Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Контактные аппараты. также

    Расчёт производится на основе математического описания, включающего дифференциальные уравнения превращения вещества в слое катализатора, уравнения материальных и тепловых балансов, уравнение кинетики химической реакции, уравнение баланса энтропии и уравнения изменения энтропии из-за явлений переноса и превращения тепла и вещества, имеющих место при контактном окислении диоксида серы в контактном аппарате. Отдельно анализируется влияние состава реакционной смеси на производство энтропии вследствие превращения вещества в результате химической реакции на производство энтропии из-за процессов переноса тепла и вещества, а также на производство энтропии из-за [c.142]


    К основному технологическому оборудованию относят аппараты и машины, в которых осуществляют различные технологические процессы — химические, физико-химические и др., в результате чего получают целевые продукты. Таким образом, к основному технологическому оборудованию можно отнести следующую аппаратуру реакционную — контактные аппараты, реакторы, конверторы, колонны синтеза и другие аппараты, в которых протекают химические реакции, а также аппараты и машины для физикохимических процессов — абсорберы, экстракторы, ректификационные колонны, сатурационные башни, сушилки, выпарные и теплообменные аппараты, вальцы, каландры, прессы и т. п. [c.26]

    Выхлопные газы, содержащие 2—4% (об.) Ог и остатки N0+ +N02, предварительно подогревают теплом горячих нитрозных газов до 400 °С и затем смешивают с природным газом с тем, чтобы обеспечить в результате реакции температуру 750—870 °С. В качестве катализатора применяют платину, нанесенную на носители. Этим путем содержание N0+N02 в выхлопных газах удается довести до 0,005—0,0005% (об.). При получении азотной кислоты на многотоннажных агрегатах для восстановления окислов на катализаторе применяют природный газ давлением 1,5—1,6 МПа. Восстановление осуществляют в контактных аппаратах при 750 °С. Чтобы предотвратить образование взрывоопасной метановоздушной смеси и ее взрыв в аппаратуре, предусматривают автоматическое регулирование подачи природного газа. Кроме того, агрегат каталитической очистки оснащают системой защитных блокировок, обеспечивающих отключение подачи природного газа к горелкам подогревателя при аварийной остановке компрессорных агрегатов и отклонении температуры газов после топки от нормальной. Предусматривают также запрет подачи природного газа к горелкам прп отключенной воздуходувке. На линии природного газа, ведущей к смесителю реактора каталитической очистки, устанавливают отсекатель, который закрывается при отклонении от нормальной температуры газа после реактора, остановке компрессорного агрегата и закрытии отсекателя на линии природного газа перед топкой. [c.45]

    Контактный аппарат должен быть оснащен системами противоаварийной защиты. На трубопроводе газообразного аммиака между подогревателем и контактным аппаратом должен быть установлен быстродействующий отсекатель, прекращающий подачу аммиака в систему при повышении содержания аммиака в смеси или температуры на катализаторных сетках, при аварийной остановке компрессора, а также при понижении уровня воды в барабане котла. На современных агрегатах окисления аммиака предусматривают устройства, прекращающие испарение аммиака при закрытой отсекателя, а также аварийную вытяжную вентиляцию произ- [c.43]


    По сравнению с поверхностными ТА контактные аппараты обладают некоторыми преимуществами меньшая металлоемкость, отсутствие коррозии и загрязнения несуществующей теплообменной поверхности и связанная с этим возможность использования загрязненных потоков теплоносителей. Недостатки контактных аппаратов также связаны с отсутствием тепло-обменной поверхности частичное проникновение одного теплоносителя в массу друтого и, часто, — трудности определения величины теплопередающей поверхности контакта фаз. [c.358]

    Монтаж контактных аппаратов также ведется из укрупненных блоков, количество которых зависит от грузоподъемности имеющихся такелажных средств. [c.185]

