Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Количество адсорбированного единицы

    Выручили цеолиты. Их еще часто называют молекулярными ситами. Первоначально их применяли для разделения молекул различных углеводородов, используя различия в их пространственной структуре. Цеолиты — это практически те же алюмосиликаты, но при их изготовлении удается регулировать длину пор, их диаметр и количество на единицу объема или поверхности. Кроме того, в кристаллическую решетку алюмосиликатов можно вводить другие элементы (в основном, редкоземельные), которые модифицируют активные центры, находящиеся в определенных точках цеолита. От этого существенно зависят адсорбционные свойства цеолита — какие молекулы и с какой энергией он может адсорбировать в порах или на поверхности и какие деструктивные превращения с ними производить. [c.83]


    Как уже было сказано выше, в типичном гетерогенном процессе реагируют только те вещества, которые адсорбированы на поверхности. Скорость V гетерогенной химической реакции определяется как количество вещества, реагирующего в единицу времени на единице площади поверхности катализатора, т. е. [c.316]

    Если адсорбированное количество из единицы объема раствора с первоначальной концентрацией С обозначить х, то С—х — равновесная концентрация и кривая адсорбции (фиг. 3) следует уравнению х = К(С — х)". Кривая показывает, что при низких концентрациях адсорбируются большие относительные количества, чем при высших концентрациях. Адсорбция достигает максимума при определенной концентрации и уменьшается с дальнейшим повышением ее. На фиг. 4 изображен общий вид кривой адсорбции. [c.97]

    Так как 1/Ь выражает максимальное количество вещества ащ), которое может адсорбироваться единице длины адсорбента, то [c.169]

    Принято, что количество кислорода, вносимого в реактор, является характеристикой катализатора, каждая единица массы которого несет одинаковое количество кислорода Причем максимальное количество кислорода — порядка 170 г/т катализатора — находится в норовом пространстве, 100 г/т попадает с захваченным воздухом и 70 г/т адсорбировано на поверхности катализатора (физико-химические характеристики катализатора взяты для его равновесного состояния). [c.121]

    Если адсорбент предварительно адсорбировал некоторое количество пара этой жидкости (Га на единицу его поверхности), то теплота смачивания соответственно уменьшается. После предварительного полного насыщения гладкой поверхности адсорбента паром смачивающей жидкости на поверхности адсорбента образуется жидкая пленка. При смачивании такого адсорбента жидкостью исчезает поверхность раздела жидкая пленка—пар, поэтому теплота смачивания единицы гладкой поверхности адсорбента но мере роста предварительно адсорбированного ею количества пара надает до величины полной поверхностной эиергии жидкости [c.486]

    Рассмотрим процесс отравления плоского зерна катализатора, считая, что максимальное количество яда, которое может адсорбироваться на единице поверхности катализатора, равно (йд и что участок поверхности, адсорбировавший такое количество яда, становится полностью неактивным. Если адсорбция яда протекает необ- [c.147]

    Связь между изменением поверхностного натяжения и изменением заряда межфазной границы может быть получена термодинамическим путем. С этой целью удобно характеризовать заряженный компонент (например, ионы, которые адсорбируются на межфазной поверхности) его электрохимическим потенциалом [х. Если ограничиться случаем, когда этот компонент находится только на межфазной границе, то произведение цйп (п — количество заряженного компонента в молях или грамм-ионах) будет равно электростатической работе заряжания единицы площади поверхности при адсорбции на ней йп молей заряженного компонента, несущих электрический заряд ск/. Эту электрическую работу можно, очевидно, представить как где ф — электрический потенциал поверхности, так что  [c.99]


    Адсорбционному равновесию отвечает такое состояние системы, при котором скорость адсорбции (количество молекул, адсорбирующихся на единице поверхности в единицу времени) становится равной скорости десорбции. [c.39]

    По Лэнгмюру, на поверхности твердого тела имеются места с минимальной энергией, на которых могут адсорбироваться молекулы или ионы из раствора, образуя мономолекулярный слой. Число таких мест (псс) определяет максимально возможное количество вещества, которое может быть адсорбировано. В области небольших концентраций, как видно, изотерма линейна. Действительно, при Ьс <С 1 знаменатель (5.21) становится равным единице и уравнение переходит в  [c.95]

