Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Осмий, катализаторы поверхность

    Метод каталитического обезвреживания газообразных отходов заключается в проведении окислительно-восстановительных процессов при температуре 75—500°С на поверхности катализаторов. В качестве носителей металлов, используемых как катализаторы (платина, палладий, осмий, медь, никель, кобальт, цинк, хром, ванадий, марганец), применяются асбест, керамика, силикагель, пемза, оксид алюминия и др. На эффективность процесса оказывает влияние начальная концентрация обезвреживаемого соединения, степень запыленности газов, температура, время контакта и качество катализатора. Наиболее целесообразное использование метода— при обезвреживании газов с концентрацией соединений не более 10—50 г/м . На низкотемпературных катализаторах при избытке кислорода и температуре 200—300°С окисление ряда низко-кипящих органических соединений (метан, этан, пропилен, этилен, ацетилен, бутан и др.) протекает нацело до СО2, N2 и Н2О. В то же время обезвреживание высококипящих или высокомолекулярных органических соединений данным методом осуществить невозможно из-за неполного окисления и забивки этими соединениями поверхности катализатора. Так же невозможно применение катализаторов для обезвреживания элементорганических соединений из-за отравления катализатора НС1, НР, 502 и др. Метод используется для очистки газов от N0 -f N02 с применением в качестве восстановителей метана, водорода, аммиака, угарного газа. Срок службы катализаторов 1—3 года. Несмотря на большие преимущества перед другими способами очистки газов метод каталитического обезвреживания имеет ограниченное применение [5.52, 5 54 5.62] [c.500]


    На поверхности катализатора бензол может адсорбироваться либо всей плоскостью, либо одним из ребер. По А. А. Баландину это будут соответственно секстетная и дублетная модели. В случае плоскостной хемосорбции (секстетная модель) размеры молекулы бензола и расстояния между атомами металла должны соответствовать друг другу. Мультиплетная теория А. А. Баландина по параметрам решеток металлов постулирует, что катализаторами гидрирования и дегидрирования могут быть только металлы никель, кобальт, медь, рутений, иридий, палладий, платина, родий, осмий,. рений. Это подтверждено экспериментально, за исключением меди, на которой гидрирование бензола часто не наблюдалось. Однако считают что это исключение кажущееся и незначительная активность меди объясняется энергетическими факторами. [c.131]

    Как мы уже видели, для реакции синтеза благоприятны низкая температура и высокое давление. Однако реакция практически не протекает без катализатора вследствие очень большой стабильности молекулы азота, что обусловлено высокой энергией разрыва связи N—N. Функции катализатора заключаются в образовании на каталитической поверхности нитридного соединения, которое затем гидрируется в аммиак. Связь азота с металлом достаточно слаба, тем не менее она дает возможность адсорбироваться молекулам синтезируемого аммиака. Связь азота с металлом слишком сильна для таких элементов, как литий, кальций и алюминий, которые образуют с азотом нитриды непосредственно в массе вещества. В первой серии переходных металлов оптимум между образованием поверхностного нитрида и десорбцией аммиака с поверхности получён для железа, которое, не образует нитрида непосредственно из азота, исключая случай очень высоких давлений (на порядок выше давлений синтеза), но легко образует его в реакции с аммиаком. Тем не менее железо быстро хемосорбирует азот и это и есть та адсорбция, которую обычно считают стадией, лимитирующей скорость всего процесса синтеза. Рутений и осмий, находящиеся в более высоких сериях переходных элементов, не образуют нитридов в массе и являются эффективными катализаторами синтеза. [c.158]

    За исключением летучих оксидов осмия и рутения оксиды стабильны в температурном интервале и реакционной среде, характерных для катализа. В большинстве условий оксиды сохраняют высокие поверхности вплоть до температур, приближающихся к 1000 °С. По этой причине оксиды алюминия и кремния обычно используют как носители катализаторов. Однако определенная реакционная среда может привести к потере стабильности этих оксидов. В частности, водяной пар приводит к росту кристаллов и агломерации при повышенных температурах [2]. Это накладывает ограничение на использование водяного пара в некоторых процессах при повышенных температурах. [c.115]


