Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Плавление деформации

    В первом случае термомеханическая кривая имеет форму, показанную на рис. 11.19. Если полимер достаточно глубоко закристаллизован, высокоэластическое состояние практически полностью подавляется, и в широком интервале температур он не обнаруживает заметных деформаций. При подходе к температуре плавления деформация резко возрастает и достигает максимального значения. [c.86]

    Высокоэластическое состояние в кристаллических и аморфных полимерах возникает неодинаково. На рис. 2.1. б показаны термомеханические кривые кристаллических полимеров. До температуры плавления деформации полимера малы (участок АБ). После достижения температуры плавления полимер переходит в высокоэластическое состояние (участок В Г). Плавление кристаллических полимеров происходит в определенном температурном интервале, что объясняется наличием в полимере кристаллов различны.х размеров маленькие кристаллы плавятся при более низких температурах, че.м большие. [c.49]


    Температура плавления (деформации) фотослоя. [c.130]

    В качестве модификаторов трения применяют коллоидные дисперсии не растворяющихся в масле соединений (дисульфид молибдена, графит). Однако наибольшие перспективы применения (вследствие образования более стабильных растворов) имеют маслорастворимые соединения, среди которых наивысшую эффективность проявляют маслорастворимые соединения молибдена (МСМ) [279]. К настоящему времени механизм действия МСМ изучен мало и может быть сформулирован лишь в виде гипотез. Предполагается, что взаимодействие МСМ с поверхностями трения протекает по типу пластической деформации с образованием эвтектической смеси, обладающей пониженной температурой плавления. Последняя обеспечивает невысокие значения коэффициента трения. [c.264]

    Литиевый полиизопрен не кристаллизуется в недеформированном состоянии. Он характеризуется очень малой способностью к кристаллизации и при растяжении с заметной скоростью кристаллизация происходит лишь при больших относительных удлинениях способность этого каучука к кристаллизации была установлена по эффекту Джоуля. Более высокая регулярность построения макромолекул титанового полиизопрена обусловливает способность этого каучука к кристаллизации как в условиях деформации, так и при понижении температуры. Однако кристалличность его ориентированных вулканизатов несколько меньше, чем вулканизатов НК при любых (одинаковых) деформациях и температурах [15, 19], а температура плавления ниже (-7- 2 "С по сравнению с 4-f- 11°С у НК). Кристаллическая решетка синтетического полиизопрена является моноклинной и имеет такие же параметры, как и решетка НК. [c.205]

    Кислую футеровку изготавливают из кремнеземистых огнеупорных материалов (состоящих в основном из окиси кремния), имеющих кислый характер. Наиболее ча сто для изготовления кислой футеровки применяют кварциты. Кремнеземистые материалы имеют температуру плавления от 1650 до 1710 °С и температуру начала деформации под нагрузкой 0,2 МПа 1400.—1600 °С. Они хорошо противостоят воздействию кислых и основных шлаков. [c.297]

    Основную футеровку изготавливают из магнезитовых, известковых, доломитовых и других огнеупоров, в которых содержится преимущественно окись магния. Материалы отличаются высокой огнеупорностью, их температура плавления, как правило, выше 2000 °С температура деформации при 0,2 МПа колеблется от 1600 до 1700 С. Они хорошо противостоят воздействию основных шлаков. [c.297]

    В печах с неконтролируемой плотной газовой средой осуществляются процессы обжига, нагрева (для пластической деформации материалов), некоторые виды термической обработки материалов, плавления и т. д. [c.76]


    Разработан [35] метод определения модуля сдвига (жесткости) — отношения усилия сдвига, приходящегося на единицу площади поперечного сечения образца, к углу сдвига. По этому методу определяют деформацию бруска парафина, подвергнутого напряжению сдвига при различных температурах. Модуль сдвига парафинов при изменении температуры от 35 до 40°С изменяется в 9—15 раз, а пенетрация при тех же температурах — всего лишь в 1,8--2,5 раза. Воспроизводимость метода 5%. Модули сдвига весьма чувствительны к температуре. Кроме того, они неодинаковы у парафинов с одной и той же температурой плавления, но различного происхождения. Ниже приведены модули сдвига я пенетрации трех товарных парафинов (/ л 57—60°С) при различных температурах  [c.59]

