Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алюминий окись как катализатор при окислении

    Окисление. Катализаторы окисления поочередно адсорбируют кислород и выделяют его в активной форме. Первичные окислы металлов служат акцепторами не только при окислении элементарным кислородом, но и в присутствии хромовой, марганцовой и хлорноватистой кислот, а также перекиси водорода. Примерами катализаторов различных процессов являются окись серебра (для получения окиси этилена из этилена) серебро или медь (для получения формальдегида из метанола) соединения щелочных металлов, марганца или алюминия (для окисления жидких углеводородов) окислы ванадия и молибдена (для получения фталевого ангидрида из нафталина) раствор нафтената марганца (для получения жирных кислот из высокомолекулярных углеводородов). Чаще всего окисление происходит при повышенных температурах. [c.330]


    Катализаторы окисления используются как в чистом виде, так и на носителях. Их готовят методом формовки или пропиткой заранее сформованного носителя активными компонентами. В качестве носителей используются твердые тела, обладающие относительно небольшой поверхностью (от 10 до 10 м /кг), например пемза, окись алюминия, макропористый силикагель, карборунд. Наличие тонких пор в катализаторе способствует протеканию реакций глубокого окисления. [c.200]

    Бреттон и сотрудники [20] изучили окисление углеводородов С4 на серебряных катализаторах, в которых серебро или окись серебра осаждались на активированной, главным образом сплавленной, окиси алюминия. Окись алюминия применялась преимущественно в виде а-окиси алюминия или корунда. На этих серебряных катализаторах углеводороды С4 давали только СОз и воду. Следует напомнить, что при окислении этилена до окиси этилена при тщательном контроле и выборе условий окисления можно получить окись этилена с выходом до 50 —60% от теоретически рассчитанного. [c.276]

    В большинстве случаев гетерогенные катализаторы окисления готовят путем осаждения окислов из их солей на различных носителях, обладающих высокой удельной поверхностью (пемза, окись алюминия, силикагель, карбид кремния и др.). Для металлических катализаторов за осаждением следует восстановление окисла, обычно водородом. Иногда применяют катализаторы в виде сетки или стружки (медь), а также плавленые контакты, измельченные до гранул нужного размера (пятиокись ванадия и др.). [c.509]

    При непрерывном процессе каталитического парофазного окисления аллилового спирта в акролеин в качестве катализатора окисления можно применять медную спираль или серебро с добавкой окислов щелочных или щелочноземельных металлов, нанесенное на активированную у-окись алюминия . При работе на медном катализаторе оптимальная температура 400, а на серебряном — 300 °С. Соотношение в исходной смеси воздуха и аллилового спирта составляет 0,3—0,6. Оптимальная степень конверсии достигает 48% на медном катализаторе и 55% на серебряном. Выход акролеина соответственно 61 и 85%. [c.267]

    Процесс окисления этилена в а-окись ведут в присутствий катализатора, повышающего селективность процесса и уменьшающего степень глубокого окисления этилена. Практически единственным промышленным катализатором окисления этилена в окись этилена является серебряный катализатор, применяемый в различных модификациях Серебряный катализатор готовят различными методами. По одному из них окись серебра осаждают из раствора нитрата серебра щелочью, промывают водой и влажной наносят на пемзу во вращающемся барабане. После сушки катализатор восстанавливает водородом при 220—240 °С. В 1 л катализатора содержится 350 г серебра. В серебряный катализатор могут входить активаторы (ВаО и др.). В качестве носителей могут применяться окись алюминия, корунд, силикагель, огнеупорный кирпич 2. [c.271]


    Лучше применять сильнодействующие катализаторы окисления, например, окись ванадия, нанесенную на активную окись алюминия, силикагель, кусочки боксита. [c.26]

    С другой стороны, каждый катализатор обладает специфичностью и может ускорять только какую-то определенную группу реакций. Например, окись алюминия хороший катализатор гидратации — дегидратации и вместе с тем ускоряет некоторые реакции конденсации, окисления никель катализирует реакции гидрирования, восстановления, окисления. [c.83]

