Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нуклеофильная атака по атому водорода

    Эпоксидирующий агент — неорганическая надкислота, образующаяся в результате нуклеофильной атаки пероксида водорода на центральный атом катализатора. [c.192]

    Нуклеофильная атака атома водорода, обычно приводящая к отщеплению протона, может вызвать анионоидный отрыв заместителя в Р-положении. Если атом водорода был связан с гетероатомом, например с кислородом, то в результате образуется анион, подобный тем, которые возникают при нуклеофильной атаке на три-гональные атомы углерода (см. стр. 179). Эти анионы, обладающие очень большим - - -эффектом, во второй стадии стремятся стабилизироваться путем перескока неподеленной электронной пары, что приводит к выталкиванию различных радикалов, находящихся в -положении, [c.142]


    Селективность процесса и способы ее регулирования. Как показано выше, при действии щелочей на хлорпроизводные возможны параллельные реакции замещения и отщепления H I, из которых целевой является только одна. На их относительную долю влияют температура, свойства среды и другие факторы, но практически самым эффективным методом регулирования направления этих реакций явился выбор гидролизующего агента. Ранее мы видели, что при замещении гидролизующий агент, атакуя атом углерода, проявляет свои нуклеофильные свойства, в то время как при отщеплении, связываясь с атомом водорода, проявляет себя как основание. Следовательно, для замещения требуется слабое основание, обладающее сравнительно высокой нуклеофильностью, например ЫагСОз, а для отщепления НС1 — сильное основание с относительно небольшой нуклеофильностью, например NaOH или Са(0Н)2. Эта зависимость селективности процесса от вида гидролизующего агента и pH среды изображена на рис. 55. [c.163]

    Ионное гидростаннирование проходит по транс-механизму. Нуклеофильная атака атома водорода оловоорганического гидрида на атом углерода является первой стадией, определяющей скорость процесса. Затем оловоорганический катион, образующийся на этой стадии, вступает в транс-присоединение к винильному карбаниону. В ионных реакциях присоедине- [c.300]

    Если нуклеофильная атака направлена на атом водорода, она приводит к отщеплению протона, причем образуется карбанион (а) или происходят дальнейшие отщепления (б, в). [c.187]

    Выше была рассмотрена реакция гидролиза галогеналканов под действием гидроксид-иона. Сущность ее заключается в том, что гидроксид-ион как нуклеофил атакует электрофильный а-углеродный атом и вытесняет галогенид-ион (происходит реакция нуклеофильного замещения). Но поскольку атом водорода при р-углеродном атоме также имеет частичный положительный заряд, то и он может быть атакован гидроксид-ионом как основанием. При этом отрыв протона сопровождается образованием молекулы воды. Одновременно происходит отщепление галогенид-иона. В результате галогеналкан превращается в алкен. [c.146]

    Полярность связи О—Н определяет ее склонность к гетеролитическому разрыву Атом водорода гидроксильной группы становится подвижным, способным отщепляться в виде протона Следовательно, спирты могут выступать в роли ОН-кислот В тО же время наличие в молекуле спирта атома кислорода, имеющего неподеленную пару электронов, предопределяет проявление спиртами свойств оснований Связь С—О вследствие ее полярности способна к гетеролитическому разрыву Атом углерода, связанный с гидроксильной группой, несет частичный положительный заряд и может выступать в роли электрофильного центра, а следовательно, подвергаться атаке нуклеофильным реагентом Это означает, что для спиртов возможно протекание реакций нуклеофильного замещения гидроксильной группы [c.166]


    Альдольно-кротоновая конденсация. Реакции, при которых вдз-никают новые углерод-углеродные связи и, таким образом, происходит усложнение углеродного скелета органических молекул, принято называть реакциями конденсации Такие реакции очень важны, так как дают возможность перейти от простых соединений к сложным, содержащим большее число углеродных атомов. К таким реакциям относится альдольно-кротоновая конденсация. Внешне непохожая на другие превращения карбонильных соединений, альдольно-кротоновая конденсация в действительности имеет с ними много общего. Она идет по общей схеме нуклеофильной атаки на карбонильный углерод, но в качестве нуклеофильной частицы выступает вторая молекула карбонильного соединения, т. е. ее углеродный атом, находящийся по соседству с карбонильной группой (а-углеродный атом). Атомы водорода, связанные с а-углеродным атомом карбонильных соединений, обладают особой реакционной способностью ( подвижностью ). Это объясняется индукционным влиянием соседнего карбонильного углерода  [c.183]