    Такие свойства твердых тел, как плавление, возгонка, растворение, хрупкость, прочность на разрыв, упругие деформации и другие, зависят от прочности кристаллической решетки. Если в узлах решетки расположены молекулы или атомы, то прямую характеристику связи частиц в кристалле дает теплота сублимации. Если в узлах решетки находятся ионы, то энергия такой решетки, в соответствии с законом Гесса, будет больше теплоты сублимации на величину энергин, которую надо затратить, чтобы вызвать диссоциацию газообразных молекул на ионы. Задача теоретического вычисления энергии ионных кристаллических решеток была удовлетворительно решена Борном в 1918 г. и А. Ф. Капустинским в 1933 г. [c.81]

    Примером вещества с атомной решеткой является алмаз. Его кристаллическая решетка состоит из атомов углерода, каждый из которых связан ковалентными связями с четырьмя соседними атомами, размещающимися вокруг него в вершинах правильной трехгранной пирамиды — тетраэдра. Поскольку ковалентная связь образуется в результате перекрывания орбиталей соединяющихся атомов, которые имеют вполне определенную форму и ориентацию в пространстве, то ковалентная связь является строго направленной (в отличие от ионной связи). Этим, а также высокой прочностью ковалентной связи объясняется тот факт, что кристаллы, образованные атомами, имеют высокую твердость и совершенно непластичны, так как любая деформация вызывает разрушение ковалентной связи (например, у алмаза). Учитывая, что любые изменения, связанные с разрушением ковалентной связи в кристаллах (плавление, испарение), совершаются с большой затратой энергии, можно ожидать, что у таких кристаллов температуры плавления и кипения высоки, а летучесть очень мала (например, у алмаза температура плавления составляет 3500 °С, а температура кипения —4200 °С). [c.42]

    Температуру плавления кристаллических полимеров можно определить и по характеру изменения деформаций под влиянием внешней нагрузки при различных температурах. На рис. 22 приведены результаты определения аморфного полистирола и кристаллического полиэтилена и полиамида. Для подобных исследований можно также использовать термодинамические весы. В отличие от процесса плавления низкомолекуляр- [c.52]

    В большинстве случаев целью уплотнения является получение агломерата, но иногда оно необходимо для повышения эффективности последующих процессов, например плавления. Уплотнение возникает при приложении внешнего усилия. Эти усилия передаются внутрь системы через контакты между частицами. Благодаря процессам эластической и пластической деформации (деформации сдвига и местных разрушений) число контактов возрастает, и появляются силы, удерживающие частицы вместе. Этот процесс уже рассматривался в разделе, посвященном агломерации. Силы, приложенные извне, приводят к появлению поля внутренних напряжений, которые в свою очередь определяют поведение уплотняемого материала. [c.237]

    В большинстве случаев процессу формования предшествуют транспортировка и деформация размягченных или расплавленных полимеров. Следовательно, подготовка полимера к формованию обычно включает стадию разогрева или плавления. В любом случае можно классифицировать этот процесс как элементарную стадию плавления . В этой главе обсуждается механизм плавления, демонстрируются некоторые общие математические методы, используемые для его описания, и показывается, как механизм плавления и физические свойства полимеров определяют геометрический фронт плавления. [c.251]

    Особенности природы полимерных материалов позволяют, как это будет показано ниже, расширить диапазон возможных способов плавления. Так, возможны способы плавления, особенность которых состоит в том, что материал подвергается значительной деформации, в результате чего тепло генерируется внутри всего объема системы как за счет деформации каждой отдельной частицы материала, так и за счет трения между частицами. Последний источник, строго говоря, нельзя назвать гомогенным источником тепла, так как оно выделяется на поверхностях раздела частиц, распределенных по всему объему системы. [c.252]

