Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Карбонилы алюминия

    Карбонил алюминия. При нагревании в окиси углерода алюминий окисляется и выделяется углерод. Карбонил алюминия А12(С0)2 был получен пропусканием хлористого карбонила через расплавленный иодистый алюминий. Он нерастворим в воде и не плавится при 300°, а при продолжительном нагревании на воздухе переходит в окись алюминия. [c.283]

    Ионы карбония образуются в реакциях, катализируемых так называемыми кислотными катализаторами, к которым относятся протонные кислоты (например, серная, фосфорная и фтористо-водородная) галогениды типа катализаторов Фриделя-Крафтса (например, хлористый алюминий, хлористый цирконий и фтористый бор) и окиси (нанример, алюмосиликаты). Ионы карбония, образующиеся в реакционных условиях прежде чем превратиться в конечные продукты могут претерпевать одно или несколько изменений в соответствии со следующими правилами  [c.213]


    Подобный сложный ион карбония был предложен [20] в качестве активного агента полимеризации этилена в присутствии хлористого алюминия. Этот комплекс, содержащий подобно обычному иону карбония, образованному в результате присоединения протона к олефину, атом углерода с дефицитом электронов, отличается от истинного иона карбо- [c.228]

    Изомеризация предельных углеводородов в присутствии галогенида алюминия мон ет быть также объяснена ценным механизмом с участием иона карбония согласно правилам 3 и 5. Инициаторы цепной реакции [c.233]

    Дейтерообмен. Результаты опытов [11], в которых происходил обмен дейтерия из бромистого дейтерия с атомами водорода бутанов при изомеризации в присутствии бромистого алюминия, подтвердили механизм цепной реакции с образованием иона карбония. Предполагается, что обмен происходит в то время, когда бутаны находятся в виде соответствующих ионов карбония. При. тщательной очистке от олефинов обмен происходил в ничтожно малой степени. [c.19]

    В согласии с точкой зрения, что образование первичных карбоний ионов или отрыв водорода от углеводорода первичными карбоний ионами происходит с трудом, находятся описываемые ниже опыты (стр.43), в которых метил- и этилбромиды прибавленные к очень чистым реагентам, не инициировали реакций изомеризации метилциклопентана бромистым алюминием. [c.26]

    Изомеризация метилциклопентана в присутствии бромистого алюминия и бромистого водорода в качестве катализатора протекает без добавления вещества, способного инициировать цень, если она проводится при освещении ультрафиолетовым светом [52], Считают, что при этом происходит частичная диссоциация бромистого водорода на атомы водорода и брома. Последний реагирует с метилциклопентаном, давая соответствующий бромид, который участвует в цепи изомеризации, показанной выше уравнениями (38—41). Реакции, приводящие к образованию цепи с участием иона карбония, приводятся в уравнениях (42—46)  [c.44]

    Как изомеризация, так и реакция с ацетилхлоридом легче объясняются механизмом с участием ионов карбония, основывающимся на теории Уитмора о реакциях ионов карбония, осуществляемых с хлористым алюминием- [c.94]

    Гринсфельдер, Воге и Гуд [37] при изучении каталитического крекинга отметили, что ири этом образуется относительно большое количество Сд- и С -углеводородов. Они рассматривали этот факт как некоторое подтверждение теории механизма образования ионов карбония при данном процессе. При крекинге парафинов от октана до гептадекана самыми легкими продуктами оказались изобутан и бутан [38], а при промышленном крекинге газойлей при помощи хлористого алюминия с целью получения бензина по данным многих исследователей газ состоит преимущественно из бутана (по-видимому, главным образом изобутана). [c.96]


    Такие катализаторы, как хлористый алюминий, могут образовывать карбоний-ион с олефинами путем соединения галоидного алюминия с недостающим электроном и со смешанными я-электронами (пи)олефина [85]  [c.368]

    Также трудно объяснить карбоний-ионным механизмом наблюдение, что -С1 -этилхлорид, реагируя в присутствий хлористого алюминия с бензолом, образует только в-С -этилбензол. С другой стороны, в отсутствии бензола хлористый алюминий изомеризует /З-С -этилхлорид (при часовой обработке) в а-С этилхлорид [268]. [c.438]

    Различие в стабильности промежуточного карбоний-иона и показанного выше сигма-комплекса, возможно, является причиной отличия продуктов алкилирования, катализированного, соответственно, серной кислотой и хлористым алюминием. При применении составителя изомеризация внутри алкильных групп (или прежде или в течение алкилирования) имеет значительно больше места, чем при использовании хлористого алюминия. Например, З-метил-1-бутен алкилирует бензол, образуя третичный амилбензол при помош и серной кислоты и 2-метил-З-фенил-бутан с хлористым алюминием [605] алкилирование бензола [c.136]

