Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ароматические спирты нитросоединения

    Циклодиены, ферроцены и другие ценовые соединения на основе циклопентадиена, ароматические углеводороды, ароматические спирты, нитросоединения, винилфураны [c.250]

    Вне кривой КТР имеется однофазная система, т. е. полное смешение растворителя с углеводородом. К числу растворителей, обладающих этими свойствами, относятся спирты, кетоны, альдегиды, ароматические амины, нитросоединения, фенолы, жидкий 502 и ряд других. [c.73]


    Как правило, жидкофазное гидрирование нитросоединений проводят в присутствии растворителя, которым может служить и образующийся в результате реакции амин. Свойства растворителя существенно влияют на скорость гидрирования. Гидрирование быстрее протекает в спиртах и в воде и медленнее — в ароматических углеводородах вследствие их сорбции на активных центрах катализатора. В последнее время испытано гидрирование нитросоединений в водной эмульсии. [c.122]

    А. жирного ряда получают взаимодействием спиртов с аммиаком А. ароматического ряда — восстановлением соответствуюш,их нитросоединений. А. используется в производстве красителей, лекарственных веш,еств (сульфаниламидных препаратов), высокомолекулярных соединений и др. [c.16]

    При действии ли двухвалентного олова, растворенной в избытке щелочи, на ароматические нитросоединения образуются азосоединения. Эта реакция имеет общий характер Операция состоит в растворении необходимого количества хлористого олова в избытке раствора едкого натра и в последующем прибавлении полученного прозрачного раствора к нитросоединению, растворенному в спирте нитросоединение можно также суспендировать в щелочном растворе, нагревая смесь с обратным холодильиико.м на водяной бане и перемешивая ее механической мешалкой. По окончании восстановления непрореагировавшее ннтросоединение отгоняют с водяным паром, а азосоединение отделяют фильтрованием. [c.414]

    Скорость реакции передачи цепи зависит от природы и строения агента передачи цепи и макрорадикала. Обрыв цепи может происходить и в результате взаимодействия свободных радикалов с низкомолекулярными соединениями (ингибиторами). К таким веществам относятся ароматические амины, нитросоединения, хиноны, некоторые спирты и др. Ингибиторы применяют для предотвращения самопроизвольной полимеризации при хранении и транспортировке мономеров и олигомеров. Иногда ингибиторы применяют для снижения скорости полимеризации и тогда их называют замедлителями. Эффективность ингибиторов характеризуют соотношением начальных скоростей полимеризации в отсутствие и в присутствии ингибиторов при одинаковых условиях реакции. [c.27]

    Номенклатура алифатических и ароматических галогенпроизвод-ных углеводородов, спиртов, одно- и двухосновных фенолов, простых эфиров, тиолов, тиоэфиров, нитросоединений и аминов. [c.193]

    К решению этой задачи пробовали подойти путем сравнения групп катализаторов, специфичных для различных каталитических реакций (табл. 224). Из этой таблицы вытекают группы элементов периодической системы, активных как катализаторы в реакциях определенного типа (табл. 225). Группы специфичных катализаторов для различных реакций отдельных соединений представлены в табл. 226. Табл. 227 позволяет сравнить группы катализаторов, типичные для реакций насыщенных углеводородов (парафинов), ненасыщенных углеводородов (олефинов, ацетилена), ароматических и терпеновых углеводородов. Группы катализаторов, характерные для реакций альдегидов, кетонов, кислот, спиртов, нитросоединений, простых и сложных эфиров, приведены в табл. 228. [c.3]


    Возникает также производство синтетических душистых веш.еств, сперва — ароматических соединений (ванилин, фенил-этиловый спирт, нитросоединения с запахом мускуса), а затем — гетероциклических (индол, кумарин), терпенов и соединений жирного ряда. Большинство этих соединений в природе не встречается. Усовершенствование фотографии и связанное с этим широкое распространение ее привели к созданию специального производства синтетических фотохимических материалов, к числу которых относятся проявители (гидрохинон, метол и.др.), сенсибилизаторы— вещества, повышающие чувствительность фотопластинок к определенным лучам солнечного спектра и представляющие собой красители высокой стоимости — гетероциклические соединения и др. [c.225]

    В качестве разбавителей МЭА были испытаны 123 органических соединения из 15 классов одноатомные и двухатомные спирты, эфиры, альдегиды, кетоны, нитрилы, амиды, лактамы, тиоэфиры и сульфоксиды, алициклические и ароматические соединения, нитросоединения, галоидные — хлорсодержащие. [c.69]