    Интенсивное перемешивание высоковязких смесей расплава и частично расплавленного полимера требует подвода извне очень большой мощности. При этом классический метод плавления с пере, мешиванием, основанный на нагреве за счет теплопроводности (с подводом тепла из расплавленных областей к твердому материалу и от горячих стенок сосуда к расплаву), превращается в метод диссипативного плавления с перемешиванием. Основным источником тепла здесь является двигатель привода, работа которого переходит в тепло за счет диссипативного вязкого трения в расплавленных областях и в результате механической деформации в нерасплавленных областях, а на начальных стадиях — [c.253]


    Переменная скорость плавления означает, что твердая фаза подвергается или деформации, или вращению, или тому и другому вместе. Твердые полимеры, в частности в виде пробки спрессованных гранул или порошков (как это обычно наблюдается в процессах переработки), можно считать деформируемыми. Расплав, образующийся в очаге плавления, проникает внутрь пустот между твердыми частицами пробки, позволяя им скользить и перестраиваться в области, прилегающей к поверхности раздела фаз. Физическая сущность деформации твердой пробки состоит в следующем. Медленно дефор- [c.282]

    Рассмотрим закрытый смеситель непрерывного действия (см. разд. 1.1 и рис. 11.4, 11.5 и 11.24), питаемый гранулами полимера обычной формы. Все контактирующие стенки нагреты, поэтому часть полимера плавится за счет теплопроводности при контакте с этими поверхностями. Однако главным источником энергии для разогрева и плавления является механическая энергия, подводимая через валы роторов и превращающаяся в тепло из-за непрерывной деформации сдвига и перемещения загруженного сыпучего полимерного материала. [c.297]

    Одним из ключевых элементов такого способа плавления является способность системы диссипировать механическую энергию при высоких скоростях и распределять ее равномерно по всему объему. В закрытых смесителях это достигается за счет определенной конфигурации роторов (и корпуса), которые подвергают полимер различным деформациям — сдвигу, растяжению, сжатию. В смесителях типа Бенбери верхний затвор способствует запрессовыванию полимера в пространство между роторами, в котором он подвергается интенсивному деформированию. Форма ротора выбрана такой, чтобы деформации равномерно распределялись по всему объему смешиваемого материала. [c.298]

    Другой метод реализации описанного способа плавления осуществлен в одночервячных экструдерах и других машинах подобной конфигурации, в которых деформация материала является следствием напряжений сдвига, вызванных движением стенок. В частности, в червячных экструдерах, которые спроектированы и работают таким образом, что в зонах питания червяка (см. разд. 12.1) развиваются очень высокие давления, наблюдаются более высокие скорости плавления, чем те, которые предсказываются моделями плавления, основанными на анализе плавления по механизму теплопроводности с принудительным удалением расплава за счет движения стенок. [c.298]

    Хорошее ламинарное смешение достигается лишь тогда, когда в смесителе расплав полимера подвергается большой суммарной деформации. При зтом удается существенно уменьшить композиционную неоднородность материала по сечению канала. Однако особенность профиля скоростей в экструдере заключается в том, что суммарная деформация, накопленная частицами жидкости, зависит от местоположения частиц. Следовательно, степень смешения по сечению канала неодинакова. А значит, и по сечению экструдата следует ожидать определенную композиционную неоднородность. Количественной мерой этой неоднородности могут быть функции распределения деформаций Р (у) и f (у) йу. Проанализируем эти функции для экструдера с постоянной глубиной винтового канала червяка, используя простую изотермическую модель, описанную в разд. 10.2 и 10.3. В гл. 12 рассмотрен процесс смешения в пласти-цирующем экструдере, в котором плавление полимера влияет на вид функций распределения. [c.406]

