Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гетерогенный катализ реакций окисления

    Все виды катализа чаще всего принято подразделять на гомогенный, гетерогенный катализ и ферментативный катализ. При гомогенном катализе катализатор и все реагирующие вещества составляют одну фазу. Например, реакция окисления [c.338]

    Каталитическая очистка газов основана на каталитических реакциях, в результате которых находящиеся в газе вредные примеси превращаются в другие соединения. Таким образом, в отличие от рассмотренных приемов каталитические методы заключаются не в извлечении токсичных примесей из газового потока, а в превращении их в соединения, присутствие которых допустимо в атмосфере, или в соединения, сравнительно легко удаляемые из газа. При этом требуются дополнительные стадии очистки— абсорбция жидкостями или твердыми адсорбентами. Для очистки газов применяется почти исключительно гетерогенный катализ на твердых катализаторах (см. ч. I, гл. VII). Наиболее распространен способ каталитического окисления токсичных органических примесей и оксида углерода при низких температурах, т. е. без подогрева очищаемого газа (кли воздуха). Каталитическая очистка от вредных оксидов и сернистых соединений производится также их гидрированием так, методом избирательного катализа гидрируют СО до СН4 и Н2О, оксиды азота — до N2 и Н2О и др. [c.237]


    В первой части книги рассматриваются вопросы формальной кинетики простых реакций (порядок реакции, константа скорости, кинетические уравнения различных порядков), математические характеристики сложных кинетических систем и экспериментальные характеристики простых и сложных кинетических систем. Вторая часть имеет вспомогательный характер — она посвящена статистическим методам, применяемым к системам из большого числа частиц при равновесии. В третьей — рассматриваются вопросы кинетики гомогенных реакций в газах (реакции мономолекулярные, бимолекулярные, тримолекулярные, сложные реакции в газовой фазе взрывные процессы и процессы горения). Четвертая, последняя, часть посвящена реакциям в конденсированной фазе (кислотно-основной катализ, реакции окисления-восстановления, радикальная полимеризация, гетерогенный катализ). [c.4]

    Процессы адсорбции широко применяются в промышленности при очистке и осушке газов, очистке и осветлении растворов, разделении смесей газов или паров, в частности при извлечении летучих растворителей из их смеси с воздухом или другими газами (рекуперация летучих растворителей) и т. д. Еще сравнительно недавно адсорбция применялась в основном для осветления растворов и очистки воздуха в противогазах в настоящее время ее используют для очистки аммиака перед контактным окислением, осушки природного газа, выделения и очистки мономеров в производствах синтетического каучука, смол и пластических масс, выделения ароматических углеводородов из коксового газа и для многих других целей. В ряде случаев после адсорбции поглощенные вещества выделяют (десорбируют) из поглотителя. Процессы адсорбции часто сопутствуют гетерогенному катализу, когда исходные реагенты адсорбируются на катализаторе, а продукты реакции десорбируются, например при каталитическом окислении двуокиси серы в трехокись на поверхности платинового катализатора и др. [c.563]

    В работах [72-76,92-99] приведены различные видоизменённые варианты механизма катализа реакции фталоцианинами металлов переменной валентности, в т.ч. в гетерогенных условиях, когда фталоцианин находится (адсорбирован) на поверхности носителя. В работах [80,147] сделано предположение, что окисление тяжелых меркаптанов, в труднорастворимых в водных щелочных растворах происходит также по вышеописанному механизму на границе раздела фаз, однако доказательства отсутствуют. [c.25]


    Таким образом, в гетерогенном катализе окисления меркаптанов, во-первых, исключается разрушение катализатора в щелочной фазе, во-вторых, поверхность раздела фаз, где протекает реакция окисления, образуется развитой поверхностью носителя катализатора, а не интенсивным перемешиванием фаз, как в случае гомогенного катализа. Очевидно, что механизм реакции окисления высокомолекулярных меркаптанов на гетерогенном катализаторе не будет сильно отличаться от механизма гомогенного окисления, поэтому в этом разделе работы основное внимание будет уделено рассмотрению технологических аспектов процесса демеркаптанизации дистиллятов нефти. [c.64]