    Томсон [94] предполагал, что адсорбционный катализ связан с капиллярностью и поэтому он представляет собой поверхностное явление. Опыты многих исследователей противоречат утверждению Томсона, показывая, что происходящие при катализе адсорбционные процессы не являются капиллярной конденсацией, так как наблюдающееся при этом изменение энергии значительно больше, чем изменение энергии в процессах конденсации, и во многих случаях сравнимо с энергией химических реакций. Томсон для объяснения катализа предложил теорию химической капиллярности. Согласно этой теории если толщина адсорбированного слоя д, а адсорбированное количество на единицу пло- цади п, тогда, по уравнению Гиббса, концентрация реагентов в адсорбционном слое равна n 6 и соответствует активной массе вещества. Если рассматривать растворы, то концентрация реагентов больше на поверхности катализатора, чем внутри-раствора, а следовательно, если реагенты адсорбируются, скорость реакции повышается . [c.106]

    В области высоких концентраций член Ьс становится значительно больше единицы. В этом случае в знаменателе единицей можно пренебречь, и уравнение примет следующий вид Л = а. Это показывает, что количество адсорбированного вещества не изменяется от изменения концентрации. Следовательно, постоянная а представляет собой максимальное количество адсорбтива, которое может адсорбироваться данным адсорбентом. [c.98]

    Таким образом, понятие адсорбции (поверхностного избытка) в общем случае не совпадает с понятием поверхностной концентрации, т. е. количеством данного компонента, непосредственно связанным с единицей поверхности электрода.Так, поверхностная концентрация — величина всегда положительная, тогда как адсорбция может быть как положительной, так и отрицательной. Интерес представляют собой системы, в которых поверхностный избыток локализуется в пределах одного монослоя адсорбирующегося вещества и, кроме того, выполняется условие В таких системах относительный поверхностный избыток, приблизительно равный Г , мало отличается ОТ поверхностной концентрации компонента 1. Такие системы реализуются, например, при адсорбции большинства органических соединений из водных растворов, а также при адсорбции атомов водорода на границе электрод —раствор. Однако для определения поверхност- [c.19]

    Пусть линейная скорость потока проявителя а, величина концентрации С, а величина адсорбции на единицу объема трубки Г. Чистый проявитель, двигаясь вдоль полосы, насыщается и переносит за время А1 через замыкающий кран полосы на каждую единицу сечения трубки количество аСД< компонента, которое адсорбируется, приводя к перемещению край полосы на расстояние Ах. Насыщение этого нового слоя потребует на единицу площади АхГ. [c.309]

    Для изучения физико-химических характеристик водных сред разработана методика определения адсорбции из водных растворов [88, 89], позволяющая измерять величину адсорбции на сплошной поверхности металла. Методика состоит в следующем. Поверхность стали вводится в соприкосновение с водным раствором ПАВ известной концентрации и выдерживается при постоянной температуре до наступления равновесной адсорбции. Затем определяется концентрация ПАВ в объеме жидкости после адсорбции и рассчитывается количество адсорбировавшегося вещества на единице поверхности металла. Разница концентраций раствора до и после адсорбции определяется по оптической плотности раствора в ультрафиолетовой области спектра при помощи кварцевого спектрофотометра СФ-4. Величина этой разницы, достаточная для измерения адсорбции с относительной ошибкой не более 10—15%, обеспечивается выбором формы и размеров металлического сосуда, стенки которого являются адсорбирующей поверхностью. На рис. 8 [c.26]

    Количество газа или нара, адсорбируемое в равновесных условиях единицей веса адсорбента, зависит от температуры, давления, природы адсорбента и природы и свойств адсорбируемых компонентов. Количество адсорбируемого пара может изменяться в весьма широких пределах для различных адсорбентов и даже для различных партий адсорбентов одинакового химического состава. Как правило, аморфные твердые вещества адсорбируют больше паров и газов, чем кристаллические материалы. Из различных свойств твердых адсорбентов, оказывающих значительное влияние на адсорбционную емкость, следует указать удельную поверхность, структуру поверхности, размеры нор и их распределение по размерам, степень загрязнения поверхности и процессы активирования, применяемые для производства адсорбентов. Не всегда наиболее пористые адсорбенты обладают максимальной адсорбционной емкостью весьма важную роль играют также размер и форма пор. [c.41]