    Как отмечалось ранее, между сечением, в котором начинается формирование пленки расплава на поверхности цилиндра (в результате нагрева цилиндра либо за счет тепла, выделяющегося при совершении работы против сил трения), и сечением, в котором у толкающей стенки канала образуется слой расплава, расположена зона задержки. Зона задержки плавления начинается в точке на оси червяка, где Ть превышает (образование пленки расплава) и распространяется до точки, в которой слой расплава начинает скапливаться у толкающей стенки канала. Силы, вызывающие транспортировку материала в этой зоне, складываются из увлекающей силы, возникающей из-за вязкостных напряжений на поверхности цилиндра, создаваемых деформацией сдвига в пленке расплава, и обычного фрикционного торможения, создаваемого силами трения, действующими на поверхностях сердечника и стенках канала [14, 21]. Толщина пленки расплава увеличивается вдоль оси винтового канала и в конце зоны в несколько раз превышает величину зазора между гребнем червяка и цилиндром. В настоящее время не существует математической модели, пригодной для расчета длины зоны задержки. На рис. 12.14 графически представлена зависимость (основанная на ограниченном числе экспериментальных данных) длины зоны, выраженной числом витков червяка, от величины (связь которой со скоростью плавления будет обсуждаться ниже). Соотношение не учитывает механических свойств твердого слоя, которые, вероятно, также оказывают влияние на длину зоны задержки. [c.441]

    Продольному течению противодействуют силы поверхностного натяжения и обратимые компоненты деформации поэтому реализовать его возможно лишь во вполне определенном диапазоне скоростей растяжения и температур. В кристаллизующихся полимерах осуществить продольное течение можно лишь при высоких температурах (выше температуры плавления) обычно это течение приводит к ориентационной кристаллизации (см. гл. VI). [c.7]

    Выше температуры размягчения, а у кристаллических полимеров выше точки плавления деформация, вызванная внешней силой , уменьшается после прекращения действия этой силы, т. е. полимер ведет себя как упругий каучукообразный материал. Эта упругость не является следствием деформации валентных углов или межатомных расстояний она основана на том, что макромо-лекуляркые клубки выводятся из своей статистически наиболее вероятной формы и вновь стремятся достичь этого состояния. [c.37]

    Уменьшение вязкости с увеличением скорости деформации при по- 5 стоянной температуре принято называть аномалией вязкости. Соответствующие жидкости (масла) именуют аномально вязкими. Если масло содержит мало компонентов с относительно высокой температу-. 5 рой плавления или вовсе их не со-держит (глубоко депарафинирован-ные масла), явление аномалии вяз- [c.269]

    Качество стали оценивается рядом структурнонечувствительных и структурно-чувствительных механических характеристик, устанавливаемых по результатам испытаний образцов на растяжение. К первой группе свойств относятся модули упругости Е и коэффициент Пуассона а. Величина Е характеризует жесткость (сопротивление упругим деформациям) стали и в первом приближении зависит от температуры плавления Тпл- Легирование и термическая обработка практически не изменяют величину Е. Поэтому эту характеристику можно рассматривать как структурно-нечувствительную. Коэффициент Пуассона р отражает неравнозначность продольных и поперечных деформаций образца при натяжении. При упругих деформациях л = 0,3. Условие постоянства объема стали при пластическом деформировании требует, чтобы л = 0,5. При определенных значениях относительной деформации 8 > 8т (или 80,2, 8о,з). Зависимость ст(е) отклоняется от прямолинейного закона (Гука). Предел текучести ат(ао,2 или ао,5) связан с величиной 8т по закону Гука ат = 8тЕ. Дальнейшее увеличение деформаций способствует увеличению напряжений. [c.88]

    Ванна печи. Печь имеет прямоугольную ванну с округленными углами. Футеровка стенок ванны выполняется блоками из плавленого корунда. Блоки предварительно не обрабатываются и идут на кладку сразу после литья. Зазор между блоками принимается минимальным, практически он составляет 10—12 мм. Кладка осуществляется на порошке корунд (экораль) тониной 0,2 мм на жидком стекле. Модуль жидкого стекла 1,34. Верхний пояс стенки и нижний выкладываются из высокоглиноземистого шамотного кирпича. Подина ванны футеруется углеродистыми блоками, уложенными на коксовую пыль размером 0,2—1 мм. Толщина футеровки стенок 800 мм. Зазор между футеровкой и кожухом ванны 70 мм забивается шлаковатой. Температурное расширение корунда поглощается за счет кладки углов ванны печи, которые выкладываются не по контуру кожуха, а с зазором и засыпается порошком корунда. Зазоры и слой изоляции из шлаковаты позволяют футеровке нормально расширяться без деформации стенок. [c.133]