    Поскольку изоцианатная группа содержит сильно электрофильный углеродный атом, связанный двойными связями с двумя электроотрицательными атомами, следует ожидать, что реакции этой группы с соединениями, содержаш ими активные атомы водорода, будут проходить с участием электрофильного атома углерода. Поэтому атакующая группа должна иметь нуклеофильный центр. Если на ход реакции не влияют стерические факторы, наличие сильной электроноакцепторной группировки, связанной с изоцианатной группой, будет вызывать снижение электронной плотности на атоме углерода (т. е. увеличивать его положительный заряд) и таким образом увеличивать чувствительность к нуклеофильной атаке. Наоборот, нуклеофильные группы будут способствовать увеличению электронной плотности на атоме углерода и, следовательно, снижать реакционную способность изоцианатной группы в следующем ряду заместителей [122]  [c.353]

    При втором механизме сначала происходит нуклеофильная атака водорода карбанионом металлорганического реагента. Вероятно, очень важно, чтобы атом металла имел возможность вступить в координационную связь с соседним гетероатомом. Отнятие водорода, по-видимому, является стадией, определяющей скорость реакции, и служит причиной заметного изотопного эффекта (см. гл. 4). [c.110]

    Нуклеофильные реагенты могут реагировать с ароматическими и особенно с некоторыми гетероциклическими соединениями (шестичленные азотистые гетероциклы) двояким образом, вызывая реакции нуклеофильного или протофильного замещения водорода в зависимости от того, атакует ли реагент атом углерода или атом водорода СН-связи. До сих пор речь шла о реакциях второго типа, при которых рвется связь между углеродом и водородом, что обычно проявляется в наличии значительного кинетического изотопного эффекта, который, действительно, имеет место при реакциях метилирования и водородного обмена с основаниями. Ниже приведены значения кинетических изотопных эффектов (КИЭ) по измерениям американских авторов [26] для тиофена и полученным в нашей лаборатории данным для трифенилметана при реакции с бутиллитием  [c.127]

    Нуклеофильная атака по алкеновой связи может привести к расщеплению алкена. При этом образуются два вещества одно содержит -углеродный атом исходного алкена и нуклеофильный центр (2) атаковавшей его молекулы, второе — а-углеродный атом алкена и два атома водорода, полученные либо из молекулы нуклеофила, либо из молекулы вещества, составляющего среду реакции  [c.318]

    В отличие от значительно более полярной (33%) связи 51—С1, от которой сильно отрицательный атом хлора легко отщепляется в виде аниона, разрыв связи 51—С протекает значительно в меньшей степени, в особенности при нормальных условиях, когда полярность этой связи снижена присутствием положительных атомов, например водорода. Еще с большим трудом проходит нуклеофильная атака связи 51—С, если кремний одновременно связан с отрицательным заместителем, например кислородом  [c.203]

    НУКЛЕОФИЛЫ И НУКЛЕОФИЛЬНОСТЬ. Любой донор электронной пары является нуклеофилом, когда он атакует сравнительно электронодефицитный центр. Одпако если электронной парой нуклеофила атакуется атом водорода, то реакция рассматривается как кислотно-основная, а нуклеофил называется ооюванием. Все основания представляют собой нуклеофилы, хотя они обладают неодинаковой эффективностью в 8 2-реакциях. Все нуклеофилы являются основаниями, хотя они могут и не быть хорошими основаниями, т. е. частицал1и, легко присоединяющими протоны. Термины нуклеофил и основание могут быть использованы для описания одних и тех же частиц, но участвующих в различных реакциях. Например, ион ОН , который взаимодействует с метилбромидом по 8 2-механизму, образуя метанол, является нуклеофилом. Вместе с тем ион ОН выступает в качестве основания, когда оп реагирует с метанолом с образованием метилат-иона. [c.177]


    Изотопный эффект в реакциях гидростаннирования изоцианатов незначительный /Сн/Кп 1- Как показано на стр. 296, это свидетельствует в пользу того, что нуклеофильная атака атома водорода оловоорганического гидрида на атом углерода изоцианатной группы является первой стадией, определяющей скорость процесса. В этом случае (в зависимости от степени переноса водорода от олова к углероду в переходном состоянии) отношение Кн1Ки может иметь все значения между 3,7 и 0,4. [c.307]

