция активности панкреатических про-теиназ осуществляется двумя различными путями. Первый-превращение профермента в активную протеиназу путем расщепления одной пептидной связи. Это очень точный механизм включения ферментативной активности, однако он необратим, и, следовательно, для остановки протеолиза должен существовать второй регуляторный механизм. Эту функцию вьшолняют специфические ингибиторы протеиназ. Например, панкреатический ингибитор трипсина, белок массой 6 кДа, ингибирует активность. трипсина, очень прочно связываясь с его активным центром (рис. 8.23). Константа диссоциации комплекса составляет 10 М, что соответствует стандартной свободной энергии связывания примерно [c.162]

    Открытие основных компонентов систем транскрипции и трансляции послужило важным стимулом в изучении механизмов регуляции этих процессов. В 1961 г. Ф. Жакоб и Ж. Моно опубликовали схему регуляции синтеза белков на уровне транскрипции при помощи регуляторных белков, а в 1966 г. У. Гилберт и Б, Мюллер-Хилл впервые выделили такой белок. Кроме того, оказалось, что РНК-полимераза сама является регулятором генной активности (Р. Б. Хесин. 1962—1966). Эти работы привели к открытию основных регуляторных генетических элементов — промоторов и терминаторов транскрипции. [c.7]

    В регуляции активации К. по классич. пути участвует также С4-связывающий белок (мол. м. 600 тыс.), к-рый способствует ферментативному разрушению С4Ь под действием фактора I (мол. м. 88 тыс.). Дальнейшие превращ. С4Ь и СЗЬ приводят к ряду функционально активных пептидов. Одни из них связываются со специфич. рецепторами на клетках иммунной системы, другие проявляют иные физиол. св-ва (напр., СЗе стимулирует лейкоцитоз). [c.442]

    Сходным образом осуществляется регуляция О.в. на уровне биосинтеза ферментов. При этом субстрат или продукт р-ции регулирует активность белкового репрессора, подавляющего транскрипцию (синтез матричной РНК на ДНК-матрице) соответствующего оперона (участок ДНК, кодирующий одну молекулу матричной РНК под контролем белка-репрессора). Примером регуляции при помощи положит. прямой связи может служить в данном случае управление расщеплением лактозы. Появление в среде лактозы инактивирует у бактерии Es heri hia oli соответствующий репрессор и тем самым разрешает транскрипцию оперона, кодирующего ферменты, катализирующие расщепление лактозы. Пример регуляции при помощи отрицат. обратной связи - управление биосинтезом гистидина. Избыток гистидина активирует репрессор, ингибирующий транскрипцию оперона, кодирующего ферменты биосинтеза гистидина. Если репрессор и белки, синтез к-рых он подавляет, кодируются одним опероном, то отрицат. обратная связь осуществляется без участия внеш. модуляторов активности репрессора. Аналогичным образом осуществляется регуляция биосинтеза белка на уровне трансляции (синтез белка ка РНК-матрице). Такой механизм регуляции позволяет синтезировать белок в строгом соответствии с потребностью в нем на данном этапе существования организма. [c.317]

    Ионам Са принадлежит центральная роль в регуляции многих клеточных функций. Изменение концентрации внутриклеточного свободного Са является сигналом для активации или ингибирования ферментов, которые в свою очередь регулируют метаболизм, сократительную и секреторную активность, адгезию и клеточный рост. Источники Са могут быть внутри- и внеклеточными. В норме концентрация Са в цитозоле не превышает 10 М, и основными источниками его являются эндоплазмати-ческий ретикулум и митохондрии. Нейрогормональные сигналы приводят к резкому повышению концентрации Са (до 10 М), поступающего как извне через плазматическую мембрану (точнее, через потенциалзависимые и рецепторзависимые кальциевые каналы), так и из внутриклеточных источников. Одним из важнейших механизмов проведения гормонального сигнала в кальций—мессенджерной системе является запуск клеточных реакций (ответов) путем активирования специфической Са -кальмодулин-зависимой протеинкиназы. Регуляторной субъединицей этого фермента оказался Са -связывающий белок кальмодулин (мол. масса 17000). При повышении концентрации Са в клетке в ответ на поступающие сигналы специфическая протеинкиназа катализирует фосфорилирование множества внутриклеточных ферментов —мишеней, регулируя тем самым их активность. Показано, что в состав киназы фосфорилазы Ь, активируемой ионами Са , как и КО-синтазы, входит кальмодулин в качестве субъединицы. Кальмодулин является частью множества других Са -свя-зывающих белков. При повышении концентрации кальция связывание Са с кальмодулином сопровождается конформационными его изменениями, и в этой Са -связанной форме кальмодулин модулирует активность множества внутриклеточных белков (отсюда его название). [c.296]