    Изотактический 1,2-полибутадиен был получен под влиянием катализаторов на основе алюминийалкилов и различных соединен ний хрома (ацетилацетонат, карбонил и др.) при высоких мольных отношениях алюминий хром [29, 30]. При пониженных мольных отношениях компонентов указанные катализаторы приводят к образованию синдиотактического полимера [30]. Этот же полимер был синтезирован в присутствии продуктов взаимодействия три-этилалюминия и ацетилацетоната ванадия [31]. [c.181]

    Для приготовления суспензий использованы 17 тонкодисперсных порошков, в частности карбонил железа, карбонат кальция, двуокись титана, тальк, активированный уголь и разбавленные водные растворы сульфата алюминия, фосфата натрия, едкого натра, а также дистиллированная вода. При помощи электронного микроскопа предварительно были определены размер и форма частиц тонкодисперсных порошков в сухом состоянии измерением проницаемости при фильтровании воздуха — удельные поверхности частиц этих порошков. При этом найдено, что средний размер частиц различных порошков составляет 0,1 —10 мкм, форма их изменяется от шарообразной (у карбонила железа) до очень неправильной (у талька), а удельная поверхность частиц находится в пределах от 1,2-10 (у карбонила железа) до 20-10 м -м (у двуокиси титана). [c.196]

    В 1933 г. весьма важные результаты были получены Гейером [25] при воздействия фуллеровой земли и некоторых синтетических катализаторов на пропилен при 350°, хотя Гейер не предполагал, что его результаты могут быть объяснены предложенной недавно теорией реакции с ионом карбония. Гейер быстро пропускал над катализатором пропилен и, кроме полимеров пропилена, получил олефины, парафины и изопарафины, содержащие ст пяти до восьми и больше атомов углерода. Синтетический алюмосиликат обладал приблизительно той же активностью, что и фуллерова земля, а искусственный катализатор, приготовленный из 1 % окиси алюминия на кремнеземе, обладал в 20 раз большей активностью, чем активность лучшей фуллеровой земли. [c.89]

    Выше уже отмечалось, что при дегидратации изобутилового спирта над некоторыми кислыми и многими другими 1 аталпзаторами (за исключением чистейшей окиси алюминия) получаются 1 ак изобутилен, так и нормальные бутоны. В аналогичных условиях 7i-бyтилoDый спирт также превращается в изобутилен и 1-, 2-бутоны. Уитмор [137] использовал эти простые случаи для иллюстрации своей теории дегидратации (сопровождаемой перегруппировками), предусматривающей участие иона карбония  [c.414]

    В случае катализаторов Фриделя-Крафтса протон выделяется из промотирующого агента, обычно галоидоводородной кислоты. Нанример, образоваиие ионов карбония в присутствии хлористого алюминия, про- мотированного хлористым водородом, может быть представлено следующей схемой  [c.215]

    Реакция, катали.чируемая галогенидами металлов. Галоидводородный обмен имеет место в том случае, когда предельные углеводороды, содержащие третичные атомы углерода, реагируют с галоидными алкилами в присутствии хлористого алюминия [1]. Нанример, в результате взаимодействия изопентана с третичным хлористым бутилом в присутствии бромистого алюминия при времени контакта около 0,001 сек. образуется т/)ет-амилбромид (50—70% от теоретического выхода) и изобутан. Эту реакцию можно рассматривать как доказательство способности иона карбония отнимать гидридный ион в соответствии с правилом 5. Механизм обмена можот быть выражен следующим образом  [c.217]

    Способность ионов карбония отнимать ионы галоида от третичных галоидных алкилов подтверждается результатом реакции обмена между гр т-бутилбромидом и 1/)ет-амилхлоридом (по 0,5 моля каждого) при температуре от —25 до —30° С в присутствии достаточного количества хлористого алюминия (0,04 моля). В продуктах реакции были обнаружены 0,18 моля пгрепг-бутилхлорида и 0,25 моля трет-амилбромида [56].. [c.220]


