Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Темкина реакции на каталитической

    Р. М. Флид, О, Н. Темкин. Сб. Каталитические реакции в жидкой фазе . Алма-Ата, Изд-во АН Каз. ССР, 1963, стр. 395. [c.193]

    Представления об энергетической неоднородности поверхности катализатора были использованы М. И. Темкиным при изучении кинетики многих каталитических реакций и особенно синтеза аммиака. Разработанная им теория объясняет наблюдаемые на опыте дробные порядки реакций. Для процесса синтеза аммиака М. И. Темкин вывел общепринятое в настоящее время кинетическое уравнение, при помощи которого можно объяснить результаты более ранних исследований, а также и поздних исследований, не получивших до этого определенного истолкования. М. И. Темкин установил, что при синтезе аммиака на железном катализаторе единственным адсорбирующимся газом является азот и скорость реакции определяется скоростью его адсорбции. При выводе уравнения было учтено, что активные центры отличаются своими энергетическими характеристиками и на разных активных центрах адсорбция идет с различной скоростью. Упомянутое выше уравнение для скорости синтеза аммиака, находящееся в прекрасном согласии с опытом, имеет вид  [c.278]


    Наиболее полно влияние состояния поверхности на кинетику химических реакций было рассмотрено в гетерогенном химическом катализе. Теория каталитических процессов на неоднородных поверхностях была развита в работах М. И. Темкина и С. В. Рогинского. Изучая причины возникновения неоднородности и изменения энергетического состояния поверхности, необходимо учитывать структуру поверхности и взаимодействие поверхностных частиц с примесями или продуктами реакции. Побочные явления могут привести к образованию поверхностных соединений, вероятность возникновения которых зависит от способности катализатора образовывать с реагирующими веществами химические соединения. [c.523]

    Приведем еще один пример — двухстадийную реакцию. К классу двухстадийных каталитических реакций, выделенному М. И. Темкиным [36] и детально рассмотренному М. Бударом [37], относятся многие промышленные реакции. Например, [c.94]

    Темкин М. И. Кинетика гетерогенных каталитических реакций Ц ЖВХО,- [c.140]

    Методы составлений кинетических уравнений (моделей 1 гетерогенных каталитических реакций. Как правило, многие гетерогенные каталитические реакции (как ионного, так и электронного типов) удовлетворительно описываются кинетическими уравнениями первого порядка (особенно в области малых заполнений поверхности катализатора). Это, по-видимому, обусловливается тем, что лимитирующей суммарный каталитический процесс стадией является хемосорбция на однородной поверхности катализатора, осуществляемая мономолекулярно. При этом первый кинетический порядок имеет место обычно независимо от того, осуществляется ли хемосорбция по одноцентровому или многоцентровому (в виде мультиплетов, ансамблей и др.) механизмам. Установлено, что большее влияние на кинетический порядок каталитических реакций оказывает неоднородность поверхности. В ряде случаев большая адекватность достигается при использовании кинетических уравнений (моделей), выведенных исходя из представлений неоднородности поверхности (С.З.Рогинский, Я.Б.Зельдович, М.И.Темкин и др.). [c.434]

    Как известно, кинетика каталитических реакций зачастую в значительной, а иногда и в полной мере определяется скоростью адсорбции реагирующих веществ катализатором и скоростью десорбции продуктов реакции. М. И, Темкин [188], применив метод переходного состояния, теоретически вывел зависимость констант скорости адсорбции и десорбции от давления (на однородной поверхности). При низких давлениях скорость адсорбции v и скорость десорбции w выражаются уравнениями  [c.108]