    Если разгрузить цилиндр поршневого манометра, т. е. приложить к нему снаружи высокое давление, то проблема деформации снимается. Бриджмен [9] впервые использовал этот принцип, применив конструкцию цилиндра, изображенную на фиг. 3.1,2. В этом случае нижняя часть поршня и наружная поверхность внутреннего цилиндра находятся при одном и том же давлении. С помощью такого манометра Бриджмен измерял давления до 20 000 атм с точностью около 0,001. Еще лучшие результаты получаются при создании внешнего давления на цилиндр поршневого манометра с помощью специальной гидравлической системы, как показано на фиг. 3.1, д. Изменяя давление р, зазор между поршнем и цилиндром можно уменьшить до минимальной величины. Джонсон и Ньюхолл [12] описали такой манометр, а Джонсон и др. [13] — его калибровку с целью уменьшения погрешности за счет деформации. Последние работы по поршневым манометрам направлены на точное измерение давления некоторых реперных точек, таких, как давление плавления ртути при 0°С [14]. Указанные реперные точки затем можно использовать в любой лаборатории для калибровки манометров различного типа. Работа манометра Джонсона—Ньюхолла с регулируемым зазором к настоящему времени хорошо изучена, и его можно считать первичным стандартом давления. Абсолютная точность, достигаемая для манометра такого типа, составляет 0,0001 при давлениях до 2000 атм и 0,001 при давлениях порядка 20 ООО атм однако чувствительность является более высокой. [c.79]

    При дальнейшем повышении температуры материал может приобретать пластичность, что приводит к деформированию структуры даже под действием силы тяжести. Эту стадию спекания легко зафиксировать по резкому уменьшению объема тела. Пластическую деформацию можно вызвать и при более низких температурах, применив прессование при высоком давлении, что широко используется в порошковой металлургии. Таким образом, материал спекается тем легче, чем он пластичнее при температуре спекания. Различные материалы по-разному проявляют способность к пластическим деформациям. Например, железо уже при температуре, составляющей /з от температуры плавления, пластически деформируется под действием силы тяжести лед даже при температуре плавления проявляет хрупкие свойства. Поэтому чтобы вызвать пластическую деформацию, нередко при спекании необходимо достигать температур, близких к точке плавления (она может понижаться с ростом дисперсности). Оплавление пористого тела в первую очередь происходит с внеишей его поверхности. Так как заготовка, представляющая собой пористое тело, хорошо смачивается собственным расплавом, то последний по мере появления сразу же проникает внутрь пористого тела под действием капиллярных сил. Этот процесс заканчивается, когда все поры окажутся заполненными. [c.390]

    Конформационные переходы цепи с кинк-изомерамп, свободная энергия которой при наличии напряжения представляется сплошной линией (рис. 5.1), термодинамически необратимы, а внутренняя энергия переходит в тепло. Представляет интерес постоянная времени процесса перехода если она мала по сравнению со временем, в течение которого происходит растяжение цепи, то кривая напряжение—деформация не слишком сильно отличается от кривой, соответствующей сплошной линии на рис. 5.1, а если постоянная времени слишком велика, то переходы могут быть запрещены и цепи деформируются эластично. Однако при промежуточных значениях постоянных времени наибольшие напряжения не полностью вытянутых цепей будут зависеть от скорости, с которой происходят конформационные переходы, снимающие напряжение. Детальное рассмотрение данного явления потребовало бы изучения формы и взаимодействия цепных молекул, основ термодинамики необратимых процессов [15] и анализа потенциала вторичных, или вандерваальсовых, связей между сегментами [16]. Это привело бы к рассмотрению неупругого деформирования полимеров, которое не является предметом данной книги. Тем не менее все же представляет интерес некоторая информация относительно скорости переходов между различными кинк-изомерами, сопровождающихся релаксацией напряжения в системе. Так как любые переходы, приводящие к движению только одного кинк-изомера, обычно не вызывают удлинения цепи вдоль ее оси, то приходится учитывать по крайней мере одновременную активацию н аннигиляцию двух кинк-изомеров. Подобный процесс состоит из поворота четырех гош-связей и передачи поворота сегмента между кинк-изомерами можно оценить энергию связи, необходимую для преодоления потенциального барьера, которая должна составлять 33,5 кДж/моль для поворота гош-связи [7] и (2,1—5) кДж/моль для вращения СНг-группы [17, 18]. Следовательно, чтобы преобразовать весь кинк-изомер tgtgttgtgt в транс-конформацию, необходима энергия активации 46—63,6 кДж/моль. Можно предположить, что подобные преобразования напряженных цепей ПЭ к состоянию, свободному от напряжений, действительно происходят при скорости деформирования по крайней мере 1 с при температуре ниже точки плавления, т. е. при 400 К. Теперь мол<но рассчитать скорость данного процесса при 300 К с помощью выражения (3.22), которая оказывается равной 0,0018 с . При деформировании цепи энергия активации вращения сегмента только убывает, а скорость переходов, сопровождающихся ослаблением напряжения, возрастает [19]. С учетом подобного [c.130]