    Общий механизм каталитического действия координационных комплексов сводится к облегчению электронных переходов в общей системе электронов и ядер внутри комплекса по сравнению с переходами между отдельными молекулами. С этих позиций естественно считать, что стадия образования координационных комплексов может ускорять как реакции окисления—восстановления, так и реакции перераспределения валентных связей (ин-тра- и интермолекулярные), поскольку между различными молекулами, входящими в координационную сферу комплекса в качестве лигандов, взаимодействие облегчается 5, 61. В случае гетерогенного катализа через координационные комплексы можно рассматривать активный центр как металл (его ион) с незаполненной сферой лигандов и применять к нему уже известные общие и частные принципы связи между строением комплексообразующего иона или ненасыщенного комплекса с его каталитической активностью. Существенную роль в определении активности катализатора в координационном катализе играют стабильность первоначально образующегося комплекса в реакциях, протекающих по механизму замещения лигандов. В этом случае, как следует из общей теории катализа и принципа энергетического соответствия Баландина, должна наблюдаться экстремальная зависимость между активностью катализатора и стабильностью комплекса. [c.59]

    ГЕТЕРОГЕННЫЙ КАТАЛИЗ РЕАКЦИЙ ОКИСЛЕНИЯ [c.152]

    В разд. 10.5 мы познакомились с гетерогенным катализом, рассматривая окисление 802 в Оз. Многие промышленно важные реакции, протекающие в газовой фазе, катализируются поверхностью твердых веществ. Реакции в растворах также могут катализироваться твердыми веществами. Гетерогенные катализаторы часто изготовляют из тонко измельченных металлов или оксидов металлов. Поскольку каталитические реакции протекают на поверхности, часто прибегают к специальным методам получения катализаторов с очень большой площадью поверхности. [c.28]

    Если же катализуемая система и катализатор находятся в разных агрегатных состояниях, катализ называют гетерогенным. При гетерогенном катализе реакция ускоряется при протекании на границе фаз. Механизм многих реакций ввиду их сложности еще недостаточно выяснен. Для различных химических реакций активными являются катализаторы различного химического состава. Так, например, оптимальный катализатор для окисления ЫНз совершенно отличен от оптимального катализатора для окисления ЗОг. [c.439]

    При катализе реакции окисления водорода на никеле было установлено наличие нескольких стационарных состояний [254], которым соответствуют обнаруженные на никелевой фольге устойчивые автоколебания скорости окисления водорода [257], Это, по-видимому, первый в гетерогенном катализе пример автоколебательной реакции. Несмотря на отмеченную выше некоторую условность расположения того или иного металла в ряду по убыли скорости окисления водорода, существенное различие активности далеко отстоящих друг от друга металлов несомненно. Например, если правый крайний член ряда — Т1 — неактивен в реакции окисления На [c.245]

    Применение этих представлений к гетерогенному катализу жидкофазного окисления позволило нам получить значительные изменения скоростей и селективности реакции [7]. [c.197]

    Рассмотрим результаты таких опытов, исходя из основных положений гетерогенного катализа. Реакция гетерогенного каталитического окисления (не осложненная гомогенными стадиями) осушествляется на поверхности раздела двух фаз газовой (редко жидкой) фазы, содержащей исходные соединения и продукты их взаимодействия, и твердой фазы, представленной катализатором. В реакцию вступают вешества, находящиеся на этой поверхности, и скорость каталитической реакции, если она не лимитируется стадиями адсорбции исходных веществ или десорбции продуктов реакции, определяется концентрацией поверхностных форм реагирующих веществ, и в частности в окислительном гетерогенном катализе-концентрацией определенных поверхностных форм кислорода, ответственных за данную реакцию. [c.104]


    Первые две стадии реакций контактного окисления, наряду с изложенными выше механизмами, могут протекать по механизму комплексообразования в тех случаях, когда катионы решетки сохраняют свою индивидуальность. Вервей [241 для обратных шпинелей , а затем Морин [25] — для окислов металлов с незапол- ненными З -уровнями электронов указали на такую возможность, объяснив возникновение в таких соединениях электропроводности присутствием в них ионов одного и того же металла в различных валентных состояниях и в эквивалентных позициях кристаллической решетки. Можно предполагать, что подобного рода механизм электропроводности возможен не только для окислов (в том числе и тройных систем окислов [26]), но и для многих полупроводниковых соединений переходных металлов. Базируясь на этих представлениях, Дауден [27 ] рассматривает хемосорбцию на поверхности и явления замещения одного сорбента другим как реакции образования и превращения комплексов по механизму и 8)у2-замещения. Киселев, [28] также рассматривает адсорбцию как процесс поверхностного комплексообразования, когда при возникновении донорно-акцеп-торных связей неподеленная пара электронов лиганда оказывается затянутой на внутренние орбитали атома решетки, являющегос центром адсорбции. При таком механизме адсорбированные молекулы всегда будут в той или иной мере реакционноспособны. Действительно, затягивание неподеленной пары лиганда на внутренние орбитали центрального атома приведет к деформации адсорбированной молекулы и ослаблению внутримолекулярных связей. Отметим попутно, что трактовка Киселева справедливо распространяет электронные представления и на механизм кислотно-основного гетерогенного катализа. Развивая представления теории поля лигандов, Руней и Уэбб [29 ] показали, что механизм реакций дейтеро- бмена, гидрирования и дегидрирования углеводородов на переходных [c.27]