    При конденсации вторичного хлорида (например, изопропилхлорида [47] или циклогексилхлорида [49]) с этиленом в присутствии хлористого алюминия обнаружены продукты взаимодействия одной молекулы хлорида с двумя молекулами олефина. Образование их может быть объяснено следующим образом первичные продукты реакции (изоамилхлорид и 2-циклогексилэтилхлорид, соответственно) содержат третичные атомы углерода, и происходит изомеризация промежуточных ионов карбония до третичных ионов. Так как третичные йоды карбония присоединяются к олефинам гораздо легче, чем вторичные, то образовавшиеся третичные ионы будут присоединяться гораздо быстрее, чем исходные вторичные ионы (изопропил и циклогексил). Поэтому конечные продукты подобны образующимся при конденсации этилена с соответствующими третичными хлоридами 1-хлор-3,3-диметилпентан и 1-(2-хлорэтил)-1-этилциклогексан, [c.220]

    Небольшое различие в реакционной способности между цис- и транс-дихлорэтиленами в реакциях, индуцированных перекисями, в противоположность реакциям, катализируемым хлористым алюминием, свидетельствует о различной способности радикалов и катионов mpem-бутила реагировать с затрудненными (экранированными хлором) двойными связями. Все прочие различия между реакциями, индуцированными перекисями, и реакциями, катализируемыми галогенидами металлов (например, получение высоких выходов ненасыщенных хлоридов как с нормальными, так и с и.чопарафиповыми углеводородами при индуцированной перекисями конденсации, в то время как при катализируемой хлористым алюминием конденсации получаются высокие выходы пасыщенных хлоридов, но только с изопарафинами) объясняются основными правилами для реакций свободных радикалов и ионов карбония. [c.233]

    В настояш,ее время кислотный характер алюмосиликатных катализаторов крекинга не вызывает сомнения. Например, такие катализаторы можно титровать едким калием или такими органическими основаниями, как хинолин. Кислотные свойства катализаторов обусловлены, вероятно, присутствием протонов на их поверхности, активной частью которой может быть либо кислота трша (НА13104)ж [62], либо атомы алюминия с дефицитом электронов [37, 61]. Обсуждение теорий, предложенных для объяснения кислотности алюмосиликатных катализаторов не является целью, настоящей главы. Для данного изложения необходимо только указать, что ион карбония Д" ", инициирующий ценную реакцию, может образоваться либо [1] в результате реакции кислотного катализатора с олефином, который образуется при начальном термическом крекинге, либо путем дегидрирования парафинового углеводорода,. либо в результате отщепления гидридного иона от молекулы парафинового углеводорода атомом алюминия с дефицитом электронов [2]. [c.236]

    В результате крекинга парафиновых углеводородов в присутствии хлористого алюминия, промотированного хлористым водородом, образуется смесь продуктов большего и меньшего молекулярных весов, чем исходный парафин. Такая реакция, известная как автодеструктивное алкилирование [24], предполагает каталитический крекинг, сопровожда-юш,ийся алкилированием путем присоединения третичного алкильного иона карбония к промежуточному олефину. [c.237]

    При достаточно жестких условиях найдено [62], что изомеризация -бутана идет и в отсутствии специально добавленных олефинов или алкилгалоидов. Присутствие в продуктах реакции пропана закономерно, ввиду того что хлористый алюминий-хлористый водород вызывают частичное разрушение молекулы бутана при достаточно жестких условиях и что недостаток водорода в продуктах разрушения ведет к образованию ионов карбония, необходимых для инициирования цепи изомеризации. [c.19]

    Здесь изомеризация наблюдается даже в отсутствии олефинов или алкилгалоида. В этом процессе расходуется кислород. Имеющиеся данные указывают на окислительный механизм, при котором углеводород либо непосредственно атакуется под влиянием катализатора, либо через стадию промежуточного окисления самого катализатора. Воздействие на углеводород, по-видимому, приводит к образованию ионов карбония, необходимых для инициирования реакции изомеризации. Вероятная гипотеза, подтверждаемая некоторыми эксперимент 1льными доказательствами (при применении бромистого алюминия), заключается в том, что часть галоидалюминия атакуется кислородом, причем высвобождается галоид и образуется окись алюминия или, более вероятно, оксигалоид алюминия. Галоид реагирует с парафином, образуя алкилгалоид, который, как уже было показано, является наряду с галоидводородом инициатором цепной реакции изомеризации. Это подтверждается [45] тем, что бром как промотор может быть замещен кислородом. [c.19]