    На графиках зависимостей можно выделить три характерных учасгка. На первом участке наблюдается снижение всех параметров. За 10 тыс.ч. предел прочности снижается в два раза при резком уменьшении относительного удлинения. Эти две зависимости идентичны и характерны для процесса ползучести [24,25]. Поскольку деформации ползучести для высоколегированных сталей становятся заметными при достижении температуры плавления [25, го можно констатировать, что наблюдается перегрев металла труб выше 1000 °С. Деформации ползучести, как правило, начинаются на границах зерен в виде взаим1 ого скольжения и накопления микропор, как это видно на фотографии микроструктуры стали (рис 3.61). Поэтому разрушение при ползучести носит межкристаллитный характер. [c.246]

    Параллельная укладка цепей уменьшает величину А5, присущую аморфному каучуку, до значений, характерных для кристаллизующихся полимеров, поскольку конформационная энтропия ориентированных цепей"имеет меньшее значение. С другой стороны, ориентация не оказывает никакого влияния наХэнтальпию аморфного каучука. Поэтому [величина АЯ в уравнении (3.6-2) остается неизменной и определяется из теории Гвысокоэластичности каучука. Таким образом, уравнение (3.6-2) показывает, что при деформации каучука должно наблюдаться заметное повышение температуры плавления, увеличивающее степень переохлаждения, которая является главным фактором, управляющим скоростью процессов кристаллизации. [c.60]

    Как показано в разд. 9.1, механическая энергия превращается в тепло различными способами деформацией отдельных частиц, трением между частицами и диссипативным разогревом в областях расплава. В процессе плавления последний способ становится доминирующим. Интенсивное перемешивание распределяет вновь образовавшийся расплав по всему материалу. Расплав, контактируя с твердыми частицами полимера, охлаждается сам и в то же время нагревает и расплавляет поверхностные слои частиц. Следовательно, частицы полимера, находящиеся в смесителе, постепенно превращаются сначала в термически (и реологически) негомогенную, частично расплавленную массу, а в конце концов — в гомогенный расплав. В смесители типа Бенбери новую порцию материала загружают с небольшим количеством расплавленного и перемешанного [c.297]

    Если на движущейся стенке образуется пленка расплава, то он заполняет свободное пространство между частицами, создавая внутреннюю смазку и описанные выше условия плавления, что и приводит к резкому возрастанию деформации пробки. Следовательно, механическая энергия при таком способе плавления дисси-пируется не в тонкой пленке расплава при ограниченной скорости сдвига, а во всем объеме пробки при больших скоростях. [c.298]