    Практически все важнейшие химические производства пользуются катализаторами. Для получения серной кислоты применяют катализатор, содержащий сульфат ванадия этот катализатор ускоряет окисление сернистого ангидрида в серный. Для производства водорода из водяного газа применяют окись железа, активированную окисью хрома, — ускоряется реакция СО + Н2О = СО2 + Н2. Синтез аммиака хорошо идет на катализаторах, представляющих собой плавленую и активированную окислами калия и алюминия окись железа, причем в процессе работы окись железа переходит в металлическое железо. На смешанном катализаторе, состоящем из окислов цинка и хрома, получают метиловый спирт из водорода и окиси углерода. Окислы меди и цинка применяют для гидрогенизации и дегидрогенизации, фосфорная кислота на кизельгуре идет для производства бензина из олефинов и т. д. [c.437]

    Ангидрид малеиновой кислоты получают окислением бензола воздухом-I) паровой фазе над катализатором — пятиокисью ванадия, нанесенной на окись алюминия  [c.268]

    В этом процессе гликоль окисляется в глиоксаль воздухом при 345°С я давлении 10 атм. Для ингибирования дальнейшего окисления проводят частичное отравление поверхности катализатора, вводя небольшие количества соединений галогенов (чаще всего дихлорэтилен). Катализатором является окись меди (3-8%), нанесенная из нитрата на инертную тугоплавкую окись алюминия /14/. [c.298]

    Поэтому дальнейшее окисление п-толуиловой кислоты в терефталевую воздухом в присутствии катализаторов (окись железа на окиси алюминия, ацетат свинца) требует жестких условий (давление 70 ат, температура 260—270°), применения дорогостоящих растворителей (едкий кали [58], уксусная кислота [59]) и идет со значительно меньшим выходом (40—60%), чем окисление п-ксилола в толуиловую кислоту в мягких условиях (выход 80—90%). Коршак и Сосин разработали [60, 61] более эффективный метод превращения п-толуиловой кислоты в терефталевую, заключающийся в том, что окислению подвергается не сама толуиловая кислота, а ее метиловый [c.703]

    Наиболее важный процесс дегидрирования — получение стирола из этилбензола. Но и алканы можно дегидрировать до алкенов, а алкены — до алкадиенов-1,3. Все эти процессы более пригодны для промышленного использования, но иногда могут представлять ценность и для лабораторных синтезов. Обычно для дегидрирования применяют алюмохромовый катализатор, состояш,ий из окислов хрома и алюминия его получают соосаждением гидроокисей. По более простому способу 100 ч. активированной окиси алюминий (6—10 меш) прибавляют к 50 ч. 10%-ного хромового ангидрида в воде, катализатор отфильтровывают и высушивают при 220—230 °С. Специфический катализатор для дегидрирования этилбензола содержит 72,4% MgO, 18,4% FeA. 4,6% uO и 4,6% K.O. Окись калия настолько уменьшает образование углеродистых отложений, что срок работы катализатора достигает 1 года. Дегидрирование этилбензола лучше всего проводить при конверсии 37% и при 600 С, причем над катализатором пропускают углеводород и водяной пар при 0,1 атм. Те же катализатор и условия работы, за исключением того, что разбавителем является не водяной пар, а азот, пригодны для дегидрирования бутенов в бутадиен-1,3. Недавно была достигнута высокая конверсия этилбензола в стирол в результате окисления сернистым ангидридом в присутствии фосфата металла [32], [c.163]

    При обработке смеси побочных продуктов окисления циклогексана 2—5-кратным избытком аммиака в присутствии дегидрирующих катализаторов (окись алюминия) образуются нитрилы Шслот. Разгонкой в вакууме в интервале 153—163 °С отбирают, динитрилы янтарной и глутаровой кислот и в интервале 164— 172 динитрил адипиновой кисдоты [210]. [c.111]