    НИЯ их в качестве катализатора. Азот, активный для синтеза, должен быть хемосорбирован на поверхности металла. Металлические осмий и молибден активны в условиях синтеза и стабильны, а железо в этих же условиях вначале активно, но затем быстро теряет активность. Небольшие добавки окиси алюминия, либо кислотных окислов типа двуокисей кремния или циркония и окисей щелочных и щелочноземельных металлов, повышают активность этих металлов, и вдобавок настолько значительно увеличивают продолжительность жизни железных катализаторов, что они с успехом могут конкурировать с более активными, но и более дорогими металлами. Промотиро-ванные железные катализаторы используются более широко, чем другие их действию было посвящено большое число исследований [56]. [c.293]

    Хемосорбция азота на железных катализаторах или на полученных испарением пленках железа представляет медленный активированный процесс. Установлено [60], что энергия активации на железном катализаторе изменяется от 10 ккал/моль при малых степенях заполнения почти до 21,5 ккал/моль при заполнении всей поверхности, а теплота адсорбции в этом же интервале заполнений — от 44 до 30 ккал/моль. Хемосорбция на вольфраме и на осмии также является активированной, причем на вольфраме она проявляется значительно сильнее, а на осмии — она очень слаба по сравнению с хемосорбцией на железе. [c.294]

    Подобный же результат был получен автором еще в 1930 г. совсем другим методом [77] для металлического катализатора. В случае дегидрогенизации бутана, рассмотренном выше, результат можно было получить благодаря осложнению реакции— появлению последующей после дегидрогенизации бутана реакции образования бутадиена. В случае дегидрогенизации декалина над осмием было использовано осложнение, вызываемое отравлением продуктом полимеризации. Анализ результатов измерения кинетики позволил установить [77], что в этой реакции при 270 в 1 сек из 100 адсорбированных молекул декалина лишь 4 молекулы превращаются в нафталин, а остальные 96 десорбируются с поверхности в газовую фазу в неизмененном виде. [c.71]

    Общая и эффективная удельная каталитическая активность сплавов больше, чем у чистых компонентов (см. рис.). Как показано ранее, с изменением химического состава меняется адсорбционная способность по водороду, энергия его связи, фазовый состав и структура катализаторов [1], а также связанные с этим величины их истинной и оптимально используемой поверхности. Все эти факторы так же, как различия в энергетической однородности поверхности и адсорбционной способности катализаторов по отношению к веществу и продуктам реакции, влияют на их активность и определяют оптимальные составы для данной реакции. Максимум эффективной удельной активности в реакции электровосстановления нитрометана (см. рис.) отвечает составу катализатора с 24 вес. % осмия, являющемуся однофазным твердым раствором на основе платины. [c.252]

    Пленки платины, палладия, рутения, родия, иридия, осмия, а также вольфрама в атмосфере водорода активировали изомеризацию я-парафинов, причем наиболее эффективны были те же режимы, что и в случае бифункциональных катализаторов (металл на кислотном оксиде), а наиболее активным металлом оказалась платина. Неактивными были чистые железо, кобальт и никель. Степень превращения я-парафина, отнесенная к единице поверхности металла, мало зависит от метода приготовления катализатора, поэтому наиболее эффективны нанесенные металлические катализаторы с большой удельной поверхностью. [c.139]

    Никелирование также требует сенсибилизации поверхности в растворе с двуххлористым оловом. В качестве катализаторов химического восстановления никеля могут служить кобальт (только из щелочных растворов), никель, рутений, родий, палладий, осмий, иридий, платина, а также менее благородные металлы— железо, алюминий, бериллий и титан. [c.147]