    В процессе эксплуатации температура зажигания контактной массы на заводских установках постепенно повышается, поэтому температуру газа на входе в первый слой катализатора в контактном аппарате также приходится повышать. Добавление к ванадиевой контактной массе фосфорного ангидрида, а также увеличение в ней количества хлористого калия способствует понижению температуры зажигания, например до 390°. [c.46]

    Известен случай, когда при резком увеличении нагрузки на контактный аппарат стала повышаться температура перед турбиной, газотурбинный агрегат был отключен системой блокировок, а регулятор соотношения аммиака и воздуха мгновенно не сработал, что привело к взрыву и разрыву катализаторных сеток. Разорванные сетки силой взрыва были подняты вверх в конус аппарата. Уцелевшие сетки были выгнуты также в сторону конуса. С нижней стороны сетки были покрыты копотью. На сетках были обнаружены выброшенные куски футеровки и замазки. Установлено, что перед пуском агрегата блокировка соотношения аммиака и воздуха была настроена на минимальное содержание аммиака (10,7%). Пря увеличении содержания аммиака блокировка не сработала и табло не зажглось. Кроме того, как показал анализ причин аварии, при сборке контактного аппарата разрывные шпильки взрывного устройства были установлены не по расчету, что могло привести к их несрабатыванию и разрыву аппарата. [c.43]

    Нитрит-нитратные соли образуются при взаимодействии аммиака с окислами азота после контактного аппарата, если часть аммиака не прореагировала на катализаторных сетках. Это может происходить главным образом при пуске. Нитрит-нитратные соли могут -отлагаться также в аппаратуре и коммуникациях узла розжига контактного аппарата. Нитрит-нитратные отложения представляют большую опасность, так как могут разлагаться со взрывом. [c.46]

    Авария явилась следствие.м проектной недоработки, так как не были предусмотрены. меры по предупреждению попадания нитрозных газов в трубопроводы розжига контактного аппарата, т. е. не исключалась возможность взаимодействия их с ам.миаком не были также предусмотрены необходимые меры по удалению отложившихся солей. [c.46]

    Принципиальная технологическая схема процесса каталитического расщепления ДМД с получением изопрена представлена на рис. 5. Пары ДМД смешиваются с водяным паром и поступают в контактный аппарат 2, куда из пароперегревательной печи 1 подается также пар с температурой 700 °С. [c.705]

    В системе I (газ + газ) проводят высокотемпературные химические процессы, для которых применяют змеевиковые 2 и контактные аппараты 1 и конвертеры различных систем, а также процессы газоочистки, для которых используют газоочистительные аппараты 3. В системе И (газ-f жидкость) производят ректификацию, абсорбцию, мокрую газоочистку, а также многие химические реакции. Прн этом применяют колонные 4 и башенные аппараты с устройствами, обеспечивающими хороший контакт между жидкостью и газом. Для газов, хорошо растворимых в жидкости, когда достаточна небольшая поверхность контакта, процесс проводят в простейших аппаратах барботажного типа 5 или в поверхностных абсорберах 6. В системе III (жидкость + жидкость) осуществляют физико-химические и различные химические процессы. Для этого применяют емкостные аппараты с мешалками 7 или без них и аппараты змеевикового типа 8. Для обработки взаимно нерастворимых жидкостей с различным удельным весом иногда используют аппараты колонного типа с противоточным движением жидкостей. Сепарацию проводят в сепараторах центробежного типа 9. [c.5]

    Физическими процессами, определяющими работу контактного аппарата, являются обмен количеством движения, массо- и теплообмен между потоком и частицами катализатора, а также между потоком и стенкой реактора. [c.53]

    На рис. Х У1П-2 схематично изображен контактный аппарат е так называемым турбулентным слоем, являющимся разновидностью противоточного трехфазного нсевдоожижения и получившим промышленное применение. Псевдоожиженный восходящим потоком газа слой частиц низкой плотности (обычно, шары — полые из полиэтилена или сплошные из вспененного полистирола) орошается нисходящим потоком жидкости. Установки подобного типа используются в промышленности для жидкостной абсорбции из газовых смесей, мокрой очистки запыленных газов, а также их охлаждения и осушки. [c.658]