    Безградиентный проточно-циркуляционный метод [51, 212] осуществляют в условиях практического отсутствия в реакционной зоне перепадов концентраций и температур. Принцип его применительно к изучению кинетики гетерогенных каталитических реакций впервые предложен Темкиным, Киперманом и Лукьяновой [214]. Перемешивание в проточно-циркуляционной системе достигается интенсивной циркуляцией реакционной смеси через катализатор в замкнутом объеме при непрерывном поступлении и выведении газового потока, причем количество циркулирующего газа должно значительно превышать количество вновь вводимого исходного газа. Циркуляция с большой скоростью происходит с помощью насосов механических, поршневых или электромагнитных, мембранных и других [20, 51, 214]. Циркуляционный контур, состоящий из электромагнитного насоса 3 (подача 600—1000 л/ч), клапанной коробки 12 двойного действия и реактора 1, помещенного в печь, представлен на рис. 5.2. [c.237]

    Скоростью элементарной реакции, следуя Темкину [3], будем называть число соответствующих элементарных актов, происходящих в единичном реакционном пространстве за единицу времени. В случав гетерогенных каталитических реакций в качестве указанного пространства часто используют поверхность катализатора единичной площади. [c.13]

    Будем далее называть элементарную реакцию линейной, если в соответствующем элементарном акте принимает участие только одно промежуточное вещество (включая и свободную поверхность катализатора в том смысле, как отмечалось выше). При числе промежуточных веществ более одного такую элементарную реакцию именуют нелинейной. Соответственно можно говорить о линейных и нелинейных стадиях, о линейных и нелинейных механизмах. Линейные механизмы являются в некотором роде простейшими механизмами гетерогенных каталитических реакций. Так, если справедлив закон действующих масс Лэнгмюра — Темкина, скорости всех стадий линейного механизма линейны по концентрациям промежуточных веществ и т. п. [c.15]

    Развитие кинетики гетерогенно-каталитических реакций неразрывно связано с именами А. А. Баландина, С. 3. Рогинского, М. И. Темкина, Г. К. Борескова, А. В. Фроста, Н. И. Кобозева и многих других. Новые идеи этих ученых разрабатывались не только их учениками и сотрудниками в нашей стране, но и рядом зарубежных ученых. Следует отметить, что поворотным пунктом на пути создания современной кинетики гетерогенных реакций послужили первые работы А. А. Баландина (1928—1929) по кинетике таких реакций в потоке. Теория процессов на неоднородных поверхностях разработана С. 3. Рогинским. Кинетика реакций в твердой фазе разрабатывалась у нас в связи с проблемами катализа С. 3. Рогинским, Б. В. Ерофеевым и их сотрудниками. Проблемы макрокинетики в катализе широко представлены в работах [c.8]

    Уже в 1931 г. было предположено [15], что медленной стадией при разложении аммиака может быть десорбция атомов азота. В последующем десятилетии очень детальное изучение синтеза и разложения аммиака в условиях, применяемых в промышленности, и в особенности работы, проведенные под руководством Темкина, Брунауэра и Эммета, Франкенбурга и X. С. Тэйлора, показали, что скорость адсорбции азота определяет скорость синтеза, а скорость его десорбции — скорость разложения аммиака. Недавно опубликованы превосходные обзоры [16, 17] этих исследований, в которых обращено большое внимание на разнообразие методов, использованных для получения данных по кинетике названных реакций. Для доказательства того, что поверхностные реакции протекают быстро, были использованы меченые атомы [18. Измерение поверхности катализаторов [19] сделало возможным более прямое сопоставление скоростей реакций на различных катализаторах. Было проведено также тщательное сравнение [20—22] скоростей адсорбции со скоростями реакций. При изучении хемосорбции частиц каждого типа на основе полученных результатов были проверены различные изотермы. Массивные катализаторы и их поверхности исследовали рентгенографически, пытаясь связать [16] каталитическую активность с кристаллической структурой . Рентгенографию и измерение величины удельной поверх- [c.244]