    Удри [19] запатентовал применение гидросиликатов, содержащих 70—80% кремнезема, 20—10% окиси алюминия, не более 10%других окислов и особенно не больше 3% окиси железа. Другие окислы металлов, как окись никеля, могут быть добавлены в количестве не свыше 10%. Катализатор применяется в твердом виде, рассчитан на быструю регенерацию при окислении воздухом без существенной потери активности. В другом патенте [20] Удри опубликовал состав гидросиликата, указывая отношение кремнезема и окиси алюминия от 3,5 1 до 4 1. Небольшое количество соединений магния, около 1%, доба- [c.150]


    Приготовление нятиокиси ванадия. Наиболее удобным и активным контактом для окисления нафталина является пятиокись ванадия. Этот катализатор применяется на носителе (окись алюминия, силикагель), и метод приготовления сводится к пропитыванию носителя раствором ванадата аммония с последующей сушкой катализатора при 110° и прокаливанием при 400—600°. В последнее время для некоторых окислительных реакций применяется плавленая пятиокись ванадия. Для приготов.ле-ния этого катализатора используется ванадат аммония, который разлагают при 400° до пятиокиси ванадия, затем температуру повышают до 600°, при которой пятиокись ванадия плавится. После охлаждения эту застывшую массу дробят на кусочки размером 2—3 мм- Пятиокись ванадия активируют в реакторах реакционной смесью (углеводород -)- кислород). Эта активация но данным некоторых исследователей [79, 80] связана с образованием на поверхности окисла ванадия состава 204,34. [c.24]

    Одним из интереснейших продуктов переработки этилеигликоля является глиоксаль, получаемый в промышленном масштабе каталитическим окислением паров гликоля [140]. Катализатором окисления служит окись меди иа плавленой окнси алюминия (алунде или алоксите). Алунд пропитывают водным раствором нитрата меди такой концентрации, чтобы после прокаливания носитель содержал 3- 8% меди в виде окиси. Катализатор помепщют в трубки из хастеллоя (силав, содержащий ванадий). Срок службы катализатора достигает года, причем время от времени приходится его регенерировать выжиганием углеродистых отложений. [c.406]

    Более поздние работы [309, 310] по изучению каталитической активности таких катализаторов показали, что их удельные поверхности изменяются неаддитивно по мере возрастания содержания одного окисла металла в другом. Скорость реакции дегидрирования изопропилового спирта уменьшается при увеличении содержания окиси хрома в смеси с окисью цинка [310]. Падение скорости дегидратации изопропилового спирта наблюдал Рубинштейн с сотрудниками [311] при уменьшении АЬОз в смеси с закисью никеля. Чаплин, Чаиман и Грифите [312] изучали смешанные катализаторы, содержащие окись хрома и окись алюминия, и ноказали (рис. 83), что в зависимости от состава изменяются удельная поверхность катализатора и количество адсорбированного гептана (100°) на единицу поверхности. В качестве катализаторов окисления углеводородов [c.221]

    Среди соединений элементов этой группы активным катализатором окисления сероводорода является только окись алюминия. Природная окись алюминия — боксит (AlgOg пНаО) [509] находит широкое применение в промышленности для очистки выбросных газов от HgS [506]. [c.269]

    Окись алюминия, являясь, как уже указывалось, хорошим катализатором окисления сероводорода, практически инертна в реакции окисления сероуглерода по данным [5071, в интервале температур 200—600° С скорости окисления Sg на боксите, на катализаторе БАВ и в гомогенной фазе совпадают. Очевидно, отмеченная в [5121 активация сероуглерода на льюисовских центрах if-AlaOg недостаточна для его окисления в условиях катализа.  [c.274]