    Ранее была изучена активность бинарных металлических адсорбционных катализаторов на основе палладия и варьируемых компонентов иридия и осмия при гидрировании циклогексена и аллилового спирта [1, 2]. Известно, что механизм жидкофазного гидрирования определяется в первую очередь степенью адсорбции водорода и непредельного соединения и энергией связи их с поверхностью катализатора. Пред- [c.27]

    Если рассматривать величины смещения потенциала как определенный спектр энергии связи катализатора с водородом, участвующим в процессе, то наблюдаемое небольшое анодное смещение потенциала, по мере роста содержания иридия и осмия в бинарных системах, говорит об участии в процессе водорода, лишь слабо связанного с поверхностью катализатора. В этом случае процесс лимитируется активацией непредельного соединения [4, 5]. [c.28]


    По мере роста содержания иридия и осмия в бинарных системах катализаторов происходит уменьшение смещения потенциала на всех тинах носителей как при гидрировании циклогексена, так и аллилового спирта. По-видимому, это может быть вызвано усилением энергии связи металл-водород и возможным возрастанием скорости возобновления активного водорода на поверхности катализатора [5]. Следовательно, для разбавленных металлических адсорбционных катализаторов энергетическое состояние поверхностно-активного водорода должно играть значительную роль в процессе гидрирования. [c.29]

    Важным фактором является однородность состава исходного сырья. В синтетическом метаноле могут содержаться различные примеси высшие спирты, альдегиды, кетоны, эфиры, непредельные соединения, масла. При наличии ацетона возможно его окисление с образованием муравьиной кислоты. Альдегиды, кетоны и масла при высокой температуре быстро осмо-ляются, а образующийся при этом кокс отлагается на поверхности катализатора и дезактивирует его. [c.171]

    После загрузки катализатора в конвертор его продувают несколько часов смесью водяного пара с воздухом при высокой температуре. Затем понижают температуру бани и в конвертор пускают смесь паров фталевого ангидрида и воды. Для восстановления активности катализатора, поверхность которого загрязняется продуктами осм.оления, его продувают паром и воздухом. [c.413]

    Наиболее типичным способом приготовления таких катализаторов является нанесение иа поверхность носителя какого-либо соединения каталитически активного металла, с последующим его восстановлением илн термическим разложением. Этим достигается резкое увеличение удельной активности металла и экономия его, что особенно важно, когда катализаторами являются такие дорогие металлы, как платина, палладий, осмий, иридий и др. Носитель не только способен в небольших пределах изменять активность катализатора ои является одновременно промотором, а иногда влияет и на избирательность нанесенных катализаторов (М, Е, Ададуров) и термическую сто11кость их. [c.351]

    Облегчить восстановление органических соединений при помощи каталитических реакций можно, помещая катализатор либо в массу электрода, либо на его поверхность. Такие электроды получили название химически модифицированных электродов (ХМЭ). Например, для определения аскорбиновой кислоты в щелочной среде применяется графитовый электрод, покрытый пленкой из перфторполиэлектролита, в который помещен комплекс осмия(III). Аскорбиновая кислота может быть также эффективно определена вольтамперометрически при использовании для изготовления ХМЭ угольной пасты, содержащей 0,25—1,0% тетраметил-я-фенилендиамина. В работе [87] приведены примеры применения ХМЭ с электрокаталитической функцией. [c.70]

    Большое значение имеют исследования структуры поверхности катализаторов. Согласно теории А. А. Баландина катализ происходит только при структурном и энергетическом соответствии реагирующих молекул данному катализатору (1929 г.). А. А. Баландин предсказал, что реакции каталитического гидрирования бензола и дегидрирования циклогексана могут идти только на переходных металлах, имеющих гранецентрированную кубическую структуру или гексагональную структуру и притом атомные радиусы строго определенных размеров. Шестичленные циклы образуют на октаэдрических гранях кристаллов металла шесть связей, валентный угол которых близок к тетраэдрическому углу. Этими условиями обладают п-алладий, платина, иридий, родий, осмий. Предсказание А. А. Баландина полностью подтвердилось. Другие металлы, имеющие такой же атомный радиус, но иную структуру или такую же структуру, но другой атомный радиус, не проявили каталитической активности в упомянутых реакциях. [c.54]