    Действительно, одну и ту же реакцию можно проводить в каскаде аппаратов с мешалками и в колонне. Аппарат, в котором проводится реакция может быть барботажным, насадочным, роторным пли тарельчатым. В качестве реактора можно также использовать одну из многочисленных конструкций контактных аппаратов [1—71. Хотя конструкция аппарата и влияет на степень конверсии (превращения) и селективность (избирательность) процесса, сущность этого процесса характеризуется не конструкцией реактора, а определенной взаимосвязью физических и химических факторов, необходимой для успешного протекания реакции. Конструкция же аппарата является только средством воздействия на эту взаимосвязь путем изменения скорости отдельных физических или химических стадий процесса. [c.9]

    Контактный аппарат проектной мощностью 60 т кислоты в сутки, работающий по схеме ОК с четырьмя слоями катализатора и промежуточными теплообменниками (табл. 4, 5). Такие значения Ей также обеспечивают практически однородный профиль [4]. Зададим неоднородность, равную 40% (А = 20,0%) (табл. 6). [c.129]

    Для каждого последующего (2-, 3-го и т. д.) аппарата в каскаде реакторов или для 2-, 3-й и т. д. полки многополочного (контактного) аппарата, а также для любого реактора, работающего в циклическом процессе [c.80]

    Контактное отделение, называемое также контактным узлом или контактным агрегатом, включает контактный аппарат, выносные теплообменники, охлаждающие газ после каждого слоя контактной массы, основной пусковой подогреватель газа, в котором газ разогревается при пуске аппарата или при падении температуры в аппарате вследствие нарушения технологического режима. [c.134]

    Реакторы с твердым катализатором, предназначенные для катализа газов, называют также контактными аппаратами или конверторами. Реакторы, имеющие небольшой диаметр при значительной высоте, что характерно для конверторов, работающих под большим давлением, называют также колоннами, например, колонны синтеза аммиака, метанола и т. п. Реакторы для эндотермических процессов, внутри которых вырабатывается тепло (сжиганием топлива, электронагревом и т. п.), используемое для нагревания реагирующих газов, называют нередко печами. Те или иные названия реакторов, принятые в различных отраслях промышленности, будут встречаться при дальнейшем изложении в последующих главах. [c.108]

    Преимущества кипящего слоя обеспечили экономичность й целесообразность применения контактных аппаратов КС для окисления газов повышенной и высокой концентрации [14—17, 251, а также газов, не полностью очищенных от пыли и контактных ядов в короткой схеме производства серной кислоты [1, 26] ив контактно-башенном способе для частичного окисления сернистого ангидрида [13, 27, 28]. [c.145]

    Предложен ряд более совершенных конструкций однополочных контактных аппаратов КС. Одна из них представлена на рис. 75. В этом аппарате предусмотрены оптимальные условия для окисления запыленного газа переменного состава в условиях контактно-башенного способа или короткой схемы. Конические перегородки в теплообменнике и коническое днище, а также соответствующие потоки [c.152]

    Контактные аппараты с кипящим слоем катализатора отличаются простотой конструкции. Как правило, это аппараты колонного типа, внутри которых размещается контактная камера, заполненная катализатором. Газ в зону катализатора подается через газораспределительную решетку, обеспечивающую равномерное распределение потока газов по всему поперечному сечению контактного аппарата. Съем тепла реакции осуществляют двумя способами либо с помощью теплообменных элементов, размещенных непосредственно в слое катализатора, либо циркуляцией катализатора через теплообменники, расположенные вне зоны катализатора. Первый метод отвода тепла более прост и надежен в эксплуатации. В этом случае отпадает необходимость в непрерывной циркуляции катализатора через теплообменник в целях поддержания необходимого гидродинамического режима системы. Отличительной особенностью контактных аппаратов КС является также наличие в них пыле отделительных устройств. Высокая стоимость катализаторов, применяемых для окисления нафталина, обусловливает необходимость полного улавливания всего катализатора, уносимого потоком газов из реакционной зоны. [c.181]