    Кинетические уравнения, основанные на различных механизмах взаимодействия катализатора и реакционной среды, выведены в работах Ф. Ф. Волькенштейна [16], М. И. Темкина [17], Г. К. Борескова [18], Будара [19], И. И. Иоффе [21] и А. Я. Розовского [22]. Многочисленные кинетические уравнения гетерогенно-каталитических реакций собраны в обзоре Шнейдера и Крауса [20]. [c.111]

    Изменение давления, влияя на величину летучести адсорбированного слоя, также будет вести к сдвигу реакции на другие места поверхности катализатора, как это видно из соотношения (И1.51). При высоких давлениях константы скорости адсорбции и десорбции, как и константа адсорбционного равновесия, становятся зависящими от давления, что, очевидно, должно приводить и к зависимости констант скорости реакции от давления. Влияние высоких давлений на скорость гетерогенных каталитических реакций было рассмотрено М. И. Темкиным [336] на примере синтеза аммиака. [c.243]


    Принцип безградиентных методов применительно к изучению кинетики гетерогенных каталитических реакций был впервые предложен и осуществлен М. И. Темкиным, Л. И. Лукьяновой и автором [522] в виде проточно-циркуляционного метода. [c.527]

    Большую роль в развитии статистической теории гетерогенных каталитических реакций сыграли работы Темкина с сотр. зз-з5 впервые с успехом применившего представление о неоднородности поверхности катализатора к сложному техническому процессу и давшему стройную теорию процессов на равномерно-неоднородных поверхностях. Им же впервые показана продуктивность применения теории переходного комплекса к контактным процессам. [c.221]

    Энергия активации реакции каталитического синтеза аммиака на Ре—N -кaтaлизaтopax. Энергия активации реакции каталитического синтеза аммиака рассчитывалась по методу М. И. Темкина и В. М. Пыжева [20]. Она оказалась зависящей от химического состава катализаторов, а также от температуры (рис. 3). [c.116]

    Квазистационарность. Сложный гетерогенно-каталитически про-цесс включает ряд стадий адсорбции и десорбции исходных веществ, промежуточных и конечных продуктов и реакций взаимных превращений веществ, адсорбированных на активной поверхности. Полное число стадий может быть весьма велико, и, чтобы разобраться в кинетике сложного процесса, необходимо учесть обычно наблюдаемые резкие различия между скоростями отдельных стадий. Ключ к этому дает теория стационарных реакций Хориути—Темкина [16, 171, которая опирается на понятие квазистационарности реакций, Ёпервые [c.87]

    Безградиентный проточно-циркуляционный метод осуществляют в условиях практического отсутствия в реакционной зоне перепадов концентраций, температур, скоростей. Принцип его применительно к изучению кинетики гетерогенных каталитических реакций был впервые предложен М. И. Темкиным, С. Л. Киперманом и Л. И. Лукьяновой [25]. Перемешивание в проточно-циркуляционной системе достигается применением интенсивной циркуляции реак-циолной смеси через катализатор в замкнутом объеме при непрерывном поступлении и выведении газового потока, причем количество циркулирующего газа должно значительно превышать количество вновь вводимого исходного газа. Циркуляция с большой скоростью происходит с помощью насосов механических, поршневых или электромагнитных, мембранных и других [2,3], Циркуляционный контур, состоящий из электромагнитного насоса (производительность 600—1000 л/ч), клапанной коробки двойного действия 2 и реактора 1 представлен на рис. 120. Высокая линейная скорость реакционной смеси в цикле и малая степень превращения обусловливают минимальные градиенты концентраций и температур, при этом слой можно рассматривать, как бесконечно малый, а реактор — как аппарат идеального смешения. Следовательно, скорость [c.286]