    Выбранный носитель должен быть прочным, проницаемым или пористым, нерастворимым, гидрофильным, химически устойчивым, со свободными группами, обеспечивающими возможность активации. Ввиду того что адсорбирующая способность (количество вещества, адсорбируемое единицей объема носителя с иммобилизованным лигандом) зависит в основном от количества иммобилизованного лиганда и его доступности, выбор носителя является результатом компромисса между повышенной степенью замещения, которая предполагает увеличенную концентрацию полимера, и относительно высокой пористостью, характерной для довольно низкой концентрации этого же самого полимера. Важность того или другого из противоположных требований при этом компромиссе зависит от размера молекул лиганда и продукта, подлежащего разделению. [c.82]

    Прибавленный к раствору К-4 электролит адсорбируется структурными элементами (макромолекулы и их ассоциаты или элементы надмолекулярных структур) раствора полимера. При этом, когда количество электролита мало по отношению к навескам препарата, адсорбция приводит к усилению агрегации структурных единиц полимера и, наоборот, когда количе- [c.52]

    При выборе условий опыта также следует принимать во внимание степень активности адсорбента и его емкость, определяемые в основном величиной поверхности, отнесенной к единице веса или объема, и ее характером. В случае полярного адсорбента увеличение влажности обычно ведет к понижению активности. Не всегда нужно применять наиболее активный адсорбент. Иногда необходимо не только адсорбировать какое-либо вещество из смеси или из раствора, но в дальнейшем и извлечь его из отработанного поглотителя слишком высокая степень активности последнего может создать значительные трудности при достижении этой цели. При использовании адсорбции для удаления ненужной примеси применение слишком активного адсорбента или слишком большого количества его может иметь следствием потерю некоторого количества очищаемого вещества. [c.222]

    Опыт показывает, что при малых концентрациях деполяризатора в растворе на полярограммах наблюдается одна только пред-волпа, высота которой растет пропорционально концентрации восстанавливающегося вещества. С ростом концентрации деполяризатора высота предволны увеличивается, достигает предела, и обычно лишь после этого появляется и начинает увеличиваться основная волна восстановления, так что суммарный предельный ток обеих волн остается пропорциональным концентрации восстанавливающегося вещества в растворе. Максимальная высота адсорбционной предволны а, согласно Брдичке, определяется количеством частиц восстановленной формы окислительно-восстановительной системы, способных адсорбироваться на данной электродной поверхности. Мгновенный адсорбционный ток определяется количеством адсорбирующихся частиц в единицу времени. В условиях, обеспечивающих достижение максимального адсорбционного тока, т. е. при избытке способного адсорбироваться продукта электродной реакции в приэлектродном пространстве, мгновенный адсорбционный ток пропорционален, очевидно, возникающей в единицу времени поверхности капельного электрода Нетруд- [c.78]

    М H2SO4) начинается при +0,65 В (НВЭ) и с увеличением pH на единицу смещается в катодную сторону на 0,06 В. С увеличением анодного потенциала и продолжительности поляризации общее количество адсорбированного кислорода на поверхности платины возрастает, причем одновременно с этим происходит упрочнение связи атомов кислорода с платиной [10, 12, 24, 25, 28, 29, 30]. Относительно предельного количества адсорбирующегося кислорода, формы его существования и состава оксидной пленки высказываются различные мнения. Так, согласно работам [23, 24], при потенциалах 0,7—1,2 В образуются низшие оксиды платины PtO, а при более положительных потенциалах — Р10(0)адс. По данным работы [26], при анодной поляризации платины образуются фазовые окоиды PtO и Pt02-nH20. [c.25]