    В промышленности часто применяют многослойные (многополочные) контактные аппараты [2, 3, 11, 13, 32, 39, 66, 68, 73, 74], а также однослойные аппараты,- работающие в циклическом [c.49]

    В качестве побочных продуктов образуются пропионовый альдегид, ацетальдегид, формальдегид, ацетон, СО, СОа и вода. Катализаторо.м-для этого процесса служит окись меди, нанесенная на непористый носитель (пемзу или карборунд) в количестве 0,5—1,5% (масс.). Позднее был разработан молибдено-кобальтовый катализатор с висмутом и другими добавками. Окисление ведут при 320—350 °С и времени контакта 0,5—1,0 с в присутствии водяного пара, позволяющего улучшить условия выделения акролеина и подавляющего реакции глубокого окисления. Последний эффект достигается также при добавлении в исходную газовую смесь микроколичеств (0,05% от массы пропилена) бромистых или хлористых алкилов. Состав исходной смеси диктуется пределами взрывоопасных концентраций. Соотношение (мольное) пропилен кнслород водяной пар поддерживают равным 4 1 5 или 1 1,5 3, т. е. выше верхнего или ниже нижнего пределов взрываемости. В зависимости от состава газовой смеси процесс ведут с рециркуляцией пропилена или без нее. Реакцию окисления проводят в многотрубчатых контактных аппаратах с солевым теплоносителем. Реакционные газы проходят водную промывку, при этом получают 1,5—2%-ный раствор акролеина в воде,содержащий также побочные продукты реакции — ацетальдегид, пропионовый альдегид й т. д. Акролеин выделяется из водного раствора, ректификацией очищается от ацетальдегида и экстрактивной дистилляцией с водой — от пропионового альдегида. Выход акролеина составляет 67—70% при степени превращения пропилена 50%. [c.207]

    Пары ДМД смещиваются с водяным паром и поступают в контактный аппарат 2, куда из пароперегревательной печи I подается также пар с температурой 700 °С. Процесс контактирования длится 3 ч. После завершения этого цикла реактор продувают водяным паром и начинают цикл окислительной регенерации ката- [c.372]

    Рассмотрены вопросы устойчивости и автотермичности реакторов, расчета оптимальных режимов. В качестве примеров для изучения взяты реакторы с неподвижным слоем, прежде всего реакторы для синтеза аммиака и окисления двуокиси серы, играющие наиболее важную роль в химической промышленности. Приведены также расчеты реакторов с псевдоожиженным слоем (основы теории псевдоожил ення являются предметом ряда специальных монографий и здесь не излагаются). Из контактных аппаратов других типов приведены колонны Кёлбела с катализатором, суспендированным в жидкости. В книге не рассматривались реакции, осуществляющиеся в жидкой фазе с взвешенным в ней катализатором. В конце книги кратко излагаются вопросы оптимизации реакторов, а также применения электронно-вычислительных и аналоговых машин. [c.10]

    Замена металлических подшипников на пластмассовые позволяет в 10 раз повысить долговечность подшипников. При использовании пластмассового подшипника устраняется износ вала, что повышает ремонтопригодность машины. В узлах уплотнения замена кожаных манжет на манжеты, изготовленные на основе по-лихлорвиниловой смолы, также увеличивает срок службы манжет в 10 раз. Подшипники качения, устанавливаемые на валковых машинах, оказываются в 2—3 раза долговечней подшипников скольжения. В контактных аппаратах спиральные электроподогреватели разрушаются от потока газов и вибрации элементов спирали (выходят из строя изоляторы) использование стержневых подогревателей позволяет в несколько раз увеличить долговечность. [c.64]

    Важно также отметить, что непрерыввая регенерация в системах с циркуляцией катализаторов и теплоносителей лозволяет вводить в контактный аппарат нужное количество тепла. Интересен в этом ллане процесс получения водорода высокотемпературным разложением углеводородов, в котором [c.3]