    Проверка дегидрирования в вакууме (Научно-исследовательский институт пластмасс) показала, что одним из наиболее, пригодных катализаторов является смешанный магний-хромовый катализатор (MgO + СгзОз). Близкие по выходам результаты получаются с катализаторами, содержащими окись магния и окись хрома или окись цинка и окись алюминия. При этом последний катализатор может работать при более низких температурах по сравнению с первым. Решающим моментом в данном случае является продолжительность работы катализатора без регенерации его (продолжительность службы катализатора) и легкость его оживления (регенерации). В особенности при этом приходится учитывать неприятный побочный процесс, который обычно сопровождает процесс дегидрирования стирола, а именно, отложение яа катализаторе кокса, трудно удаляемого при оживлении катализатора окислением, т. е. продувкой воздухом. При всем этом далеко не безразлично, каким способом приготовляется катализатор и какие соединения берутся в качестве исходных продуктов. Например, для приготовления катализатора рекомендуется (Научно-исследовательский институт пластмасс) раствор 19,2 ч. двухромовокислого аммония в 200 г воды смешать с 100 ч. окиси магния (жженой магнезии), полученную кашеобразную массу протереть через сито с определенным размером отверстий (около 3 мм) для получения гранулей равномерного размера. В таком виде катадрзатор поступает на сушку, которая проводится при 65° и остаточном давлении около 50 мм, а затем на прокаливание при 600° в течение 3 час., после чего он содержит около 90% MgO и 10% СгаОз. Такой катализатор работает без смены около 33 час., регенерация его считается неэкономичной. Поступающий на дегидрирование этилбензол, во всяком случае предварительно ректифицированный, испаряется (температура около 170°) ik через перегреватель (до 630°) поступает в контакт- [c.413]

    Лучшим катализатором окисления этилена в окись этилена является металлическое серебро, но поиски новых более эффективных катализаторов и носителей для них не прекращаются. Так, предложен серебряный катализатор на карбиде кремния, серебряный катализатор, промотированный селеном, серебряный катализатор на окиси алюминия, серебряный катализатор на окиси бериллия, весьма устойчивый к действию высоких температур, серебряный катализатор на окиси алюминия в виде непористых шариков с неоднородной поверхностью, серебряный катализатор с добавками щелочных и щелочноземельных металлов, а также промотированный хлоридом алюминия (0,01—0,5 г-атом хлора на 100 г-атом серебра) , порошковый серебряный катализатор. Катализатор, отличающийся высокой активностью, селективностью и хорошими механическими свойствалш, позволяющими применять большие скорости газов, разработан в ЧССР ". Используется серебряный катализатор на носителе а-оки-си алюминия пористостью 40—50%, который приготовляют в виде таблеток. Таблетки диаметром 450—550 мк илшют поры величиной 100—150 мк, по которым газ свободно проходит сквозь зерна катализатора, обеспечивая хороший теплоотвод. Съем окиси этилена с 1 л такого катализатора достигает 300 [c.157]

    Двуокись германия, нанесенная на асбест, катализирует при 360—450 С превращение кислот в смешанные и симметричные кетоны (реакция Пириа), причем кислоты с большим молекулярным весом реагируют при более высокой температуре [1154]. Смесь двуокиси германия с VaOj, представляющая собой твердый раствор, содержащий не менее 16 мол.% GeOg, катализирует окисление бензола [1155]. Двуокись германия в смсси с СгаОз (носитель — окись алюминия) является катализатором гидрирования неароматических углеводородов Сз—Су с превращением последних в высокооктановое топливо [1156]. [c.390]

    Наиболее активныш катализаторами окисления оказались никель-хромовый и АП-64. Однако следует отметить недостаточную стойкость в водных средах используемых носителей. Амфотерная окись алюминия переходила частично в коллоидное состояние. [c.19]

    В качестве катализаторов окисления N0 и С2П2 могут применяться металлы платиновой группы платина, палладий, родий, рутенийзз.з4 нанесенные на активную окись алюминия, диатомовую землю, пемзу, силикагель, асбест, двуокись титана, карбонат кальция и другие носители. Катализаторы применяются при 50—450° С. Окисление ацетилена и окиси азота можно проводить также на медных катализаторах при 200—300° С и объемной скорости 400— 2000 с добавлением 5% воздуха. [c.337]