    Эти схемы противоречат тем, которые приводились для бутанов см. выше). Иопы карбоиия, требуемые для начала цепи, получаются из олефинов и бромистого водорода в присутствии бромистого алюминия [уравнения (37 и 38)1, но для этой же цели (см. ниже) могут служить и другие источники. Третичный водород лхетилциклопептапа очень чувствителен к атаке иона карбония и образует метилциклопеитил-ионы [уравнение (39)]. Последние имеют тенденцию к равновесию [уравнение (40)] с ионами циклогексила, из которых получается цш логексан через развитие цепи в результате взаимодействия с новой молекулой метилциклопентана (41). Цепь, представленная уравнениями (40) и (41), может повторяться до тех пор, пока не оборвется в результате использования одного из ионов карбония в какой-либо побочной реакции. [c.43]

    В другом исследовании по изомеризации пентена-1 результаты значительно изменялись при различных способах приготовления окиси алюминия [541. Равновесная смесь при условиях, не вызывающих изменения структуры, и температуре 260° состояла из 14,8% пентена-1 и 85,2% пентена-2. Другая окись алюминия при этой же температуре и низкой объемной скорости жидкости дала смесь пентенов, содержащую 30,4% пентенов с разветвленной цепью. Применение в качестве катализаторов окиси алюминия, обработанной кислотой, при 360° дало 30% продуктов крекинга, отмечено образование до 28% полимеров. При обсуждении результатов авторы пишут Авторы считают, что механизм изомеризации и-олефинов при контакте с катализаторами аналогичен таковому алкили-ровапия, изомеризации и подобных им реакций — и что необходимые для этого ионы карбония легко образуются при условиях, существующих на поверхности различных образцов применявшейся окиси алюминия.. . В условиях, преобладавших на поверхности нейтральной или обработанной кислотой окиси алюминия, ионы карбония образуются путем присоединения протона по двойной связи олефина (см. гл. XXXI). [c.105]

    Галоидалкилы. 1-хлор-3,3-диметилбутан получается при взаимодействии /иретге-бутилхлорида с этиленом в присутствии хлористого алюминия [13]. Это реакция идет, вероятно, по цепному карбоний-ионному механизму [19]  [c.227]

    Свойства комплексов с хлористым водородом соответствуют структуре, в которой молекула хлористого водорода связана свободно с электронным облаком я-электронов, без образования определенной связи между электрофильной группой и каким-либо определенным атомом углерода (XXI). Свойства комплексов с системой хлористый водород — хлористый алюминий (или соответствующих бромидов) согласуются со структурой типа карбоний-иона, в которой протон перешел к кольцу и соединен с определенным атомом углерода (XXII). Следует отметить, что могут образоваться изомерные формы, содержащие протон как в орто- так и в значительно меньшем количестве в ж/иа-положении. [c.401]

    Хотя в классической реакции Фриделя—Крафтса использовался галоидалкил с хлористым алюминием, эта реакция уже давно получила более широкое толкование, позволяющее применять иные источники алкильных групп и другие катализаторы. Вместо галоидных алкилов в современной заводской практике повсюду применяют олефины (см. гл. LVII). Имеются данные, что чистые олефины и чистые галоидные металлы пе вступают в реакцию [114, 251]. В заводской практике в качестве промотора вводят хлористый водород или воду. При этих условиях олефины, по-видимому, превращаются в ионы карбония (LXXI)  [c.429]

    Можно сделать некоторые выводы относительно возможной скорости реакции карбоний-иона с ароматическими углеводородами. Барлет, Кондон и Шнейдер показали 15], что обменная реакция водород-галоид между изопентаном и т/)ет-бутилбромидом в присутствии бромистого алюминия при 25° заканчивается менее чем за 0,002 сек. [c.437]

    Механизм обратного замещения. В реакции Фриделя-Крафтса с рядом первичных производных проявляются некоторые особенности, затрудняющие принятие для этих производных карбоний-ионного механизма, Например, реакция бензола с н-пропилхлоридом идет с выходом в 40% пропилбензола при 35° и с выходом в 60% при —6°. Сообщалось также, что применение в реакции м-пронилового спирта вызывает образование исключительно н-пропилбензола. Еще более удивительным является наблюдение, что неопентилбензол получается по реакции Фриделя—Крафтса из неопентилового спирта и бензола в присутствии хлористого алюминия [172]. [c.438]

    Алкилгалоиды легко изомеризуются под влиянием катализаторов реакции Фриделя—Крафтса [61]. Безуспешность попыток обнаружить дейтерообмен при катализируемой хлористым алюминием изомеризации й-пропилхлорида в изопропилхлорид в присутствии хлористого дейтерия исключает возможность, что изомеризация может идти через олефин, и поднимает вопрос о том, является ли первичный ион карбония необходимым промежуточным соединением [2321. [c.441]