    Интенсивность массопередачи к внешней поверхности зерен катализатора зависит от конструкции контактного аппарата. Ее можно повысить, увеличив линейную скорость потока. Однако одновременно возрастает гидравлическое сопротивление слоя. Скорость вну енней диффузии зависит только от структурь пористого каталнз тора н свойств реагирующей среды. Уменьшение размера зерен снижает отрицательные последствия внутридиффузионного торможеннй, позволяя полнее использовать реакционный объем. Однако при этом также повышается гидравлическое сопротивление слоя частиц. При переводе процесса в кипяпщй слой, где можно использовать мелкие частицы, не повышая гидравлического сопротивления слоя, возникают специфические затруднения с диффузией реагентов между различными частями потока газов. [c.263]

    В Германии, не имевшей нефтяных месторождений, селективное I идрирование ацетилена использовали для промышленного получения этилена. Реакцию проводили при 180—320 °С и 1,5— 2-крагном избытке водорода с палладиевым катализатором на силикагеле. Аналогичный процесс применяют и сейчас для селективной очистки этилена от примеси ацетилена (последний всегда образуется при пиролитической переработке углеводородных газов, при которой выделяется также водород). Гидроочистка от ацетилена достигается пропусканием газа через контактный аппарат с катал изатором, в качестве которого рекомендованы никель на носителях, никель-кобальт-молибдаты. [c.499]

    Независимость ДР л от размера зерна d имеет место лишь для слоя заданной высоты Н при рабочих скоростях ю больше, чем скорость взвешивания и меньше скорости уноса Шу. Фактически же большее или меньшее гидравлическое сопротивление взвешенного слоя можно задавать и регулировать при проектировании аппарата путем изменения размера зерен катализатора. Дело в том, что с уменьшением d уменьшается скорость начала взвешивания [см. формулы (1.3) и (1.4)], соответственно при заданном числе взвешивания (псевдоожижения) понижается и рабочая скорость ю. Для сохранения постоянства объемной скорости (или объема катализатора при заданной производительности по объему газа) возникает необходимость увеличить сечение (диаметр) слоя и соответственно уменьшить высоту его. Таким образом высота слоя, а следовательно, гидравлическое сопротивление его понижаются с уменьшением размера зерна, что и йспользуется при проектировании контактных аппаратов. Высота слоя катализатора в аппаратах КС понижается по сравнению с неподвижным также вследствие возрастания скорости процесса. Тем не менее суммарное гидравлическое сопротивление полки аппаратов КС [c.103]

    В контактных аппаратах с неподвижным катализатором Нельзя применять водяные холодильники, так как вследствие весьма низкой теплопроводности пористых гранул ванадиевого катализатора [порядка 0,57 ккал м-град -ч) у теплообменных поверхностей происходит резкое-падение температуры ниже температуры зажигания катализатора. Кроме того, на холодных поверхностях теплообменных труб может конденсироваться серная кислота, что вызывает быструю их коррозию и порчу контактной массы, находящейся в зоне теплообменников. Эффективная теплопроводность кипящего с лоя достигает 15 ООО ккал/(д1 грй 9.ч) [181, а коэффициенты теплоотдачи столь велики [16, 19], что становится возможным применение водяных холодильников (см. главу IV). При этом не происходит конденсации серной кислоты на холодных поверхностях, омываемых кипящим слоем при снижении температуры до 390° С, т. е. ниже рабочих температур катализа [20]. Теплопередача от кипящего слоя к воде, протекающей в трубах водяного холодильника, происходит много интенсивнее, чем в газовых теплообменниках, которые устанавливают между слоями аппаратов с неподвижным катализатором коэффициент теплопередачи возрастает в среднем в 15 раз. Движущая сила процесса теплопередачи Ai (разность температур) также увеличивается примерно в 2 райа. Таким образом, площадь теплообмена Р, вычисляемая по формуле [c.144]