    Этот метод пригоден также для анализа пластицирующего экструдера. Результаты таких расчетов приведены на рис. 11.28. При больших скоростях вращения червяка происходит быстрое плавление полимера, и распределение деформаций оказывается подобным тому, какое наблюдается в экструзионном насосе. Увеличение скорости вращения червяка при постоянном объемном расходе приводит к увеличению противодавления. При этом происходит заметный сдвиг функции распределения деформаций в область более высоких значений деформации. И снова мы видим, что распределение деформаций в червячном экструдере довольно узкое. Следовательно, среднее значение деформации у [46] может служить критерием смесительного воздействия. Средняя деформация пропорциональна величинам ПН, QpIQd и 6. Рис. 11.29 иллюстрирует зависимость Y от угла винтовой нарезки червяка при различных значениях Qp/Qd- Пропорциональность средней деформации величине 1/Н установлена экспериментально, как было показано нами ранее при рассмотрении ФРД для случая течения между параллельными пластинами. Точно так же экспериментально было установлено, что средняя деформация возрастает при увеличении противодавления. Аналогичным образом установлены предельные значения угла нарезки червяка, [c.413]

    В загрузочной воронке мы начинаем медленное и в некоторой степени неустойчивое движение вниз, которое сопровождается многократно повторяющимися столкновениями с соседними гранулами и кратковременными зависаниями в своде. Это продолжается до тех пор, пока мы не достигнем зоны сужения — горловины питающего отверстия. Здесь винтовой гребень подхватывает гранулы и толкает их вперед. Он мгновенно догоняет нашу гранулу, и она начинает вращаться (при этом изменяется ее система координат). Теперь мы регистрируем свое движение относительно червяка, и поэтому кажется, что цилиндр вращается в противоположном направлении. Мы находимся в мелком канале, ограниченном гребнями червяка, его сердечником и поверхностью цилиндра, и начинаем медленное движение по каналу, сохраняя свое местоположение относительно ограничивающих канал стенок. По мере передвижения соседние гранулы нажимают на нашу гранулу со все возрастающим усилием, причем пространство между гранулами постепенно уменьшается. Большинство гранул испытывает такое же воздействие, за исключением тех, которые контактируют с цилиндром и червяком. Движущаяся поверхность цилиндра оказывает интенсивное тормозящее воздействие, в то время как трение о поверхность червяка приводит к возникновению силы трения, направленной вдоль винтового канала. Из разд. 8.13 известно, что это торможение о поверхность цилиндра является движущей силой, вызывающей перемещение частиц твердого полимера в канале червяка. Оба эти фрикционных процесса приводят к выделению тепла, возрастанию температуры полимера, и в особенности слоя, расположенного у поверхности цилиндра. В каком-то сечении температура слоя может превысить температуру плавления или размягчения полимера, и фрикционное торможение переходит в вязкое трение, т. е. твердый полимер перемещается по каналу червяка за счет напряжений сдвига, генерируемых в пленке расплава. Однако в более общем случае еще до начала сколько-нибудь значительного фрикционного разогрева экстремальные условия достигаются на тех участках, где цилиндр разогрет до температуры, превышающей температуру плавления, что ускоряет появление пленки расплава. Это означает окончание той части процесса транспортировки гранул, которая происходит в зоне питания, когда в экструдере присутствует только твердый нерасплавленный материал. К этому моменту наша гранула оказывается до некоторой степени деформированной соседними гранулами, с которыми она тесно контактирует, образуя вместе с ними достаточно прочный, хотя и деформируемый твердый блок, движущийся подобно пробке по каналу червяка. Тонкая пленка, отделяющая слой нерасплавлениого полимера от цилиндра, подвергается интенсивной деформации сдвига. Разогрев твердой пробки происходит как за счет тепла, генерируе- [c.431]

    Высокая температура плавления чистого форстерита обусловливает использование его для получения огнеупоров. Однако получают форстеритовые огнеупоры не из MgO и Sf02, а из природных гидросиликатов магния, например из серпентина и оксида магния. Эти огнеупоры отличаются равномерным термическим расширением вплоть до высоких температур, хорошей устойчивостью против металлургических шлаков, высокой температурой деформации под нагрузкой. [c.104]


Смотреть страницы где упоминается термин Плавление деформации: [c.175]    [c.40]    [c.59]    [c.175]    [c.123]    [c.511]    [c.47]    [c.252]    [c.432]    [c.252]    [c.252]   
Кристаллизация полимеров (1966) -- [ c.41 , c.181 ]




ПОИСК







© 2025 chem21.info Реклама на сайте