    Г.К. Боресковым установлено исключительно важное для теории и практики гетерогенного катализа явление изменения энергии активации реакции, а также энергии связи кислорода окисла в зависимости от степени окисления катализатора. Было обнаружено, что по мере удаления кислорода из окислов металлов энергия активации реакций их восстановления непрерывно возрастает. Это указывает на то, чт) поверхность катализатора неоднородна в отношении хемосорбции окислителя, [c.160]

    При гетерогенном катализе реагирующие вещества и катализатор образуют систему из разных фаз. В этом случае между катализатором и реагирующими веществами существует поверхность раздела. Обычно катализатор является твердым веществом, а реагирующие вещества — газами или жидкостями. Например, окисление аммиака (газообразная фаза) в присутствии платины (твердая фаза) или разложение пероксида водорода (жидкая фаза) в присутствии угля или оксида марганца (IV) (твердая фаза). Все реакции при гетерогенном катализе протекают на поверхности катализатора. Поэтому активность твердого катализатора зависит от свойств его поверхности ее величины, химического состава, строения и состояния. [c.121]

    Третья стадия процессов окисления — передача электронов от донора к акцептору (от реагента к кислороду), в отличие от первых двух, является специфичной для гетерогенного катализа и связывает его с проблемами физики твердого тела. Принципиально проблема подвижности электронов в адсорбционном комплексе не отличается от проблемы подвижности электронов внутри молекулы, поскольку такая подвижность обусловливает реакционную способность системы. Действительно, реакцию окисления какого-либо соединения, например 80-2, на твердом катализаторе можно себе представить в виде [c.28]

    Бальжинимаев Б. С., Козырев С. В., Боресков Г. К. и др. О природе медленных релаксаций и гистерезиса активности ванадиевых катализаторов в реакции окисления двуокиси серы//Гетерогенный катализ Материалы П1 Всесоюзной конференции по механизму каталитических реакций.—Новосибирск Ин-т катализа СО АН СССР, 1982.—С. 177—180. [c.24]

    При гетерогенных каталитических реакциях промежуточные соединения образуются на поверхности катализатора. В этом случае вопрос значительно усложняется структурой поверхности, характером сорбции и т. д. Можно, однако, считать, что при гетерогенном катализе при взаимодействии реагентов с поверхностными атомами катализатора образуются вещества, мало отличающиеся от обычных химических соединений. При контактном окислении SO. воздухом над Fe. Oy протекают реакции  [c.26]

    Различные каталитические реакции подразделяются на реакции гомогенного и гетерогенного катализа. В тех случаях, когда катализатор и реагирующие вещества образуют однородную систему (т. е. находятся в одной фазе), мы имеем дело с гомогенным катализом. В качестве примеров можно указать на каталитическое окисление СО до СО2 в присутствии паров воды и окисление ЗОг до 50з в присутствии оксида азота N02. К этому типу каталитических реакций относится и реакция гидролиза растворимых углеводов в водном растворе в присутствии кислоты. Как видим, в первых двух случаях катализатор и катализируемые вещества находятся в газообразном состоянии, в третьем — образуют однородный раствор. [c.160]

    Экспериментально показано, что общий механизм активации двухатомных молекул позволяет в рамках единого подхода прогнозировать каталитические свойства в отношении таких важнейших процессов гетерогенного катализа, как процессы глубокого окисления, синтеза аммиака, гидрирования, которые ранее рассматривались как весьма далеко отстоящие друг от друга реакции. Это создает основу для обобщения опыта, накопленного при подборе катализаторов в отношении того или иного типа реакций, и перенесения его из одной области в другую. [c.250]