    Метод кипящего слоя привлекает также компактностью контактных ащгаратов и легкостью их автоматизации (см. рис. 64). Применение мелкозернистого прочного катализатора обеспечивает легкую цневматическую разгрузку контактного аппарата. [c.145]

    Во-вторых, однополочные аппараты целесообразно устанавливать в контактно-башенных цехах [1, 13, 17, 27, 28]. В этом случае газ, содержащий остатки огарковой пыли и контактные яды, а также влагу после сухих электрофильтров поступает в контактный аппарат КС с содержанием SOj — 10—12% и окисляется на 25—45% в зависимости от задания. В слое катализатора помещаются трубы парового котла. В аппаратах можно применять ванадиевый катализатор КС, который частично теряет активность вследствие отравления и поэтому должен работать при повышенной температуре (580— 590° С). Окисножелезный катализатор работает с максимальной производительностью при 650—700° С. [c.150]

    В-третьих, однопол очные аппараты ввиду простоты их конструкции заманчиво применять для короткой схемы сухой очистки [1, 26] производства серной кислоты контактным способом на газе от обжига серного колчедана. В этом случае газ, содержащий 8—10% ЗОз, после неполной сухой очистки поступает в контактный аппарат. Минимальная степень превращения для короткой схемы составляет около 80%, поэтому необходим высокий слой катализатора — 350— 450 мм. Оптимальная температура составляет 520—500° С, тогда как при адиабатическом режиме [уравнение (111.12)] она была бы 700° С. Поэтому необходимо отводить из слоя большое количество тепла и целесообразно устанавливать трубы парового котла непосредственно в кипящем слое катализатора, используя хорошую теплоотдачу. Газ после контактного аппарата охлаждается в теплообменниках, затем серный ангидрид абсорбируется с образованием загрязненного олеума и моногидрата, а оставшийся чистый газ поступает во вторую стадию окисления в аппарат с фильтрующими слоями катализатора и затем на повторную абсорбцию. Достигается весьма высокая степень окисления 30а х = 0,995), а также более полная абсорбция серного ангидрида. Загрязнение атмосферы уменьшается в несколько раз по сравнению с обычными системами. Себестоимость кислоты по сравнению с обычными установками снижается вследствие отсутствия громоздких и дорогих в эксплуатации мокрых электрофильтров и промывных башен, а также благодаря использованию тепла реакций для получения пара. [c.151]

    Сырьем для прямого окисления этилена в окись служит этилен с концентрацией не менее 95% [116]. Нежелательно присутствие в этилене больших количеств тяжелых углеводородов, так как в условиях процесса они легко окисляются до СОа и НаО, а выделяющееся тепло нарушает режим работы контактного аппарата. Присутствие ацетилена, сернистых. соединений и диолефинов (кансдого не более 0,001%) также следует ограничтать, так как они отравляют катализатор и образуют взрывоопасные смеси с кислородом. [c.173]

    На рис. 48 представлен современный контактный аппарат, который компонуется с выносными теплообменниками. Для системы производительностью 1000 т/сут Н2504 такой аппарат имеет диаметр 12 м при общей высоте 22 м. При большом диаметре аппарата в центре его устанавливается труба, на которую опираются решетки. Каждый слой такого аппарата можно рассчитывать с достаточной для практических целей точностью по модели адиабатического реактора идеального вытеснения. Однако следует учитывать неравномерное распределение скорости потока газа и температуры по диаметру аппарата. При повышенной концентрации ЗОг применяют также полочные аппараты, в которых температура между полками снижается добавлением холодного воздуха. [c.132]