    Восстановление ароматических нитросоединений — наиболее часто используемый метод получения первичных ароматических аминов, поскольку из арилгалогенидов амины, как правило, получить нельзя (разд. Г, 2.2.2), Алифатические нитросоединения трудно доступны, кроме того, алифатические амины могут быть в общем легко получены из спиртов или алкилгалогенидов и аммиака (разд. Г, 2.5.4) либо каталитическим гидрированием нитрилов (Г,7.1.8.1). [c.226]

    Алкены < ароматические углеводороды < галогенированные соединения и сульфиды < простые эфиры < нитросоединения < сложные эфиры спирты амины < сульфоны < сульфоксиды < амиды < карбоновые кислоты. [c.282]

    Каталитическое восстановление ароматических нитросоединений водородом в щелочной среде ведет к образованию азосоединений и аминов Процесс ведут в жидкой фазе в присутствии органического растворителя при 90—130° под давлением. Наилучшими растворителями являются низшие вторичные алифатические одноосновные спирты, причем отношение количества растворителя к нитросоединению колеблется от 0.5 2 до 0,66 1. Для благоприятного течения реакции необходимо присутствие небольшого количества воды. В качестве щелочи можно применять как органические, так и неорганические основания в количестве [c.380]

    При получении азосоединений необходимо, чтобы азоксисоединение не выпадало в осадок, а оставалось в растворе для дальнейшего восстановления. Этого достигают добавлением к католиту спирта или солей ароматических сульфокислот. Интересно отметить, что не было ни одного сообщения об электролитическом восстановлении нитросоединений с большим молекулярным весом до азосоединений. Температуру поддерживают близкой к точке кипения католита, с тем чтобы увеличить скорость реакции между гидразосоединением и нитро- или нитрозосоединением. Наиболее обычным является применение никелевых катодов, однако при работе с растворами сульфонатов используют фосфористые бронзы. [c.335]

    В реакциях гидрирования окись хрома применяется реже, чем в процессах дегидрирования. В прикладном плане используются сложные Си—Сг- и Ni—Сг-контакты для селективного гидрирования С=С-связи в ненасыщенных спиртах, альдегидах, ароматических углеводородах. Эти же катализаторы ведут процессы деструктивного гидрирования сложных эфиров, восстановления нитросоединений до аминов и др. [244, 245]. [c.90]

    При нитровании веществ, не содержащих соединений типа бензола, например нефтяных фракций, содержащих углеводороды от до i,, получаются продукты, которые в смеси со спиртом и бензолом. могут при.меняться в качестве растворителей для нитроклетчатки a . Прибавление к нефтяным фракциям нитросоединений понижает их те.мпературу воспламенения и вспышки, и для этой цели часто применяют соединения, полученные при нитровании ароматических углеводородов, например бензола и толуола, или при нитровании фракций, полученных при разгонке керосина . [c.1137]

    Свойства. Нитросоединения жирного ряда представляют собой жидкости, не растворимые в воде, но хорошо растворимые в спирте и эфире. Ароматические нитросоединения — жидкие или твердые вещества со специфическим запахом, обычно желтоватого цвета. Очень важным свойством нитросоединений является их способность при восстановлении переходить в первичные амины. В качестве восстановителя обычно применяют металлы, например железо, в кислой среде  [c.155]

    Приведенные данные показывают, что хроматографией с цветными индикаторами могут быть количественно определены ароматические и алифатические амины, спирты, фенолы, кетоны, кислоты, ароматические и алифатические нитросоединения, хлориды, а также некоторые ненасыщенные углеводороды. [c.59]

    Форму, аналогичную кривой 2 рис. 3.9, имеют кривые зависй-мости 0орг от Ег на для многих веществ спиртов, альдегидов и гликолей со сравнительно небольшой длиной цепи (лс<4), ряда ароматических соединений, нитросоединений и др. [c.114]