    Галогеноангидриды обладают высокой реакционной способностью. Атом галогена, связанный с ацильной группой, чрезвычайно подвижен и легко вступает в реакции обмена. Эго происходит при взаимодействии галогеноангидридов с соединениями, содержащими атом металла или активный (подвижный) атом водорода. Вначале нуклеофильный реагент атакует положительно заряженный атом углерода карбонильной группы, а затем подвижный атом водорода присоединяется к кислороду этой группы. Образовавшийся промежуточный продукт теряет галогеноводород с образованием конечного продукта  [c.147]

    В алкилмагнийгалогениде центральный атом — M.g — несет дробный положительный заряд, а алкильный заместитель — отрицательный. В реакции с карбонильными соединениями RfAgHal способен передавать карбанион R-) атому углерода карбонильной группы (а). Если объем R большой и нуклеофильная атака R затруднена, он передает карбонильной группе гидрид-аннон (из Р-положения) (б). При отсутствии атомов водорода в Р-положеиип Н вырывает протоп из молекулы карбонильного соединения (из а-положения), вызывая его енолизацию (в)  [c.92]

    Как указывалось выше (см, стр. 168), введение электронооття-гивающих групп в ароматическое кольцо приводит к ингибированию электрофильного замеш,ения и делает возможным нуклеофильное замеш,ение. То же справедливо и для реакций присоединения. Если заместить атом водорода, связанный с углеродом при двойной связи, на такие группы, как Р, N0, СЫ, С—О, СООЕ и др., то я-электроны оттягиваются этими группами, электронодонорная активность двойной связи уменьшается и возникает возможность атаки анионом, отсутствующая в случае незамещенной двойной связи. [c.193]

    Одной из быстро прогрессирующих методологий органического синтеза являются реакции нуклеофильного ароматического замещения водорода (Sn )- Огромный потенциал реакций определяется фундаментальным свойством С-Н связей в л-дефицитных аренах и гетероаренах, а именно их способностью подвергаться реакциям замещения водорода под действием анионоидных реагентов. Нуклеофильная атака на незамещенный углеродный атом аренов или гетаренов позволяет избежать предварительного введения в ядро таких уходящих групп, как Hal, -OR, -SO2R, -NO2 и т. п., что открывает новые возможности для прямого введения заместителей и дает определенные технологические преимущества по сравнению с классическими реакциями [c.99]

    Подобно другим реакциям нуклеофильного замещения, аммоиолиз применим главным образом к алкилгалогенидам или замещенным алкилгалогенидам. Как и в других реакциях такого типа, элиминирование и замещение конкурируют между собой (разд. 14.20) аммиак может атаковать как атом водорода, давая алкен, так и атом углерода, давая амин. Поэтому при аммонолизе выходы наиболее высокие в случае первичных галогенпроизводных (преобладает замещение), но аммоиолиз практически бесполезен в случае третичных галогенпроизводных (преобладает элиминирование). [c.697]

    Такого рода различия в активирующем влиянии были установлены для реакций с метилат-ионом в метаноле [186] влияние атома фтора в пара-положетт к реакционному центру мало чем отличается от влияния атома водорода в том же положении, однако атомы фтора в мета- и орго-положениях очень сильно активируют реакцию. Предложенное объяснение этих эффектов основано на принятии для переходного состояния на стадии, определяющей скорость процесса, модели типа (78) [185, 186]. В этом случае становится понятным активирующее влияние фтора в л<ега-положе-нии, где он оказывается соседним с центром максимальной делокализации заряда в кольце [79]. Аналогично, малое влияние фтора в лара-положении является следствием конкуренции между индуктивным эффектом и отталкиванием электронных пар в (80), Однако принятие в качестве модели переходного состояния структуры (786) приводит к трудностям при объяснении сильного активирующего влияния фтора в орго-положении, поскольку модель подразумевает сходное влияние фтора, находящегося как в орто-, так и в лара-положениях. Можно предположить, что атом фтора в орго-положении дополнительно активирует молекулу за счет усиления электрофильности углеродного атома, участвующего в реакции, при атаке первоначальной структуры (78а). Тем не менее, независимо от причины активирующего влияния фтора, очевидно, что нуклеофильная атака в eFsX будет приводить, главным образом, к замещению в лара-положеипе к заместителю X, поскольку имен- [c.700]