    Контактное производство серной кислоты — это крупномасштабное непрерывное, механизированное производство. В настоящее время проводится комплексная автоматизации контактных цехов. Расходные коэффициенты при производстве серной кислоты из колчедана на 1 т моногидрата N2804 составляют примерно условного (45%5) колчедана 0,82 т, электроэнергии 82 кВт-ч, воды 50 м . Себестоимость кислоты составляет 14—16 руб. за 1 т, в том числе стоимость колчедана составляет в среднем почти 50% от всей стоимости кислоты. Уровень механизации таков, что зарплата основных рабочих составляет лишь около 5% себестоимости кислоты. Важнейшие тенденции развития производства серной кислоты типичны для многих химических производств. 1. Увеличение мощности аппаратуры при одновременной комплексной автоматизации производства. 2. Интенсификация процессов путем применения реакторов кипящего слоя (печи и контактные аппараты КС) и активных катализаторов, а также производства и переработки концентрированного диоксида с использованием кислорода. 3. Разработка энерготехнологических систем с максимальным использованием теплоты экзотермических реакций, в том числе циклических и систем под давлением. 4. Увеличение степеней превращения на всех стадиях производства для снижения расходных коэффициентов по сырью н уменьшению вредных выбросов. 5. Использование сернистых соединений (5, 50о, 80з, НгЗ) из технологических и отходящих газов, а также жидких отходов других производств. 6. Обезвреживание отходящих газов и сточных вод. [c.138]

    Разработка новых пенных аппаратов идет по двум направлениям первое — совершенствование существующей конструкции пенного аппарата без принципиальных изменений, в частности, без ликвидации основного конструктивного элемента — решетки второе — разработка безрешеточных пенных аппаратов, работающих с само-орошением (без внешней циркуляции жидкости). Известно, что мокрые массо- и теплообменные, а также газоочистительные аппараты требуют большого расхода рабочей жидкости — до 1,5 л на 1 м обрабатываемого газа, регенерации этой жидкости в системах рециркуляции (осветление, нейтрализация) и удаления шлама. Проблема охраны природы ставит вопрос перевода технологических процессов на замкнутые безотходные циклы или хотя бы резкого снижения расхода воды в промышленных процессах и утилизации шламов. Поэтому при разработке новых мокрых контактных аппаратов весьма желательна ликвидация систем внешней циркуляции орошающей жидкости. [c.232]

    Циклогексанол-ректификат под избыточным давлением азота (10—15 кПа) подают через фильтр 1 в подогреватель 2 типа труба в трубе , где он нагревается до 100—110°С. Далее в испарительно-нагревательной системе, сосго5ицей из трубчатых аппаратов 3, 4 и 5, происходит испарение циклогексанола и перегрев его паров до 430—450 °С. Перегретые пары спирта поступают в трубы контактного аппарата 6, заполненного катализатором. Для обогрева контактной системы используют дымовые газы, получаемые при сжигании топливного газа (метана). По выходе из контактного аппарата продукты реакции поступают в конденсатор 7 и далее в сепаратор 8, где конденсат (циклогексанон-сырец) отделяется от водорода. Циклогексанон-сырец содержит [в % (масс.)] циклогексанона 80—8 , циклогексанола — 17—18, а также небольшие количества циклогексана, продуктов уплотнения, воды. [c.66]

    Техиологическая схема получения малеинового аягидридэ окислением углеводородов С4 на стационарном слое катализатора (рис. 6.28) аналогична схеме бензольного процесса. Условия окисления также близки. Углеводородовоздуш ную смесь пропускают через контактный аппарат 1, загруженный катализатором. Теплота реакции снимается теплоносителем — расплавом нитрит-нитратных солей — и используется для получения пара низкого и высокого давления. Реакционные газы, охлажденные в теплообменнике 2, направляются в водный скруббер 3 для поглощения малеинового ангидрида. 40%-ный водный раствор малеиновой кислоты поступает в пленочный испаритель 4, затем в дегидрататор 5. Пары малеинового ангидрида направляются на дистилляцию (колонны 5 и 7). [c.213]


Смотреть страницы где упоминается термин Контактные аппараты. также: [c.92]    [c.113]    [c.16]    [c.418]    [c.142]    [c.14]    [c.76]    [c.188]    [c.101]    [c.50]   
Технология катализаторов (1989) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Контактный аппарат



© 2025 chem21.info Реклама на сайте