    Удобно ввести величину б, обозначающую долю поверхности, покрытую адсорбатом. Принимается, что поверхность покрыта монослоем и 6 равно единице, когда каждый доступный участок занят. Число доступных участков па 1 см изменяется при переходе от одной кристаллографической плоскости к другой оно также зависит от размера частиц адсорбата. На грани (110) вольфрама имеется 1,4-10 участков н-а 1 см однако, поскольку поперечник атома цезия почти вдвое больше поперечника атома вольфрама, только один из каждых четырех участков доступен для атома цезия. Для атома адсорбата, обладающего тем же размером, что и атом вольфрама, все участки будут доступными. На грани (100) вольфрама имеется 1,0-10 участков на 1 см опять-таки вследствие большого размера атома цезия доступен только один участок из четырех. Из этих данных следует, что число адсорбированных атомов при 6 = 1,00 на грани (110) на 40% больше, чем на грани (100). Было бы логично определить М0Н0 СЛ0Й как число атомов, адсорбированных на 1 см при. 0= 1,00. При таком определении количество, адсорбированное на 1 см при монослое, будет зависеть от типа кристаллографической плоскости. Понятие о монослое введено в связи с тем, что некоторые свойства поверхности резко изменяются при достижении монослоя. Было бы весьма желатель ным, чтобы при употреблении термина монослой в любой научной работе ему давалось четкое определение. Иногда монослой определяется как наибольшее число атомоВ адсорбата, которые могут уместиться на 1 см поверхности независимо от природы адсорбента. Подобное определение моглО бы быть пригодно в случае физической адсорбции, при которой структура поверхности мало влияет на количество адсорбирующегося вещества однако оно не оправдано в случае хемосорбции, при которой структура поверхности адсорбента сильно влияет на его адсорбционные свойства. [c.161]

    Адсорбция зависит от физической природы вызывающих ее сил, от соответствия размеров активных участков адсорбента размерам адсорбируемых частиц и, наконец,от ориентировки адсорбируемых молекул па поверхности адсорбента. Если имеется, например, твердый адсорбент и над ним адсорбируемый газ год определенным давлением, причем все элементарные участки поверх 10сти адсорбента равнозначны и каждый из них может адсорбировать только одну молекулу газа, то на поверхности адсорбента образуется мономолекулярный газовый слой. Для каждого адсорбированного вещества через некоторое время устанавливается предельная величина адсорбции, отвечающая равновесию между газом (или раствором) и адсорбентом. Состоянию равновесия отвечает равенство между количеством адсорбирующихся и десорбирующихся молекул в единицу времени (скорость конденсации и скорость испарения). Адсорбированное количество молекул увеличивается с возрастанием давления газа или коцентра-ции растворенного вещества (при адсорбции из растворов). Таким образом, каждой концентрации адсорбируемого вещества отвечает определенное состояние адсорбционного равновесия при Постоянной температуре. [c.27]

    Уравнение Ленгмюра можно получить из условий кинетического равновесия скоростей процессов адсорбции и десорбции на поверхности количества адсорбирующихся и десорбирующихся (для единицы поверхности в единицу времени) молекул равны, т. е. [c.12]

    МО оксидов кремния и алюминия в состав цеолитов входят оксиды Ыа, Са, К. Цеолиты имеют кристаллическую трехмерную каркасную структуру. Простейшей структурной единицей является правильный тетраэдр, в центре которого находится кремний. Структура цеолита напоминает ряд птичьих клеток , связанных друг с другом со всех шести сторон. Каждая клетка открывается в соседнюю клетку отверстием, позволяющим небольшим молекулам пройти внутрь клетки. Благодаря этой особенности структуры, цеолиты способны адсорбировать большие количества веществ с малыми молекулами, при этом молекулы поглощаются не поверхностью полости, а объемом. Цеолиты, кроме того, обладают катионообменными свойствами и являются хорошими катализаторами. Алюмосиликаты широко распространены в природе (шабазит, ферроврит, мордеиит и т. д.), кроме того, их легко получить искусственным путем. Промышленно производятся искусственные цеолиты марок КА, МаА, СаА, ЫаХ, СаХ. Первая часть марки фиксирует название катиона, вторая — тип структуры. Цеолиты типа А относятся к низкокремнистым формам, в них отношение 5 02 А12О3 не превышает 2, а диаметр входного окна составляет 0,3— [c.90]

    Адсорбционное равновесие. В процессе адсорбции некоторые молекулы отрываются с поверхности адсорбента и переходят в окружающую среду их место занимают новые молекулы. Устанавливается состояние адсорбционного равновесия, при котором в единицу времени число молекул, поглощаемых поверхностью адсорбента, равно числу молекул, уходящих с нее. Адсорбционное равновесие зависит от концентрации поглощаемого вещества в соприкасающейся с адсорбентом фазе и от тепературы. С увеличением концентрации абсолютное число адсорбированных молекул растет, хотя в процентном отношении их адсорбируется меньше, чем при малых концентрациях. Прп изменении температуры происходит смещение равновесия повышение температуры вызывает десорбцию, т. е. обратное выделение адсорбированных молекул понижение температуры увеличивает количество адсорбированного вещества. [c.24]