    Детектор электронного захвата. Вторым типом ионизационного детектора является детектор электронного захвата. В нем газ-носитель, выходящий из хроматографической колонки, ионизуется под воздействием потока частиц от некоторого радиоактивного источника обычно это либо Т1Н2, содержащий некоторое количество Н, либо никелевая фольга, содержащая f Ni (оба изотопа — р-излучатели, хотя могут быть использованы и а-излучатели). Образующиеся ионы собирают и измеряют их концентрацию с помощью электродов, усилительная же система подобна той, которую используют в пламенно-ионизацион-ном детекторе. Однако принцип действия в этом случае значительно отличается тем, что зоны растворенного анализируемого вещества обнаруживают по вызываемому ими уменьшению постоянного ионного тока. Это уменьшение связано с тем, что степень ионизации резко зависит от концентрации свободных электронов в детекторе, а некоторые химические частицы чрезвычайно эффективно захватывают свободные электроны. Минимально обнаруживаемый поток пробы для веществ с высоким сродством к электрону, например для галогензамещенных соединений, около, 10- з г/с, и этот детектор, таким образом, значительно более чувствителен для таких частиц, чем пламенно-ионизационный детектор. Детекторы электронного захвата чувствительны к соединениям, содержащим галогены, фосфор, свинец или кремний, а также к полиядерным ароматическим соединениям, нитросоединениям и некоторым кетонам. Пестициды, например, содержат фосфор или хлор, поэтому этот детектор идеально подходит для измерения низких уровней этих соединений. Можно также вводить атомы галогенов в соединения, к которым зтот детектор не чувствителен. Например, кислоты можно этерифицировать фторированными спиртами, а спирты и амины обработать фторангидридами кислот. [c.583]


    Карбонилы кобальта также катализируют восстановление ароматических спиртов и ке-тонов (1137, 1138]. На скелетном кобальте весьма селективно идет восстановление метилаце-тилфурана, в то время как на никеле в значительной степени образуются продукты гидрогенолиза [764]. Оксимы, нитрозо- и нитросоединения легко восстанавливаются в водно-щелочных и спиртовых растворах на Ni-Ренея [768, 1290, 1291, 1306—1308, 1346, 1401, 1871, 1893— 1961]. [c.729]

    Для установления структуры углеводородов, входящих в состав пятой фракции 170—179° ароматических углеводородов, последняя в количестве 1,73 г нитровалась аналогично предыдущим опытам. Полученное нитросоединение после обработки эфиром было перекристаллизоваио из спирта, ацетона и бензола. [c.82]

    В качестве сенсибилизаторов исследовано большое число вв 1ССТВ. Эффективными сенсибилизаторами являются карбонильные )единения спирты, амины, нитросоединения, соединения, содержащие галогены и серу, бензол и другие ароматические углевО роды. [c.59]

    АМИНЫ — соединения, образуюш,ие-ся при замещении атомов водорода в молекуле аммиака органическими радикалами. Амины делятся на первичные NH2, вторичные 2NH и третичные / зМ. По количеству аминогрупп в молекуле различают моно-, ди-, триамины и т. д. В природе распространены сложные А.— алкалоиды и гетероциклические. Современный промышленный способ получения А. жирного ряда заключается во взаимодействии спиртов с аммиаком в присутствии катализаторов. А. ароматического ряда можно получить 1ГО реакции Зинина восстановлением со-ответствующик нитросоединений или из фенолов и аммиака. А. очень важный класс органических соединений, являющихся полупродуктами в производстве азокрасителей и других красителей, многих лекарств, высокомолекулярных соединений и др. [c.23]

    В отличие от указанных методов нами предложен синтез Р-(4-аминофенил)зтилового спирта из нитрозфира р-(4-нит-рофенил)зтилового спирта с последующим восстановлением его гидратом гидразина в присутствии никеля Ренея. Восстановление проводится аналогично описанным в литературе методам получения ароматических аминов из нитросоединений [4, 5]. Преимуществами зтого метода являются сокращение количества стадий синтеза (см. примечание I), значительное увеличение выхода (до 90%) и устранение дополнительной очистки продукта. [c.7]

    Совершенно понятно, что лучшие разделяюшие свойства сложных эфиров и карбаматов связаны с наличием полярной карбонильной группы, которая вызывает увеличение удерживания полярных сорбатов. Исследования величин к для серии соединений с возрастающей полярностью на колонке с ТБЦ и колонке с трибензилцел-люлозой дали подтверждающие результаты. Если рассчитать отношение величин к (к для колонки с ТБЦ в знаменателе) для такой серии соединений, то это отношение <2 для насыщенных и хлорированных углеводородов, 2 для ароматических углеводородов с неполярными заместителями и > 3 для амидов, спиртов, лактонов, сульфоксидов и алифатических нитросоединений [52]. [c.117]

    Их применяют для разделения алифатических, ароматических и нафтеновых углеводородов, галогенированных углеводородов, спиртов, фенолов, альдегидов, кетонов, перекисей, жирных и дикарбоновых кислот, аминокислот, пептидов, нуклеиновых кислот, нитросоединений, серусодержащих соединений, эфиров органических кислот, глицеридов, липидов, стероидов, аминов, НАД-гидразонов и НАД-аминокислот, алкалоидов, витаминов, терпенов, антибиотиков, пестицидов, антиокислителей, поверхностно-активных веществ, неорганических иоков. Крупнопо ристые силикагели используются также в качестве носителей катализаторов. [c.207]