    Оба типа -рецепторов стимулируют аденилатциклазу. Они отличаются участками распознавания лиганда R. С совершенно иной ситуацией мы встречаемся в случае сс-адренэргических рецепторов. Здесь, напротив, ai регулирует в основном внутриклеточный уровень другого вторичного мессенджера — Са-+, тогда как 2 не только не активирует аденилат-циклазу, но, по-видимому, и ингибирует ее. В настоящее время считается, что сс2-рецепторы взаимодействуют с аденилатциклазой (С) через ингибиторный регуляторный белок (N, G). Имеются два различных типа таких регуляторных белков стимулирующие (Ns) и ингибирующие (Л /). Белки обоих типов были выделены и очищены (из печени, мозга и эритроцитов), была определена и их четвертичная структура. Они состоят из трех различных полипептидов, два из которых ( , "f) идентичны для обоих белков. N-Белки являются также центрами действия экзогенных факторов, таких, например, как F или бактериальные токсины холеры и коклюша (о структуре и функции токсина холеры см. гл. 2). Краткий обзор современных знаний о структуре и регуляции передачи сигнала через адреноцепторы представлен на рис. 9.14, а и б. Рис. 9.14,6 описывает также некоторые детали механизма последовательного взаимодействия R, N и С видно, что медиатор или гормон вначале активирует N путем взаимодействия с рецептором. Активация N основана на замене GDP на GTP. Активированный N взаимодействует затем с С. Такое взаимодействие носит временный характер, поскольку N инактивирует сам себя путем расщепления связанного GTP под действием присущей ему ОТРазной активности. Еще раз интересно отметить сходство этого процесса с взаимодействием родопсина, трансдуцина и фосфодиэстеразы, обнаруженным в зрительном процессе (гл. 1). Такое сходство — это нечто большее, чем просто аналогия. [c.277]

    Регуляция биосинтеза. Образование кортикостероидов имеет многоуровневый характер. Прежде всего следует отметить регуляцию, связанную с сигналами, поступающими из гипоталамуса и гипофиза. Далее существенное влияние на этот процесс оказывает содержание холестерола и его транспорт в митохондрии. И наконец, регуляция образования кортикостероидов определяется активностью ферментов гидроксилирования холестерина. Образование прегненолона является лимитирующей стадией всего процесса стероидогене-за. Был обнаружен специальный белок, способствующий взаимодействию холестерина с цитохромом Р-450 и, таким образом, оказывающий существенное влияние на стероидогенез. [c.159]

    В регуляции скорости важную роль могут играть аминокислотные остатки, окружающие координационный центр. Белок может ускорить реакцию путем связывания субстрата вблизи металла в предравновесном состоянии, что приведет к увеличению времени контакта, или путем более благоприятной ориентации субстрата по отношению к металлу. В этом отчасти состоит механизм, удерживающий ион НОг вблизи активного центра (см. выше), который способствует ускорению реакций Ре -каталазы и Ре -пероксидазы с перекисью водорода (разд. 8.6). Порфириновый лиганд также может играть определенную роль в связывании гидрофобных субстратов. Связывание субстратов белком и лигандами, вероятно, должно быть довольно слабым и происходить в зависимости от природы субстрата при участии водородных связей, электростатических или вандерваальсовых взаимодействий. Очевидное условие протекания реакций, в которых участвуют несколько активных центров, состоит в том, чтобы эти центры находились вблизи друг друга. Так, по всей вероятности, осуществляется фиксация азота, для которой требуется один активный центр (по-видимому. [c.242]