    Сопоставление каталитической активности материалов пе имеет смысла без измерения удельных поверхностей. Это совершенно отчетливо показано Ванпайсом [43] при проверке метанирую-щей активности переходных металлов. Ранее полученные данные соответствовали следующему ряду по мере снижения активности рутений>иридий>родий>никель>кобальт>осмий > >платина>железо>палладий [44]. В противоположность этому Ваннайс, основываясь на данных об элементарной металлической поверхности, обнаружил другой ряд рутений>железо> >никель>кобальт>родий>палладий > платина > иридий. Наиболее существенная разница найдена для железа, которое предшествующие исследователи считали плохим катализатором метанирования. Таким образом, реальная трудность состоит в создании и стабилизации высокоразвитой поверхности железных катализаторов [45], и существует необходимость разработки соответствующих методов. [c.46]

    О2 СН3ОН в спиртовоздушной смеси и зависящая от этого соотношения температура процесса, нагрузка на катализатор, высота его слоя и др Присутствующие в метаноле непредельные соединения вызывают отложение сажи в порах катализатора, а альдегиды и кетоны повышают кислотность формалина, осмо ляются и уменьшают активную поверхность катализатора Особенно много сажи выделяется в присутствии окислов железа, а отчасти и меди Рели катализатор понизил свою активность, то его осторожно прокаливают при 600—650 °С, частично освобождая от органических отложений, и дополнительно наносят 5-7 % Ае [c.146]

    Асбест можно покрыть двуокисью осмия. Промытый соляной кислотой и водой и прокаленный асбест вносят в водный раствор четырехокиси осмия. После пропитывания и размешивания в течение одного часа добавляют вычисленное количество гидразинхлоргидрата и раствора едкого натра, пока смесь не будет иметь щелочной реакции. После нагревания в течение 30 минут образуется двуокись осмия в виде черного осадка на асбесте. Осажденный катализатор отсасывают, промывают попеременно водой и слабой уксусной кислотой, сушат один день при 50° и в течение нескольких дней в эксикаторе над серной кислотой. Получается очень активный катализатор с хорошо гидрогенизирующей поверхностью. Двуокись осмия восстанавливается в металлический осмий в процессе гидрогенизации. [c.490]

    И состава электролита. Меньшие величины фг, устанавливающиеся в растворе H2SO4 на Os/Pt (0,46в) и электродах, богатых осмием (88 вес. %) — (0,55в), по сравнению с Pt/Pt (0,64в) и богатыми ею катализаторами (0,б7в) связаны, по-видимому, с ранним окислением их поверхности [1], что, согласно [8], должно уменьшить адсорбцию органического вещества и сдвиг потенциала электрода. [c.251]

    Баландин разработал теорию дегидрогенизационного катализа, исходя из той же основной идеи, на которой построена пространственная теория катализа, предложенная Langnmir OM, Adkins oM и Вигк ом. Согласно этой теории, каталитическая дегидрогенизация имеет место тогда, когда группа атомов на поверхности катализатора, расположенных известным образом и обладающих необходимой активностью, адсорбирует реагирующее вещество в определенным образом ориентированном положении. В связи с тем, что здесь имеет место одновременное действие целой группы атомов поверхности катализатора, упомянутая теория получила название теории мультиплетов . Платина, палладий, иридий, родий, медь, кобальт, никель, железо, цинк, осмий и р утений являются активными катализаторами они обладают структурой, отвечающей этим условиям. [c.102]