    Каталитическая реакция метана с водяным паром изучена многими исследователями, особенно русскими Бодровым, Аппельбаумом и Темкиным [57]. Эйкерс и Кэмп [581, используя никелевый катализатор на кизельгуре, изучили в интегральном реакторе при температуре 638 С и давлении 1 ат влияние концентрации на скорость этой реакции. Они нашли, что реакция имеет первый порядок по метану, что как СО, так и Oj являются первичными продуктами, а реакция конверсии СО либо совсем отсутствует, либо протекает очень медленно. Они предположили, что хемосорбция СН4 или расщепление СН4 на радикалы Hj и является стадией, лимитирующей скорость процесса, и определили, что энергия активации этой стадии равна 9 ккал1моль. [c.110]

    В 1930-х годах появились первые научные исследования по кинетике реакций, протекающих в проточных системах. Начало этим исследованиям было положено химиками — специалистами в области катализа А. А. Баландиным, Г. К. Боресковым, М. Г. Слинь-ко и М. И. Темкиным (СССР), А. Ф. Бентоном (США), Э. Винтером (Германия). В 1932 г. Г. К. Боресков впервые в качестве одной из основных задач конструирования и расчета трубчатых контактных аппаратов для сернокислотной промышленности назвал обеспечение максимальной скорости процесса и максимального использования контактного объема . Отмечая отставание теории и недостаточное знание закономерностей протекания даже таких важных каталитических процессов, как окисление сернистого газа, он предложил метод проведения этой реакции в условиях не одной оптимальной температуры для всего процесса, а оптимальной кривой изменения температур, характерной для каждого процесса и катализатора . Эти пионерские исследования были продолжены в 1936—1937 гг. с целью установления оптимальных условий контактного процесса — температурного режима и состава исходной газовой смеси. Работы эти следует считать своеобразной экстраполяцией химической кинетики на ту область, которая до 1940-х годов была объектом химической технологии, как науки сугубо прикладной, лишенной права на фундаментальные исследования. [c.152]

    М. И. Темкин, изучая синтез аммиака, пришел к выводу, что ускорение этого процесса в присутствии железа определяется активированной адсорбцией азота на поверхности катализатора. Тейлор установил, что не вся поверхность катализатора однородна и что каталитические реакции происходят только на отдельных местах, называемых активными центрами. На этих центрах и происходит активированная адсорбция. Э и центры могут отличаться друг от друга своей активностью. На разных центрах одного и того же катализатора могут катализироваться разные реакции. Например, никель ускоряет реакции Н2 + С02==Н20 + С0 и Ы02 + Н2 = Н0Ч-Н20. Введение метанасильно замедляет первую реакцию, но не замедляет вторую. Это объясняется тем, что молекулы СП/, адсорбируются на активнь1х центрах никеля, которые катализируют первую реакцию. Поэтому адсорбция метана тормозит процесс. Активные центры, на которых катализируется вторая реакция, остаются не отравленными метаном. Давно известно отравление платинового катализатора соединениями мыщьяка при контактном получении серной кислоты и другие случаи действия ядов. [c.64]

    Темкин О. Н., Зейгарник А В., Кузмин А Е. и др. Построение реакционных сетей гетерогенно-каталитических реакций Синтез Фишера - Тропша и родственные реакции // Изв. Акад. наук, сер. хим. 2002. № 1. С. 1-34. [c.867]

    М.И.Темкиным были выведены кинетические уравнения для скорости каталитической реакции на неоднородной поверхности, охва-тываюгцие все три указанных выше типа неоднородности. Например, для схемы реакции А В такое уравнение имеет вид [c.31]

    Если в реакции участвует только одно вещество, адсорбционное равновесие которого определяет степень заполнения, то скорость реакции окажется пропорциональной концентрации этого вещества в степени 1—а, где а — число, у которого нет никаких оснований быть целым. Таким образом, реакция оказывается дробного порядка по исходному веществу. Как мы покажем в главе II, примером может слуншть реакция углерода с кислородом — основная реакция весьма важного в технике процесса горения угля. В более сложных случаях, когда степень заполнения поверхности определяется не адсорбционным, а химическим равновесием, величина С представляет собой равновесную концентрацию адсорбирующегося вещества, а реакция имеет дробный порядок и тормозится продуктом, как в уже упоминавшихся примерах каталитического синтеза аммиака и метилового спирта. Так, для процесса синтеза аммиака на железном катализаторе, согласно Темкину и Пыжеву [14], скорость реакции определяется медленной активированной адсорбцией азота, причем адсорбированный азот находится в равновесии с аммиаком и водородом в газовой фазе, откуда [c.21]