    Эмульсии относятся к микрогетерогенным системам, частицы которых видны в обычный оптический микроскоп, а коллоидные растворы принадлежат к ультрамикрогетерогенным системам, их частицы не видны в обычный микроскоп. Хотя по своей природе эти системы близки, но физико-химические их свойства различны и зависят в значительной степени от дисперсности. При образовании эмульсии образуется огромная поверхность дисперсной фазы. Так, количество глобул воды в одном литре 1%-ной высокодисперсной эмульсии исчисляется триллионами, а общая межфазная площадь поверхности — десятками квадратных метров. На такой огромной межфазной поверхности может адсорбироваться большое количество веществ, стабилизирующих эмульсию. В процессе образования эмульсии на хщспергирование жидкости затрачивается определенная работа и на поверхности раздела фаз концентрируется свободная поверхностная энергия — избыток энергии, содержащейся в поверхностном слое (на границе двух соприкасающихся фаз). Энергия, затраченная на образование единицы межфазной поверхности, называется межфазным поверхностным натяжением. Удельная поверхностная энергия измеряется работой изотермического и обратимого процесса образования единицы поверхности поверхностного слоя и обозначается а. [c.15]

    Рассмотренная математическая модель внутридиффузион-ного переноса в гранулах адсорбента предполагает, что массоперенос в твердом теле полностью определяется некоторым постоянным коэффициентом диффузии. Действительно, проникание адсорбата внутрь зерна адсорбента — процесс диффузионный, а под коэффициентом диффузии D понимают количество вещества, диффундирующего в единицу времени через 1 см поверхности при градиенте концентрации, равном единице. Естественно, что нельзя ожидать, чтобы один постоянный коэффициент диффузии описал те явления, которые происходят в процессе переноса адсорбата в таких сложных пористых структурах, которыми обладают гранулы любого промышленного адсорбента. Величина D должна рассматриваться как эффективный коэффициент диффузии, значение которого зависит от структуры пор и вклада в массоперенос различных транспортных механизмов, таких как нормальная или объемная диффузия, молекулярная или кнудсенов-ская диффузия и поверхностная диффузия. Для того чтобы учесть негомогенность структуры адсорбентов, при экспериментальном и теоретическом изучении кинетики адсорбции микропористыми адсорбентами в настоящее время широко используется представление о бипористой структуре таких адсорбентов [18], которое предполагает два предельных механизма массопереноса диффузия в адсорбирующих порах (например, в кристаллах цеолита) и перенос в транспортных порах. [c.50]

    Другим примером специализированного нефтесобирающего судна является нефтесборщик Марк V (США) [12]. Это судно длиной Ими шириной 3,66 м способно принять на борт до 6 т собираемой нефти. Принцип сбора нефти — адсорбция. На судне установлена адсорбирующая лента шириной 0,915 м, длиной 9,15 м и толщиной 25,4 мм. Позади ленты установлен насос, подгоняющий к ленте воду и нефть, причем вода свободно проходит сквозь ленту, а нефть налипает на нее. В режиме сбора нефти судно идет кормой катама-ранного типа вперед (рис. 1.9). Угол наклона ленты может меняться от О (горизонтальное положение при плавании и замене олеофильного покрытия ленты конвейера) до 30 (в рабочем режиме). Производительность нефтесборщика определяется скоростью хода и толщиной слоя собираемой нефти. При скорости движения судна 1 узел (0,5 км/ч) к ленте будет подходить 0,2 т нефти за 1 час при толщине пленки 0,1 мм. При увеличении толщины нефтяного слоя производительность нефтесборщика возрастает. Кроме того, как отмечено в [12], процесс иефтесбора будет лимитироваться количеством нефти, поступающей за единицу времени по фронту [c.37]