    Здесь изомеризация наблюдается даже в отсутствии олефинов или алкилгалоида. В этом процессе расходуется кислород. Имеющиеся данные указывают на окислительный механизм, при котором углеводород либо непосредственно атакуется под влиянием катализатора, либо через стадию промежуточного окисления самого катализатора. Воздействие на углеводород, по-видимому, приводит к образованию ионов карбония, необходимых для инициирования реакции изомеризации. Вероятная гипотеза, подтверждаемая некоторыми эксперимент 1льными доказательствами (при применении бромистого алюминия), заключается в том, что часть галоидалюминия атакуется кислородом, причем высвобождается галоид и образуется окись алюминия или, более вероятно, оксигалоид алюминия. Галоид реагирует с парафином, образуя алкилгалоид, который, как уже было показано, является наряду с галоидводородом инициатором цепной реакции изомеризации. Это подтверждается [45] тем, что бром как промотор может быть замещен кислородом. [c.19]

    Фирма, Ситиз сервис сначала использовала метод Уоккера для окисления природного газа воздухом. Процесс проводили под давлением около 21 о,ти и при температуре 420°. В качестве катализатора применяли окислы железа, фосфат алюминия и окись меди. [c.93]

    Предложены различные модификации серебряного катализатора. В качестве носителя используют пемзу, силикагель, окись алюминия и карборунд. Для повышения селективности в катализатор вводятся добавки сурьмы, висмута, окиси бария и др. Для частичного подавления реакций глубокого окисления в исходную газовую смесь добавляют галогенные соединения, например дихлорэтан или другие хлор- и серусодержащие органические соединения, в количестве сотых долей от содержания этилена в смеси. [c.204]

    Окисление никедя во всем объеме катализатора и, как следствие, потеря активности последнего могут произойти из-за прекращения или снижения подачи сырья при сохранении подачи водяного пара в реактор. Окись никеля при 700—800 °С взаимодействует с окисью-алюминия, присутствующей или преобладающей в носителе с образованием алюмината никеля (шпинели) по реакции  [c.85]

    Однако на всех известных авторам промышленных установках дегидрирования алканов применяются катализаторы типа алюмохромового. Катализаторы этого типа используются в процессах Гудри и Филлипс . В процессе И. Г. Фарбениндустри катализатор также состоит из окиси алюминия с 8% окиси хрома и 1—2% окиси калия. По литературным данным добавление таких компонентов, как окись калия, окись магния, окись бериллия, повышает стабильность в отношении сохранения большой удельной поверхности. Однако они могут изменять степень окисления, а следовательно, и активность окиси хрома [18]. При процессе дегидрирования фирмы Гудри для увеличения общей теплоемкости слоя в реакторе и, таким образом, уменьшения колебаний температуры катализатор можно использовать в сочетании с такими зернистыми материалами, как плавленый корунд (окись алюминия). Выбор твердых теплоносителей требует тщательного предварительного анализа они должны быть каталитически инертными и обладать необходимыми физическими свойствами. [c.282]

    Значительную роль в каталитическом процессе окисления сероводорода наряду с составом катализатора играет и пористая его структура, в частности величина внутренней поверхности его кусков. Так, активированный боксит или алюмогель, сорбенты, содержащие окись алюминия гидраргиллитовой структуры, имеют большую удельную поверхность до. 180 ж /г и обладают высокими каталитическими свойствами [4, 5]. [c.180]

    Для парофазного окисления о-ксилола во фталевый ангидрид используют катализаторы на основе пятиокиси ванадия В качестве носителя применяют кремнезем или окись алюминия Выход фталевого ангидрида до 80% был получен при использовании пятиокиси ванадия (12%) на носителе из прокаленного кремнезема, Исследовались также промотированная пятиокись ванадия, ванадий-молибденовые катализаторы, смешанные катализаторы, содержащие ванадатьИ , ванадий-калий-сульфатный катализатор и катализатор, полученный пропиткой пористого ко- [c.174]