    Реакционная способность производных бензола может быть качественно объяснена в рамках теории электронных смещений. Например, атом хлора, освобожденный от своих валентных электронов, имеет заряд +7, а аналогичный атом водорода — заряд +1. Следовательно, при замене водорода на хлор область относительно низкой плотности положительного заряда заменяется областью относительно высокой плотности, что приводит к сдвигу всей электронной системы молекулы по направлению к месту замещения. Этот сдвиг облегчает удаление протона из кислой группы в молекуле или атаку нуклеофильным реагентом (например, гидроксильным ионом при гидролизе эфиров). Одновременно затрудняется атака электрофильным реагентом, например ионом нитрония N02 при нитровании. Если замещению хлором или другим электроотрицательным элементом подвергается водород у насыщенного атома углерода, а место замещения настолько удалено от реакционного центра, что элиминируются короткодействующие влияния, связанные с объемом атома хлора, то общий эффект заместителя практически сводится к индукционному. [c.482]

    Как видно из приведенных примеров, восстановление нитрилов до альдиминов обусловливается стерическими факторами (разветвленность алкильных остатков нитрила и реактива Гриньяра), затрудняющими нормальное присоединение алкильной группы реактива Гриньяра к атому углерода нитрильной группы. При восстановлении нитрилов нуклеофильная атака на нитрильный атом углерода осуществляется атомом водорода, входящим в состав алкилмагнийгалогенида. Предложена схема реакции с согласованным переносом электронов в шестичленном комплексе например  [c.230]

    Дегидроцианирование ускоряется под действием оснований. В результате нуклеофильной атаки основания на атом водорода гидроксильной группы протекает сопряженное отщепление протона и цианид-иона  [c.401]

    Нуклеофильный характер и основность изменяются в одинаковом направлении, но основность возрастает быстрее. Действительно, сродство сильных оснований к протонам тем больше, чем меньше их нуклеофильность, и атака в этом случае направляется преимущественно на атом водорода в -положении, но не на атом углерода в а-положении. Эта атака, приводящая к отщеплению типа Ег (см. стр. 276) вместо замещения, начинает играть преобладающую роль в случае взаимодействия между третичными галоидалкилами, с одной стороны, и алкоголяталми, амидами или карбанионами, с другой стороны. Поэтому гидролиз некоторых галоидопроизводных иногда целесообразнее проводить, не непосредственно действуя щелочью, а обрабатывая их вначале сравнительно слабым основанием, например уксуснокислым калием, и затем омыляя образовавшийся сложный эфир. [c.210]

    Механизм этого превращения является ионным, где нуклеофильная атака на р-углеродный атом акрилонитрила осуществляется соединением, содержащем подвижный атом водорода. Эта реакция является частным случаем довольно распространенной реакции присоединения к а,р-непредельным соединениям, и она ускоряется в присутствии каталитических количеств оснований. Известно, что в спиртах поляризация связи между атомами кислорода и водорода выражена слабо, поэтому под влиянием щелочных агентов (оксвды и гидроксиды щелочных металлов, алкоголяты и сшртовые растворы, металлический натрий, третичные амины, четвертичные аммониевые основания, анионообменные смолы АБ-17 Амберлит ) происходит отрыв подвижного атома водорода и превращение спирта в более сильную нуклеофильную частицу [ 111 114]. Механизм цианэтилирования под действием мети лата натрия можно представить следующим образом  [c.41]

    Нуклеофильная атака карбонильного атома углерода карбоновой кислоты, как и в случае спирта, конкурирует с атакой нуклеофилом как основанием гидроксильного атома водорода Вследствие этого известно очень ограниченное число нуклеофильных реагентов, способных присоединяться по карбонильной группе К их числу относятся вода, спирты, галогенангидриды минеральных кислот, например, РСЬ, РСЬ, ЗОСЬ и др, являющиеся слабыми нуклеофилами Карбоновые кислоты со спиртами образуют сложные эфиры Реакция этерификации катализируется более сильными кислотами, обычно это Н2804, хлороводород и др Сильная кислота, протонируя карбонильный атом кислорода, увеличивает электрофильность карбонильного углерода и облегчает присоединение слабого нуклеофила, в данном случае спирта Потеря воды продуктом присоединения А приводит к сложному эфиру (этилацетат) [c.638]

    Как известно, реакции бимолекулярного нуклеофильного элиминирования замещ,енных углеводородов протекают стереоселектив-но с преимущественным отщеплением атома водорода из транс- Р-положения [107]. На рис. 3-4 приведены граничные электронные плотности на атомах водорода для случая нуклеофильной атаки [55]. На основании этого мы можем предсказать, что Р-атомы водорода, занимающие трамс-ноложение по отношению к атому хлора, будут наиболее реакционноспособными как в хлористом этиле, так и в 2-хлорбутане. Для 2-экзо-хлорнорборнана наибольшее значение электронной плотности на граничной орбитали имеет э/сзо-атом водорода, связанный с Сд. Было показано, что Е2-реакция 2-экзо-бромнорборнана с образованием норборнена протекает преимущественно как 1(ыс-элиминирование [108]. В этих одноцентровых реакциях стереоселективность или пространственное направление атаки реагента определяется различной реакционной способностью атомов [c.49]