    Интенсивность пика молекулярного иона зависит от стабильности самого иона. Наиболее стабильными молекулярными ионами являются ионы чисто ароматических систем. Если имеются заместители, которые дают преимущественное направление распада, то пик молекулярного иона будет менее интенсивным, а пики осколков относительно возрастут. Вообще ароматические соединения, сопряженные олефины, насыщенные циклические соединения, некоторые серусодержащие соединения и короткие неразветвленные углеводороды будут давать заметный пик молекулярного иона. Пик молекулярного иона обычно легко выявляется в неразветвленных кетонах, сложных эфирах, кислотах, альдегидах, амидах, простых эфирах и галогенидах. Пик молекулярного иона часто не идентифицируется в алифатических спиртах, аминах, нитритах, нитратах, нитросоединениях, нитрилах и в сильно разветвленных соединениях. [c.40]

    Температура гидрирования зависит от природы гидрируе.мого вещества. Так, например, этилен и его гомологи восстанавливаются при 150—200°, тогда как для гидрирования ароматических углеводородов необходима температура около 200°. Этим же способом можно пользоваться для гидрирования ненасыщенных кетонов и альдегидов, равно как и для восстановления альдегидов и кетонов в соответствующие спирты и превращения нитросоединений в амины. [c.21]

    Кроме того, на значения 1/3 может оказывать влияние адсорбция самого деполяризатора или продуктов электрохимической реакции. Интересные результаты были получены при исследоваиии влияния поверхностноактивных веществ на восстановление органических нитросоединений [52—55, 115—117]. По-видимому, при восстановлении ароматических нитросоединений в щелочной среде первая стадия электродного процесса, соответствующая переносу первого электрона, не тормозится поверхностноактивными веществами. В ирисутствии поверхностноактивных веществ (например, камфоры) замедляется только последующая стадия электродного процесса, в течение которой происходит перенос трех или пяти электронов (последнее в случае нитроанилина) с образованием соответствующих замещенных гидроксиламина или амина. Торможение второй стадии процесса в присутствии иоверхностноактивных веществ вызывает расщепление первоначальной простой волны на две. Первая волна появляется при обычных потенциалах, в то время как вторая сдвинута к отрицательным потенциалам. Сдвиг ее зависит от вида и концентрации поверхностноактивных веществ [116]. Интересно, что этот эффект, вызываемый некоторыми поверхностноактивными веществами (например, дифенилсульфоксидом, три-фенилфосфииом), можно наблюдать даже в безводном метиловом спирте 115]. Следует отметить, что в кислой среде, в которой нитрогруппа про-тонирована, поверхностноактивные вещества препятствуют переносу даже первого электрона, так что, например, в случае нитроанилина волна его целиком сдвинута к отрицательным потенциалам. В первой стадии одноэлектронного восстановления ненротонированной молекулы нитросоединения возникает анион-радикал [c.312]

    Адсорбция продуктов реакции при восстановлении па вращающихся дисковых электродах из золота, серебра и платины п-хлор-литробензола и тг-нитротолуола в щелочном растворе, содержащем 15% метилового спирта, вызывает раздвоение волны нитросоединений [445], подобно тому как это наблюдается на ртутном капельном электроде в присутствии поверхностно-активных веществ см. стр. 89). Торможение обратимого электродного процесса продуктами электрохимической реакции при восстановлении иод- тилата хинолина проявляется в искривлении логарифмического графика волны [446]. В предположении, что перегиб появляется при полном покрытии поверхности электрода продуктами, рас считана площадь, занимаемая одной адсорбированной частицей продукта, образуемого при переносе электрона на ион N-этил-хинолиния, которая оказалась равной 37 А . Торможение электродными продуктами часто наблюдается при восстановлении ароматических альдегидов и кетонов (о чем будет сказано в главах Vni и X этой книги) и во многих других случаях. [c.96]

    Ароматические нитросоединения нитробензол, нитротолуол, хлорнитро-бензолы, бромнитро-бензолы, 1-нитро-нафталин, 2,4-динитротолуол Этгп Ы-Арилгидроксил- амины Гид Продукты гидрогенолиза Ir(> 70%)—Pt в спирте или водно-сииртовой смеси, 20° С [265] рогенолиз Ir (5—10%) на силикагеле. Ряд каталитической активности Ru > Rh > г > Pd = Pt [49]  [c.784]