    Таким образом, понятие адсорбции (поверхностного избытка) в общем случае не совпадает с понятием поверхностной концентрации, т. е. количеством данного компонента, непосредственно связанным с единицей поверхности электрода. Так, поверхностная концентрация — величина всегда положительная, тогда как адсорбция может быть как положительной, так и отрицательной. Интерес представляют собой системы, в которых поверхностный избыток локализуется в пределах одного монсслоя адсорбирующегося вещества и, кроме того, выполняется условие VlNJv2N2 1. В таких системах относительный поверхностный избыток, приблизительно равный мало отличается от поверхностной концентрации компонента 1. Такие системы реализуются, например, при адсорбции большинства органических соединений из водных растворов, а также при адсорбции атомов водорода на границе электрод — раствор. Однако в общем случае для определения поверхностной концентрации компонента по гиббсовской адсорбции нужны дополнительные модельные представления о распределении концентрации в зависимости от расстояния до электрода. [c.20]

    Метод определения адсорбционной насьпцепности поверхностн глобул синтетических латексов стабилизатором предложен Мароном. Этот метод заключается в следующем. Определяют количество стабилизатора Si, приходящееся па единицу массы полимера в исходном латексе (в моль/г), и количество стабилизатора (в моль/г), которое должно дополнительно адсорбироваться на глобулах, чтобы нх поверхность бы,на полностью насыщена. Степень адсорбционной Насыщенности / - (в "о) вычисляют по форму,ие [c.90]

    Перейдем К рассмотрению некоторых закономерностей адсорбции из раствора ПАВ на поверхности твердого тела. Прежде всего отметим, что основным, наиболее простым и широко распространенным методом изучения адсорбционных явлений в подобных системах является исследование концентрационной зависимости адсорбции ПАВ. Для этого обычно используются твердые тела с большой удельной поверхностью — порош ки или тонкошористые адсорбенты. Если удельная поверхность адсорбента 5] неизвестна, определяется общее количество вещества Г, поглощенного единицей массы адсорбента эту величину можно найти по убыли концентрации адсорбирующегося вещества Ас в определенном объеме V раствора после достижения адсорбционного равновесия  [c.89]

    Как видно из рис. 50, введение аминов ОДА снижает наибольшую пластическую вязкость, а также статический предел текучести всех модельных систем. Это особенно ярко проявляется на моделях Ai и. Мз, имитирующих I и П1 тип дисперсной структуры. Для этих систем снижение вязкости и предела текучести наблюдается при введении малых количеств (0,3—0,5%) ОДА и далее продолжается во всем диапазоне исследуемых концентраций (до 2—2,5%). Следует отметить, что при введении около 1,5—2,0% ОДА предел текучести становится очень малым, что свидетельствует о практическом исчезновении твердообразных свойств системы. Для системы Мг (И тип дисперсной структуры) действие ОДА проявляется менее заметно и лишь при малых концентрациях добавки (0,5%). Дальнейшее увеличение ее количества практически не изменяет вязкости системы. Следовательно, при наличии коагуляционной структурной сетки из асфальтенов Му и М ) добавка, адсорбируясь на лиофоб-кых участках их поверхности с блокировкой контактов, способствует стабилизации системы. В моделях М2, где отсутствует коагуляционный каркас из асфальтенов, адсорбция добавки приводит к дезагрегации и исчезновению отдельных малочисленных образований из асфальтенов. Растворение ОДА в углеводородной среде приводит также к общей пластификации системы, сопровождающейся уменьшением числа асфальтенов в единице объема. Пластифицирующее воздействие на битумы различных структурных типов оказывает добавка высших карбоновых кислот — госсиполовая смола, снижающая пластическую вязкость и статический предел текучести. Пластифицирующий эффект увеличивается с повышением количества ПАВ в битуме, что наблюдается для всех модельных систем. Следует, однако, отметить, что в случае дисперсных структур М и Мз введение добавки ГС до 2% практически не изменяет значений пределов текучести, тогда как наибольшая пластическая вязкость при этом уменьшается. Это указывает на нарушение иространствен-ной сетки асфальтенов пластификатором без полного разрушения каркаса. Дальнейшее повышение концентрации ГС способствует превращению систем М] и ТИз в структурированную и далее истинную жидкость. [c.211]