    Одновременно были начаты изыскания наиболее активного и дешевого катализатора синтеза аммиака. В истории развития каталитических процессов, пожалуй, никогда не проводилось столь обширных работ, как те, которые были предприняты немецкими фирмами. Без руководящей идеи о том, кахсова должна быть природа активной поверхности катализатора, исследовались каталитические свойства огромного числа различных соединений, были испытаны металлы почти всех групп периодической таблицы. Про Габера слагались анекдоты сохранился рассказ о том, как он открывал шкаф с химическими реактивами, брал первое попавшееся в руки вещество и тотчас опробовал его в качестве катализатора синтеза аммиака. Однако из огромного числа испытанных соединений активными оказались лишь немногие — железо, осмий, уран, молибден. Из них для технических целей наиболее подходящими явились сплавы железа с некоторыми другими металлами в чистом виде железо оказалось мало активным катализатором. Наибольшую активность проявила окись железа, восстановленная в расплавленном виде водородом. Но применять этот катализатор в промышленности не удалось, так как активность его быстро падает. Прибегли к помощи добавок, увеличивающих конверсию азота и повышающих термостойкость катализатора. [c.113]

    Чтобы реакция синтеза аммиака могла идти на каком-либо катализаторе, на нем должна происходить хемосорбция либо одного, либо обоих реагирующих веществ. Мнение, что диссоциативная адсорбция азота является самой медленной стадией синтеза аммиака, подтверждается данными из независимых источников и поэтому разумно, но-видимому, сделать вывод, что те металлы, которые слабо хемосорбируют азот (прочная хемосорбция должна ингибировать, а не усиливать реакционную способность) являются наиболее активными для синтеза аммиака. Вероятно, наиболее убедительным доказательством служит тот факт, что хотя большинство металлов способно адсорбировать водород, активными для синтеза аммиака являются только те металлы, которые могут хемосорбировать азот в виде атомов. Наиболее легко хемосорбируют азот переходные металлы, и эта тенденция возрастает при переходе от элементов, расположенных в правой части периодической системы, к элементам, находящимся в ее левой части, что следует из увеличения теплоты адсорбции азота, уменьшения энергии активации адсорбции и повышенной тенденции к образованию нитридов. Экспериментальные данные, полученные с помощью метода вспышки (разд. 3.2.8.1), показывают, что существуют две формы хемосорбированного азота, одна из которых слабее удерживается на поверхности, чем другая [127—129]. Был сделан вывод, что для азота, адсорбированного в виде атомов, наиболее вероятна слабая хемосорбция. Кроме того, теплота адсорбции азота на большинстве металлов велика, а некоторые металлы, особенно железо, требуют энергии активации для адсорбции азота в атомарном состоянии [130]. Вероятно, что кратность связи между металлом и атомарным азотом равна 3, и поэтому не является неожиданным тот факт, что наблюдаются высокие теплоты адсорбции и низкие степени заполнения поверхности. Поскольку металлы VIII группы, расположенные после осмия, обладают меньшим числом вакантных -орбиталей, чем Fe, Ru или Os, становится понятным их неспособность как хемосорбировать азот в виде атомов, так и воздействовать на реакцию синтеза аммиака. [c.354]

    Уменьшение смещения потенциала, по мере роста содержания иридия и осмия, свидетельствует об усилении энергии связи металл-водород и о возможном возрастапни скорости возобновления водорода на поверхности катализатора. [c.31]

    Хемосорбция азота в атомарной р-форме легче всего идет на металлах, имеющих в -полосе три или большее число вакансий, т. е. на Та, Мо, Т1, 2г, Ре. Сюда же можно отнести такие элементы, как Са и Ва. Железо адсорбирует азот при низких температурах с выделением тепла в количестве от 10 ккал-моль при 0 = О до 5 ктл-моль при 0=1. Возможна также активированная адсорбция азота, при которой теплоты адсорбции изменяются от 70— 40 ктл-моль" при 0 =0 до 16 ккал-моль при 0=1. Имеются данные, свидетельствующие, что при 6 = 1 на один атом азота приходится пять атомов поверхности железа. Однако это состояние временное, так как азот может растворяться в а-железе до количеств, соответствующих составу РегЫ. При нагревании такого азотированного железа происходит выделение молекулярного азота по бимолекулярной реакции. Кажущееся уменьшение ДЯ с заполнением поверхности скорее может быть обусловлено растворением в объеме, чем поверхностным взаимодействием. Изотопный обмен у азота легко проходит при 250° на осмии и при примерно 450° на молибдене и на промотированных железных катализаторах, но при температурах выше 1100° К обмен следует проводить на вольфраме. Промоти-рованные железные катализаторы, используемые для синтеза аммиака, обычно готовят восстановлением в водороде при 500° смеси 95% Рвз04 с 4—5% А Од и О—1% К2О. [c.164]