    Все это показывает, как широко используется ультрацентрифугирование при изучении нуклеиновых кислот и биосинтеза белка. Ультрацентрифугирование незаменимо также при все более расширяющемся изучении смежных проблем — в частности при изучении механизмов регуляции ферментативных реакций. Метаболические потребности клетки удовлетворяются, как известно, благодаря тонкой согласованности скоростей различных биохимических последовательностей. Такая согласованность возможна благодаря чувствительности аллостерических ферментов к изменениям концентраций отдельных метаболитов, что в свою очередь зависит от конформационных изменений, вызываемых соответствующим метаболитом и, очевидно, передающихся путем взаимодействия субъединиц ферментного белка. Успехи, достигнутые в изучении свойств аллостериче-ского фермента — аспартат-карбамоилтрансферазы, хорошо иллюстрируют большое значение ультрацентрифугирования — особенно когда оно используется в сочетании с другими методами анализа. Так, Герхарт и Шахман [5] показали, что этот фермент, представляющий собой глобулярный белок с молекулярной массой около 3-10 , после обработки соединениями ртути распадается на субъединицы двух типов. Каталитической активностью обладают лишь субъединицы одного типа, в субъединицах же другого типа, не обладающих каталитической активностью, находится центр по которому происходит присоединение цитидинтрифосфата. С этой регуляторной субъединицей связывается 5-бромцитидин-трифосфат, о чем свидетельствует соответствующая картина седиментации. Позже Вебер [6] определил аминокислотный состав и Ы-концевые остатки субъединиц обоих типов и установил, что одна молекула фермента содержит четыре регуляторных и четыре каталитических субъединицы. [c.9]

    Свойства репрессоров. Репрессор — это аллостериче-ский белок. Репрессоры могут быть неактивными и могут активироваться путем взаимодействия с соответствующим корепрессором, принимая конформацию, позволяющую осуществляться реакции с оператором,— репрессия фермента. Репрессоры могут образовываться и в активной форме. Тогда действие соответствующего индуктора заключается в таком изменении молекул репрессора, при котором разрушается их связь с оператором,— индукция фермента. Г ены ферментов, синтез которых не зависит от регуляции (конститутивные ферменты), вообще не имеют репрессора, или же он биологически неактивен. Выделенные до настоящего времени репрессоры (из бактерий) представляют собой кислые белки с молекулярной массой в пределах 30 ООО... 150 ООО. В клетке одновременно присутствуют приблизительно 5—10 молекул репрессора. Репрессоры связываются только с двухцепочечной спиралью ДНК, но не с одноцепочечной, денатурированной ДНК. До сйх пор до конца не выяснен механизм распознавания репрессором соответствующего оператора. [c.388]

    Белок 2 служит ингибиторюм транспозиции. Его действие осуществляется на какой-то еще неизвестной стадии самого процесса транспозиции (а не путем регуляции экспрессии гена). Белок 2 функционирует в транс-положе-нии механизм его действия может заключаться в связывании с теми же сайтами, которые должны узнаваться белком 1 для осуществления его транспозиционной функции. Таким образом, эта функция будет подавлена. Другая возможность-образование белками 1 и 2 олигомерного комплекса, в котором активность белка 1 также окажется подавленной. [c.464]


Смотреть страницы где упоминается термин Регуляция активности G-белков: [c.341]    [c.80]    [c.218]    [c.90]    [c.348]    [c.13]    [c.180]    [c.32]    [c.36]    [c.112]    [c.127]    [c.178]    [c.7]    [c.249]    [c.139]   
Смотреть главы в:

Механизмы внутриклеточной сигнализации -> Регуляция активности G-белков




ПОИСК





Смотрите так же термины и статьи:

Регуляция

Химическая модификация как путь регуляции функциональной активности белков



© 2025 chem21.info Реклама на сайте