    В последние два десятилетия исследованию гетерогенных окислительных реакций посвящается все большее количество работ (работы П. В. Зимакова, П. Г. Сергеева, С. С. Медведева, В. А. Ройтера, С. 3. Рогинского, Г. К. Борескова, М. И. Темкина, Н. Н. Ворожцова, И. И. Иоффе и др. в СССР Марека, Фразера, Шарло, Твигга и др. в Англии, США и Франции). В настоящее время насчитывается значительное количество работ по каталитическому окислению углеводородов, но лишь в некоторых из них раскрывается механизм процесса. Остальные работы являются по существу описанием наиболее выгодных условий проведения отдельных реакций. В табл. 1—3 приведены результаты исследований окисления некоторых углеводородов на различных контактах. [c.9]

    Каталитические свойства металлических катализаторов также изменяются при действии добавок. Особенно сильное действие оказывает введение металлоидных добавок. Кислород, захваченный массивной платиной, по данным Крылова [100], изменяет ее каталитическую активность при окислении водорода. Максимум активностп соответствует примерно количеству кислорода, необходимого для образования одного монослоя. При окислении газов на серебре кислород ие только участник окислительной реакции, но и активатор серебра. Исследуя сорбцию кислорода на пористом серебре, Темкин и Ку.лькова [75] показали, что через 185 час. серебро поглотило пять монослоев кпслорода, изменивших электронные свойства серебра и его каталитическую активность. Хориути, Танабе п др. [295] установили сильное изменение каталитических свойств платины, никеля и других металлов, наблюдаемое при введении галоидов. По данным Кемброна и Александера [108], а также по материалам различных патентов введение галоидов сильно изменяет активность серебряного катализатора. Добавки 0,001—0,05% Те и Se увеличивают избирательность серебра по отношению к реакции иолучения окиси этилена. [c.199]

    Механизм ХВВ в действительности представлял собой развитие некоторых более старых идей, согласно которым некоторые бимолекулярные каталитические реакции протекают как взаимодействие между молекулой и хемосорбированной частицей при соответствующих условиях столкновения молекулы из газовой фазы с хемосорбированным слоем . Так, Боденштейн [9] предположил, что каталитическое окисление аммиака происходит при взаимодействии молекулы аммиака из газовой фазы с кислородом, адсорбированным на поверхности платины. Бентон и Тэкер [10] предложили аналогичный механизм для реакции между закисью азота и водородом на поверхности серебра, по которому молекула газообразного водорода реагирует с адсорбированными атомами кислорода. Темкин и Михайлова [И] предположили, что молекулы газообразной углекислоты удаляют (хотя и не в скорость-определяющей стадии процесса) адсорбированные атомы водорода в реакции Но + -Ь СОг-—> НгО + СО на платине. Позднее Эйкен [12] объяснил свои экспериментальные данные по гидрированию паров гексена на никеле, приняв, что молекулы циклогексена реагируют при столкновении со слоем хемосорбированных атомов водорода. Шулер и Лейдлер [13] рассматривают рекомбинацию атомов, например [c.243]

    П. Механизм активации водорода, азота и кислорода на поверхности металлических катализаторов. Превращение о = Н2 р = Н2 реакции с тяжелым водородом. Механизм активации непредельных соединений при гидрировании. Каталитическая активность металлов. Работы Г. К. Ворескова. Полугидрированные формы. Работы Бяки, Элея. Кинетика и механизм каталитического гидрирования в жидкой фазе. Активная форма водорода при гидрировании. Значение параметров решетки катализаторов и ориентации кристаллов. Механизм синтеза аммиака на железных катализаторах. Преобладание энергетических факторов для реакции синтеза аммиака. Работы М. И. Темкина, [c.218]