    Сильно ненасыщенный характер группы —N=0=0 обусловливает их способность взаимодействия с соединениямц, содержащими такие С — Н-связи, в которых атом водорода достаточно реакционпоспособен, чтобы замещаться натрием. Так, соединения, содержащие метиленовые группы, активированные присутствием карбонильной, сложноэфирной, нитрильной или нитрогруппы, вступают в реакции с изоцианатами вследствие нуклеофильной атаки карбанионом изоцианатной группы [142, 217, 218]. Обычным продуктом этой реакции являются замещенные амиды [c.380]

    Характерным примером является подтверждение прото-фильного [48, 49] механизма реакций. металлирования ароматических соединений и изотопного обмена водорода с сильными основаниями, т. е. реакций, в которых атака нуклеофильного реагента направлена на атом водорода С—Н-связи. В противовес критикуемой гипотезе элекгрофильиого замещения (обзор см. [49]), протофильный механизм предусматривает, что лимитирующей стадией является разрыв С—Н-связи с переносом протона к основанию N. [c.194]

    Если электронная плотность передается с эфира на кислоту, то атом кислорода в большей или меньшей степени приобретает характер оксониевого иона, в зависимости от силы и природы кислоты. Вследствие этого эфиры в виде комплекса становятся более подверженными нуклеофильной атаке по а-атому углерода или атаке основанием по р-атому водорода, что приводит к разрыву первоначальной связи С—О. Таким образом, необходимыми требованиями к реагентам для расшеплеиия простых эфиров являются наличие кислоты, способной образовывать комплекс с эфирным атомом кислорода и обеспечивающей электрофильную поддержку разрыва связи С—О, а также наличие основания или нуклеофила, который был бы эффективным в кислотных условиях. Даже при использовании сильных кислот скорость гидролиза простых эфиров мала [180]. Концентрированная иодистоводородная кислота, которая представляет собой сильно кислотный раствор, содержащий мощный нуклеофил 1 , служит, вероятно, наиболее эффективным реагентом для расщепления простых эфиров в водной среде. Этот реагент используется в классическом аналитическом методе определения метоксильных групп [181], превращаем мых в летучий иодметан. Реагент может применяться в некоторых случаях и для препаративных целей, например при получении инозитов из существующих в природе их метиловых эфиров [182] уравнение (113) . [c.338]

    Механизм и кинетика реакций. Гидролиз и щелочное дегидрохлорирование хлорпроизводных принадлежат к реакциям нуклеофильного замещения и отщепления. В большинстве практически важных случаев они протекают по бимолекулярному механизму. При гидролизе лимитирующая стадия состоит в атаке гидролизующим агентом атома углерода, с которым связан хлор, причем новая связь образуется синхронно по мере разрыва прежней связи (механизм 5лг2). При отщеплении НС1 атака ОН-иона направлена на атом водорода, находящийся при -yr-леродном атоме (механизм Е2). Схема обоих механизмов [c.161]

    КИСЛОТЫ ионизуется в уксусной кислоте с образованием ионной пары карбокатион — сульфинат-ион, нз которой после рекомбинации образуется исходный эфир и бензгидрил-л-толилсульфон [37]. Полагают, что эпимеризация эфиров сульфиновых кислот под действием хлористого водорода происходит путем нуклеофильной атаки хлорид-иона на атом серы [37]. [c.502]

    Элиминирование может также начинаться катионоидным отрывом с осво- бождением карбаниона, который затем стабилизуется путем внутримолекулярной нуклеофильной атаки. Это механизм Е1сВ, он осуществляется при проведении реакции в щелочной среде в том случае, если в молекуле имеется атом водорода, подвижный вследствие — - или —/-эффектов. Кинетически этот процесс также первого порядка, а лимитирующей стадией является уход . [c.343]


Смотреть страницы где упоминается термин Нуклеофильная атака по атому водорода: [c.1022]    [c.67]    [c.180]    [c.143]    [c.538]    [c.411]    [c.462]    [c.4]    [c.319]    [c.216]    [c.184]    [c.244]    [c.18]    [c.306]    [c.306]   
Принципы органического синтеза (1962) -- [ c.187 ]




ПОИСК





Смотрите так же термины и статьи:

Нуклеофильная атака



© 2024 chem21.info Реклама на сайте