    Бутиролактон является одним из промежуточных продуктов промышленного производства пирролидона из ацетилена и формальдегида. Описан способ получения янтарной и малеиновой кислот окислением бутиролактона кислородом воздуха в паровой фазе в присутствии катализатора. Предварительно нагретый до 30 °С воздух подавали в нижнюю часть противоточной колонны, орошаемой бутиролактоном. Парогазовая смесь, содержащая 2 моль кислорода йа 1 моль бутиролактона, образовавшаяся за счет испарения бутиролактона горячим воздухом, подавалась в подогреватель, где нагревалась до 220—250 С. Далее парогазовая смесь поступала в трубчатый реактор, заполненный катализатором (пятиокись ванадия и окись меди, осаждев[ные на гранулированном алюминии), где в течение 15 мин конвертировалось до 95% бутиролактона. Полезная степень конверсии в янтарную и малеиновую кислоты, которые образуются в соотношении, равном 3 4 2, составляет 77%. Кислоты разделяли дистилляцией или кристаллизацией [41]. [c.56]

    Описаны методы окисления ненасыщенных жирных кислот в паровой ф зе. Азелаиновая, пеларгоновая и энантова кислоты получают при пропускании паровой смеси олеиновой кислоты, водяного пара и воздуха при 380 °С над окисью ванадия и быстром охлаждении продукта. Кроме окиси ванадия в качестве катализатора этого процесса предложены ваНадаты олова, серебра, осмия, титана,"а также окись титана, осажденная на окиси алюминия. [c.156]

    Сходны с катализаторами Циглера — Натта окиснометаллические, которые получают нанесением дисперсии окисей переходных металлов (СгОз, МоОз, УаОз, НЮз и др.) на носители (окись алюминия, силикагель, алюмосиликаты и др.) с последующим восстановлением (активацией) водородом, окисью углерода, МаН, НаА1Н4 или другими восстановителями среди них наиболее эффективны окисно-хромовые катализаторы (21]. Так же как в случае обычных комплексных катализаторов, переходный металл проявляет наибольшую активность, когда он находится в промежуточной степени окисления. Полимеризация протекает при сравнительно высоких температурах порядка 100—200°С. Несмотря иа низкую стереоспецифичпость окиснометаллических катализаторов, они представляют промышленный интерес для получения полиэтилена линейного строения. [c.187]

    Катализаторы полимеризации. Трехчленные гетероциклы (этиленимин, окись этилена, этиленсульфид) в абсолютно чистом виде (кинетически вполне устойчивы ввиду близости энергетических характеристик всех эндоциклических связей. Действительно, было показано [21], что абсолютно сухой этиленимин в чистом виде не полимеризуется даже при 150° С. Однако эти гетероциклы полимеризуются в присутствии определенных активаторов (катализаторов полимеризации), избирательно действующих на связь углерод — гетероатом. Обцчными поли-меризующими агентами являются кислоты [2—5, 7, 22—25] (включая углекислоту [12, 26, 27]), кислые соли [2, 3] и фенол [28], алкилирующие агенты [3, 29—32] (в том числе ди- и поли-галогениды углеводородов и простых эфиров [32]), трехфтористый бор [3, 16, 33, 34], безводное хлорное железо [34], соли лназония [35], нитрат или перхлорат серебра [36], поверхностно-активные вещества (кизельгур, активированный уголь [2], окись алюминия, силикагель и т. д. [16]), аммиак под да(вле-нием [37, 38], амины [38] и вода . Любой реагент действует как катализатор полимеризации этиленимина, если он может продуцировать четырехвалентный азот в иминном цикле (путем со-леобразования, окисления или координации). [c.160]

    При приготовлении катализаторов глубокого окисления стремятся максимально развить поверхность. Поэтому обычно наносят окислы металлов (МнОг, С02О3 и др.) или металлы (платина, палладий) па носители (силикагели, окись алюминия и др.), обладающие большой поверхностью. Из шпинелей изготовляют гранулы или таблетки. [c.235]


Смотреть страницы где упоминается термин Алюминий окись как катализатор при окислении: [c.104]    [c.579]    [c.167]    [c.95]    [c.114]    [c.21]    [c.303]    [c.158]    [c.160]    [c.193]    [c.254]    [c.221]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.1007 ]




ПОИСК





Смотрите так же термины и статьи:

Алюминий окись как катализатор при как катализаторы при окислении минеральных масел



© 2025 chem21.info Реклама на сайте