    Многие важные в практическом отношении химические реакции возможны в условиях гетерогенного катализа. Например, синтез аммиака из водорода и азота на железном катализаторе, окисление диоксида серы до серного ангидрида на пятиоксиде ванадия при контактном способе получения серной кислоты, крекинг углеводородов на алюмосиликатных катализаторах и многие другие. [c.764]

    Окисление окиси углерода с окисномедным катализатором [1], а также окисление этилена в присутствии серебряного катализатора [2] являются классическими примерами реакций гетерогенно-каталитического окисления. Непрерывные и тщательные исследования поверхностных реакций с участием окиси углерода привели к лучшему пониманию роли, которую играет катализатор. Совсем недавно изучение каталитического окисления различных углеводородов с помощью окиснометаллических катализаторов позволило получить дополнительные сведения о механизме реакций гетерогенного окисления [3]. Многие гетерогенно-каталитические реакции окисления служат основой важных промышленных процессов. В настоящее время каталитическое окисление толуола, ксилола и нафталина с использованием окислов металлов в качестве катализаторов [4] прочно вошло в практику как удобный метод крупномасштабного производства фталевого и малеинового ангидридов. Каталитическое окисление аммиака в присутствии платинового катализатора дает окись азота и поэтому используется при производстве азотной кислоты [5, 6]. Промышленное значение имеет также реакция окисления двуокиси серы в присутствии либо платинового катализатора [7], либо пятиокиси ванадия [8]. Так как все эти реакции были изучены в значительной степени, в данном разделе рассматриваются лишь отдельные примеры, достаточные для того, чтобы продемонстрировать основные принципы, играющие в катализе важную роль. [c.315]

    С другой стороны, были открыты критические явления в гетерогенных каталитических реакциях, имеющих прикладное значение. Еще в начале 60-х гг. Г. К. Боресков и М. Г Слинько нашли множественность стационарных состояний в реакции окисления водорода на никелевом катализаторе [63. Дэвис (США), видимо, наблюдал аналогичные явления еще в 30-е гг., однако его данные были восприняты с недоверием (см. [160, с. 183]). В. В. Барелко и Ю. Е. Володин с помощью разработанного ими электротермографа показали существование чисто кинетических эффектов для ряда гетерогенно-каталитических реакций (окисления аммиака, водорода и этилена [45]). Они же показали и существование автоволновых явлений в гетерогенном катализе [42,137.  [c.20]

    Условия реакции. Ароматические углеводороды можно окислять кислородом или воздухом в газовой фазе в присутствии катализаторов (гетерогенный или гомогенный катализ) и без них в системе газ — жидкость — тйердая фаза на катализаторе и с агентами окисления (HNOз, хромовая кислота, бихроматы, перманганаты) в гомогенной жидкой фазе в системах жидкость—жидкость и жидкость—твердая фаза. В промышленности чаще всего используют окисление в газовой фазе на твердом катализаторе (гетерогенный катализ). [c.170]

    Обычно в гетерогенном катализе каталитическую активность характеризуют относительным увеличением скорости реакции в расчете на единицу поверхности катализатора. Спецификой окисления является его автоускоренный характер. Поэтому кинетику автоокисления удобнее характеризовать не скоростью, которая меняется во времени, а ускорением, т. е. коэффициентом Ь в уравнении А[02] 2 = Ь . При гетерогенном катализе или ингибировании окисления количественной характеристикой удельной активности материалов служат отношения Ъ—bo)lboS — для материалов, обладающих каталитическим действием, и (Ьо—b) boS — для материалов, обладающих ингибирующим действием, где Ьо — коэффициент для топлива без металлов S — поверхность металла, см /л топлива. Значения (6—ba)fboS и (Ьо—b)/boS для различных материалов в топливе Т-6 при 125 °С представлены в табл. 6.3. [c.207]

    Б последнее время особое внимание уделяют я-комнлексам в катализе, роль которых в, гомогенных каталитических превращениях ненасыщенных соединений очень велика (см., например, статью Моисеева [4]). Хотя данные о гетерогенном катализе газофа ого гидроформилирования на сульфиде рутения [5] недостаточно однозначны из-за возможности протекания параллельной гомогенной р>еакции с летучими карбонилами металла, однако, из активности металлического палладия в реакциях газофазного окисления этилена в ацетальдегид и бензола в ацетилфенол [6, 71, можно сделать вйвод, [c.153]