    Сильные кислоты способны отдавать протоны реагентам и принимать их обратно. К этому классу относятся обычные кислоты, галоиды алюминия, три< орид бора. Аналогичным механизмом каталитического воздействия обладают такие катализаторы, как алюмосиликаты, гамма-окись алюминия, магнийсили-каты, цирконийсиликат и подобные соединения, хотя вопрос о кислотном характере указанных соединений является спорным. Эти реакции происходят с образованием карбоний-ионного комплекса, возникающего путем перехода протона от катализатора к свободной электронной паре в органическом реагенте. В зависимости от условий реакции карбоний-ионный комплекс может взаимодействовать по реакциям алкилирования, крекинга, циклизации, перераспределения водорода, изомеризации, полимеризации и др. [c.312]

    Очевидно, что полимеризация проходит при помощи цепной реакции. Это может быть цепь свободных радикалов, если первоначальное инициирование реакции осуществляется перекисями или радиацией или же это ионная цепь, если реакция катализирована карбоний-иопом или карбанионом. Катализаторами, снабжающими процесс карбоний-ионами являются кислоты (серная, сернистая, фосфорная, борофосфорная, фтористый водород, ди-водород-фтористо-борная) и катализаторы Фридель — Крафтса (хлорид и бромид алюминия, трифторид и трихлорид бора, хлорид железа, хлористый цинк, хлорид олова и хлорид титана) [323]. Примером катализаторов, образующих карбанионы, являются натрий [324—326], алкил-натрий-натрий-алкоокисло-натрий хлорид [327—330] и другие натрийорганические соединения [331]. В соответствии с теорией реакций при помощи кар-боний-иона протон кислотного катализатора присоединяется к олефиновой связи, образуя положительно заряженный остаток. [c.106]

    Каждый карбоний-ион выше Се способен реагировать с молекулой изобутана образуется Св-изопарафин и третичный бутил-ион, который, в свою очередь, стремится прореагировать с ед] е одной молекулой 2-бутена, образуя реакционную цепочку. Несмотря на то, что приложение этого механизма реакции к 1-бу-тену показывает, что должны образовываться другие изопарафины, на практике найдено, что и 1- и 2-бутены в присутствии серной и фтористоводородной кислот дают одни и те же продукты. Объяснить это можно только предположив, что 1-бутен изомеризуется в 2-бутен и что оба олефина образуют одинаковый кар-боний-ион. С другой стороны, хлорид алюминия, вероятно, не приводит к образованию общего для этих олефинов карбоний-иона, что и объясняет различные продукты в реакции изобутана с 1- и 2-бутенами [558]. [c.131]

    Однако в результате изучения обмена дейтерием между алюмо-силикатными катализаторами и двумя изомерными бутанами было сделано заключение о том, что кислота, от которой зависит каталитическая активность, является кислотой Льюиса [283]. (Денфорте предложил катализатор, вследствие особенностей своего строения Обладающий одновременно свойствами кислоты Льюиса и кислоты Бренстеда [284]). Следует предположить, что структурные изменения, которые становятся возможными благодаря присутствию двуокиси кремния, приводят к появлению атомов алюминия с электронными пробелами. Координационное число алюминия изменяется здесь от 4 до 6. Устойчивые комплексы карбоний-ионов можно представить следующим образом. [c.336]

    Каталитический риформинг протекает на активных центрах двоякого рода металлических и кислотных. Металлические центры (платина или ш. 1тина, промотированная добавками хЛора и металлов, например рения, иридия, олова, редкоземельных элементов), ускоря ют реакции дегидрирования парафинов в олефины, нафтенов в арома тические, диссоциацию молекулярного водорода, подаваемого извне гидрирование и содействуют дегидроциклизации и изомеризации Кислотные центры, расположенные на носителе - хлорированном оксиде алюминия, способствуют реакциям изомеризации олефинов циклизации и гидрокрекинга по карбоний-ионному механизму. [c.139]


Смотреть страницы где упоминается термин Карбонилы алюминия: [c.41]    [c.263]    [c.88]    [c.220]    [c.226]    [c.95]    [c.433]    [c.28]    [c.223]    [c.97]    [c.466]    [c.240]    [c.243]   
Смотреть главы в:

Карбонилы металлов -> Карбонилы алюминия




ПОИСК





Смотрите так же термины и статьи:

Двуокись кремния окись алюминия в получении карбониевых ионов

Этилат алюминия, получение содержащих карбонил соединений



© 2025 chem21.info Реклама на сайте