    Химическое меднение производят в щелочных растворах, которые содержат соли двухвалентной меди, восстановитель (обычно формалин), щелочь для поддержания оптимальной величины pH (процесс протекает в сильно щелочной среде), комплексообразователи и стабилиза торы. Покрываемая поверхность должна обладать свой ствами, катализирующими реакцию восстановления меди В качестве катализаторов используют серебро, золото платину, палладий, иридий, родий, осмий, которые будучи нанесены тонким слоем на обрабатываемую поверхность, активируют ее, способствуя осаждению первоначального слоя меди. Далее процесс восстановления меди протекает автокаталитически. [c.175]

    Установив этот факт на платиновом катализаторе, мы, естественно, обратились к другим металлам VIII группы периодической системы. Казалось важным установить возможность прохождения указанной выше конфигурационной изомеризации на поверхности родиевого, осмиевого, иридиевого и палладиевого катализаторов. Интересно было также сравнить (если изомеризация в перечисленных выше случаях имеет место), сколь быстро идет эта реакция на различных металлах и при каких температурах получаемые смеси являются равновесными. Из работы Кемболла с сотр. [2], посвященной механизму дейтерообмена гомологов циклопентана и опубликованной в 1962 г., следовало, что палладий и родий, так же как и платина, способствуют протеканию изомеризации стереоизомерных циклопентанов. В отношении осмия и иридия вопрос оставался открытым. Второй круг интересовавших нас вопросов касался реакции гидрогенолиза пятичленного кольца в присутствии перечисленных выше катализаторов. Известно [3], что на поверхности платинированного угля гидрогенолиз циклопентана и его гомологов проходит легко с образованием парафиновых углеводородов наоборот, на палладированном угле эта реакция совсем не идет [4]. О возможности гидрогенолиза на поверхности родия, иридия и осмия в литературе сведений нет. [c.240]

    Гидрирование 3-тиолен-1,1-диоксида на иридии и осмии исследовано в среде пропанола-2 с добавкой 10 мае. % тиолан-1,1-диоксида при 20 °С и Р = 5 МПа (табл. 6.4) [42]. В присутствии иридиевой черни исчерпывающее восстановление 3-тиолен-1,1-диоксида происходит за 5 мин g = 10.7 г л , [ЗОз] < 0.03 ммоль Л ). Начальная скорость реакции в кинетической области (при конверсии 20 %) составляет 0.39 моль ч (г Кт)Иридий, нанесенный в количестве 1-2 мае. % на у-А120з, проявляет несколько более высокую активность, чем иридиевая чернь ( = 0.5 моль ч (г Кт) ). Возможно, дисперсность иридия в нанесенном катализаторе несколько больше, так как константа скорости реакции на нанесенном металле, отнесенная к единице его поверхности, совпадает с величиной, найденной для иридиевой черни. Катализатор [c.240]


Смотреть страницы где упоминается термин Осмий, катализаторы поверхность: [c.134]    [c.431]    [c.103]    [c.114]    [c.54]    [c.316]    [c.177]    [c.16]    [c.111]    [c.446]    [c.61]    [c.162]    [c.407]    [c.84]   
Структура металических катализов (1978) -- [ c.301 , c.316 , c.326 ]




ПОИСК





Смотрите так же термины и статьи:

Катализатора поверхность

Осмий

Осмий осмий



© 2025 chem21.info Реклама на сайте