    Как в гомогенном и рментативном катализе, в гетерогенном катализе наблюдаются явления активации, ингибирования и отравления катализаторов. Отравление катализаторов обусловливается блокировкой активных центров за счет образования прочной химической связи между молекулой каталитического яда и поверхностью катализатора. Так, для платины и ряда других металлов ядами являются HaS, H N, Hg b, OS и др. Никелевые катализаторы теряют свою активность в реакциях гидрирования в результате окисления поверхности металла. Большей частью молекулы каталитических ядов, отравляющих переходные металлы, имеют электроны на несвязывающих орбиталях. За счет взаимодействия несвязывающих [c.635]

    Если катализируемая система и сам катализатор находятся в одинаковом агрегатном состоянии (жидком, паро- или газообразном), катализ называют гомогенным. Примерами последнего могут служить хлорирование метана в присутствии паров хлористого сульфу-рила, образование сложных эфиров из спиртов и карбоновых кислот под действием небольших количеств серной или соляной кислот, реакции кислотного гидролиза и т. д. Если же катализируемая система и катализатор находятся в разных агрегатных состояниях, катализ называют гетерогенным. Примерами гетерогенных каталитических реакций являются синтез метанола или высших спиртов из смесей окиси углерода с водородом над твердыми катализаторами, различные гидро- или дегидрирования, процессы дегидроциклизации, каталитический крекинг, окисление бензола в малеиновый ангидрид или нафталина во фталевый ангидрид и т. д. Гетерогенные каталитические реакции бэлее распространены и имеют большее практическое значение, чем гомогенные. [c.22]

    В зависимости от агрегатного состояния катализатора и реагирующих веществ различают катализ гомогенный и гетерогенный. Примерами гомогенного катализа являются реакции окисления СО (в газовой фазе в присутствии паров воды) и Нг50з (в растворе в присутствии растворенных оксидов азота) кислородом, а также действие разнообразных ферментов в биологических процессах. Гетерогенно-каталитическими являются процессы синтеза аммиака (катализатор железо), окисления ЗОг до ЗОз (катализатор платина или оксид ванадия) и т. д. [c.224]

    Гетерогенным называют катализ на поверхности твердых тел, находящихся в контакте с реагирующими веществами в газовой фазе или в растворах. Основные теоретические положения, необходимые для понимания сущности гетерогенного катализа, уже изложены в гл. 14 в связи с обсуждением роли адсорбции в гетерогенных реакциях. При проведении реакции на поверхности твердых тел последняя играет вполне определенную роль благодаря адсорбции на поверхности понижается энергия активации катализируемой реакции. До настоящего времени еще не существует удовлетворительной количественной теории катализа. В любой каталитической реакции важнейшее значение имеет структура поверхности. Катализ протекает не на всей поверхности твердого тела, а главным образом на активных центрах (дислокациях, ребрах кристаллов и других дефектах кристаллов). Кроме того, известно, что каталитическая активность зависит от кристаллографической плоскости, — кристаллы, ориентированные в некоторых определенных направлениях, обладают максимальной активностью. Большое значение в гетерогенном катализе имеют смешанные катализаторы. Примером могут служить почти все известные газовые реакции, используемые в химических технологических процессах (синтез аммиака, синтез 50з, гидрирование угля по Бергиусу или Фишеру— Тропшу, окисление аммиака по Оствальду и многие другие). [c.196]

    Влияние катализатора на скорость реакции называется катализом. Когда взаимодействующие вещества и катализатор находятся в одном агрегатном состоянии, говорят о гомогенном катализе. При гетерогенном катализе реагирующее вещества и катализатор находятся в различных агрегатных состояниях обычно катализа-,тор — в твердом, а реагирующие вещества — в жидком или газообразном (например, в случае окисления ЗОг в 50з в присутствии платины или пятиокнси ванадия происходит гетерогенный катализ). [c.131]


Библиография для Гетерогенный катализ реакций окисления: [c.228]   
Смотреть страницы где упоминается термин Гетерогенный катализ реакций окисления: [c.423]    [c.294]    [c.64]    [c.464]    [c.635]    [c.181]    [c.88]    [c.89]    [c.159]   
Смотреть главы в:

Жидкофазное окисление непредельных соединений -> Гетерогенный катализ реакций окисления




ПОИСК





Смотрите так же термины и статьи:

Гетерогенный катализ Катализ

Гетерогенный катализ Катализ гетерогенный

Катализ гетерогенный

Катализ реакции

Реакции гетерогенные

Реакции окисления



© 2025 chem21.info Реклама на сайте