    Ароматические нитросоединения N-Apилгидpoк ил- амины Pt—Ir 0 70%) в спирте или водно-спиртовых смесях. 20—25° С [265] [c.836]

    В области гомогенного гидрирования олефинов достигнуты ббльшие успе -и, чем в гидрировании соединений с другими функциональными группами. Гидрирование ароматических соединений рассматривалось в разд. 8.2, а вопросы, касающиеся восстановления ацетиленов, затрагивались в ходе всего предыдущего изложения. Кобальтцианидная система была использована в качестве катализатора гидрирования аллильных производных до пропилена, эпоксидов до спиртов, бензила до бензоина, смеси пировиноградной кислоты и аммиака до аланина, оксимов до аминов, нитробензола до анилина, азоксибензола, азобензола и гидразобензола и, наконец, алифатических нитросоединений до аминов (полный перечень соединений и условия проведения реакций даны в работах [2а] и [3]). [c.72]

    Очень большое число ароматических нитросоединений восстановлено до азоксисоединений (см. табл. 71, стр. 375). Эта реакция является, по-видимому, обшей, за исключением о- и п-нитрофеиолов и анилинов, N- и N,N-3aMeui,eHHbix анилинов и некоторых иространственнозатрудненных нитросоединений, которые восстанавливаются до аминов даже в щелочном растворе. Восстановление нитросоединений до азоксисоединений обычно проводят на никелевом катоде, суспендируя или растворяя нитросоединение в щелочном католите. При проведении этой реакции применяют катод с низким перенапряжением водорода, с тем чтобы азоксисоединение восстанавливалось медленно. Использована нерастворимость азоксисоединений, которые осаждаются из раствора и выходят таким образом из контакта с катодом. Для восстаповлепия малорастворимых нитросоединений к католиту добавляют спирт. Нередко применяют свинцовые и ртутные катоды. В одном случае, когда азоксисоединение было растворимо, хорошие выходы были получены при ограничении количества тока (см. стр, 330). [c.335]

    Принятые обозначения р ас твори те лей (диопергаторов)г С — спирты X — хлорированные углеводороды Е — сложные эфиры ф — фуран г — гли-коли А — ароматические углеводороды и — алифатические углеводороды К — кетоны Н — нитросоединения В — вода. [c.156]

    Основные направления научных исследований — термохимия и катализ. Провел (1878—1897) термохимические исследования сульфидов, селенидов, хлоридов и бромидов металлов. Изучал кинетику реакций фосфорных кислот, оиери-зуя понятием константы скорости. -1аиболее известны его работы по катализу. Совместно с Ж- Б. Сан-дераном впервые вместо благородных металлов использовал в качестве катализаторов никель, медь, коба.льт, железо, Также совместно с Сандераном осушествил (1897) прямое одностадийное жидкофазное гидрирование этилена до этана в присутствии мелкораздробленного никеля как катализатора. Провел (1899) каталитическое гидрирование других олефинов, ацетиленовых и ароматических углеводородов, в частности бензола— в циклогексан (1901, совместно с Сандераном), На никелевом катализаторе синтезировал (1902) из окиси углерода и водорода метан. Приготовил смесь заранее известных углеводородов как модель нефти. Установил возможность каталитического восстановления окислов азота и нитросоединений. Исследовал (1907—1911) каталитические превращения спиртов, [c.442]

    Групповые реакции известны для соединений с различными функциональными группами, например для аминов, галогенопроизводных, альдегидов, кетонов, фенолов, ненасыщенных соединений, нитросоединений, сложных эфиров, спиртов, ароматических углеводородов и простых эфиров. Так, обесцвечивание брома указывает па двойные связи и окпсляющпеся группы (С2Н4+Вг2 = С9Н4Вг2), а выделение водорода при действии металлического натрия характерно для спиртов и других соединений, содержащих кислые атомы водорода [КОН+ а(кр) = [c.216]


Смотреть страницы где упоминается термин Ароматические спирты нитросоединения: [c.299]    [c.399]    [c.303]    [c.281]    [c.106]    [c.586]    [c.28]    [c.282]    [c.213]   
Катализ в неорганической и органической химии книга вторая (1949) -- [ c.53 , c.154 , c.155 , c.514 , c.519 ]




ПОИСК





Смотрите так же термины и статьи:

Нитросоединения

Нитросоединения ароматически

Нитросоединения аци-Нитросоединения

Спирты ароматические



© 2024 chem21.info Реклама на сайте