    Пользуясь теорией, разработанной для поверхностей с однородными активными участками, часто не удается объяснить некоторые свойства реальных катализаторов, например наблюдаемое во многих случаях значительное отклонение не только кинетики каталитических реакций, но и изотерм адсорбции от теоретически ожидаемых. Эти отклонения, как теперь удалось установить, вызваны в большинстве случаев неоднородностью активных участков поверхности. Наиболее существенные успехи в разработке и математической формулировке теории процессов, протекающих на неоднородных поверхностях, достигнуты в последние годы советскими исследователями. Я. Б. Зельдович разработал рациональную статистическую теорию изотермы реального процесса адсорбции, которая дает возможность получить изотерму Фрейндлиха при больцмановском типе распределения отдельных участков поверхности по их активностям. С. Ю. Елович и Ф. Ф. Харахорин экспериментально доказали, что экспененциальное уравнение скорости активированной адсорбции, предложенное Я. Б. Зельдовичем и С. 3. Рогинским, соответствует определенной функции распределения участков поверхности по теплотам активации. С. 3. Рогинским разработана статическая теория каталитической активности и отравления катализаторов, кроме того, в общем виде рассмотрена проблема функций распределения участков поверхности по активности в связи с разработкой теории каталитического процесса 1. Большое принципиальное значение имеет разработанная М. П. Темкиным теория адсорбции и катализа на поверхностях, отличающихся равномерным распределением участков, на которые можно разделить поверхность реальных контактов, по их величинам теплот адсорбции и теплот активированной адсорбции. Разрабатывая термодинамику адсорбционного равновесия, М. И. Темкин дал рациональное толкование постоянной Ь уравнения Ленгмюра, связав ее простым соотношением с теплотой адсорбции. Серьезным достижением следует считать логарифмическую изотерму адсорбции, предложенную А. Н. Фрумкиным и А. И. Шлыгиным, которая позволяет теоретически обосновать возможность дробных порядков в кинетике каталитических реакций. [c.9]

    Теория каталитических процессов на неоднородных поверхностях, для наиболее распространенных случаев, увязывающая вместе вопросы адсорбционного равновесия, кинетики адсорбции и кинетики реакций,, была развита М. И. Темкиным [331, 422, 436]. Значительный вклад в развитие этого нонроса был внесен С. 3. Рогинским, подробно проанализировавшим на основе своего оригинального метода разнообразные случаи закономерностей процессов на неоднородных поверхностях, что суммировано им в монографии [54]. [c.174]

    Совершенно независимо от них Фрумкин с сотрудниками (Шлыгин, Бурштейн и др.) открыли группу аномалий в свойствах поверхностей. Так, в частности, при изучении поляризации металлических электродов ими открыта необычная логарифмическая изотерма адсорбции, которая была теоретически обоснована Темкиным при помощи представления о неоднородности поверхности. Результаты исследования каталитической реакции пара- ортопревращения водорода и других процессов также указывали на неоднородность поверхности. Темкину и его сотрудникам принадлежит большое число теоретических исследований по теории адсорб- [c.208]


Библиография для Темкина реакции на каталитической: [c.140]    [c.360]    [c.142]    [c.27]   
Смотреть страницы где упоминается термин Темкина реакции на каталитической: [c.351]    [c.376]    [c.19]    [c.48]    [c.212]    [c.129]    [c.173]    [c.608]    [c.698]    [c.214]   
Моделирование кинетики гетерогенных каталитических процессов (1976) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Каталитические реакции Реакции

Каталитические реакции Реакции каталитические

Реакции каталитические



© 2025 chem21.info Реклама на сайте