    Адсорбция гексокиназы на фосфолипидных мембранах (липосомах). Адсорбцию (иммобилизацию) гексокиназы на липосомах проводят суспендированием препарата липосом (3 мг лецитина) в 1 мЛ раствора фермента, содержащего различные количества единиц используемого фермента, а также 15 мМ МдСЬ или 5 мМ глюкозу в качестве адсорбирующих реагентов. Контрольная проба адсорбирующих реагентов не содержит. После 30-минутной инкубации при 0° С мембраны, содержащие адсорбированную гексокиназу, отделяют центрифугированием при 100 ООО я в течение 1 ч и суспендируюг в среде инкубации. Препарат иммобилизованной гексокиназы используют для изучения свойств в день получения. [c.376]

    Об этом было сообщено Боемом и Шнайдером [209] и подтверждено Айлером [210]. Гринберг [211] показал, что ион кальция адсорбировался выше pH 5 адсорбированное количество было пропорционально удельной поверхности. Оказалось, что на 1 нм адсорбировалось примерно четыре иона Са +. На основании ранее сделанных Айлером допущений, что концентрация гидроксильных группа равна 8 ОН-групп/нм , можно считать, что каждый ион Са + был связан с двумя группами SiOH. Однако число групп на единице поверхности составляет примерно [c.924]

    Катионные полимеры прочно адсорбируются из воды на иоверхности кремнезема во всей области значений pH в отсутствие каких-либо полярных растворителей. Взаимодействие таких полимеров с кремнеземом рассматривалось в гл. 4 (см. лит. к гл. 4 [315—323]). В том случае, когда углеводородная цепь полимера содержит четвертичные аммониевые ионы на коротких боковых цепях, для такой полимерной молекулы появляется возможность располагаться плоско вдоль поверхности. В случае аммониевой соли поли (Ы-метилдиэтилэтилметакрилата) каждый сегмент катионного полимера покрывает площадь I—2 нм. Для покрытия больших по размеру частиц кремнезема с почти плоскими ио форме локальными участками иоверхности требуется меньшее количество полимера в расчете на единицу иоверхности. Такой полимер испытывает незначительную конфигурационную заторможенность на поверхности это подтверждается тем фактом, что предшествующая ему форма, третичный амин, адсорбируется с участием всех своих аминогрупп, обращенных в сторону плоской поверхности, превращая ее в гидрофобную [434]. Однако когда иосле этого на такую поверхность накладываются коллоидные частицы кремнезема, то некоторое число аминогруии разворачивается и адсорбируется уже на эт)1Х небольших частицах, удерживая их тем самым на плоской иоверхности. Когда избыточный золь кремнезема смывается, на поверхности еще сохраняется слой адсорбированных кремнеземных частиц, и вся система остается гидрофильной. [c.979]

    Измеряется при этом избыточное время удерживания в колонне интересующего нас адсорбата по сравнению со временем удерживания одновременно вошедшей в колонну порции газа-носителя или другого, введенного одновременно с изучаемым адсорбатом практически не адсорбирующегося газа. Таким образом, этот метод позволяет непосредственно определить избыточную, т. е. гиббсовскую [17, 18] величину адсорбции. Эту величину отражает произведение измеренного избыточного времени удерживания адсорбата и скорости потока газа, приведенной к постоянному давлению в колонне. Это произведение называют удерживаемым объемом Vи (подробнее см. разд. 3 этой гл.), его обычно относят или к единице массы адсорбента в колонне = Уц1т (т — масса всего адсорбента в колонне), или к единице его поверхности = Уц/А А — общая поверхность адсорбента в колонне). Вычисление изотерм адсорбции из зависимости Уд от величины пробы (количества адсорбата, впускаемого в ток газа-носителя у входа в колонну) описано в книгах [1, 24, 25]. При этом очень важно обеспечить постоянную температуру по всей длине колонны. [c.98]


Смотреть страницы где упоминается термин Количество адсорбированного единицы: [c.440]    [c.12]    [c.299]    [c.369]    [c.61]    [c.91]    [c.47]    [c.483]    [c.858]    [c.85]   
Адсорбция газов и паров Том 1 (1948) -- [ c.26 ]

Адсорбция газов и паров (1948) -- [ c.26 ]




ПОИСК





Смотрите так же термины и статьи:

Количество адсорбированного

Количество единицы



© 2025 chem21.info Реклама на сайте