Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Иодиды ароматические

    Влияние природы галогена. В реакцию с металлическим магнием вступают хлориды, бромиды и иодиды, причем при одинаковых органических радикалах легче всего реагируют иодиды, труднее — хлориды. Однако применение иодистых алкилов ограничено легко идущими побочными процессами, особенно реакцией типа Вюрца. Вторичные и третичные иодистые алкилы, кроме того, претерпевают дегидрогалогенирование. Поэтому удобнее всего работать с бромидами и хлоридами. Применение хлоридов в ароматическом ряду ограничено их очень малой реакционной способностью. [c.210]


    Принцип ЖМКО является очень общим, но пока лишь качественным законом, так как до сих пор не существует надежного и универсального способа количественной оценки значений жесткости и мягкости кислот и оснований. Он позволяет однозначно объяснить рассматривавшееся выше несоответствие между основностью и нуклеофильностью. Оно связано с тем, что основность характеризует сродство основания к протону, являющемуся жесткой кислотой, а нуклеофильность — сродство реагента к электрофильному центру ароматического субстрата, являющегося из-за сильной делокализации электронов мягкой кислотой. Следовательно при прочих равных условиях большей основностью должны обладать более жесткие основания, а большей нуклеофильностью — мягкие основания. Жесткий фторид-ион — более сильное основание и более слабый нуклеофил, чем мягкий и менее основный иодид-ион. Жесткий и сильно основный этилат-ион — более слабый нуклеофил, чем значительно менее основный, но мягкий этилмеркаптид-анион и т. д. [c.159]

    При нагревании ароматических нитросоединений с иодидом калия и ортофосфорной кислотой образуются амины и выделяется иод  [c.823]

    Синтезы Гриньяра. — Реакция Гриньяра применяется во многих синтезах смешанных жирноароматических углеводородов, содержащих насыщенные и ненасыщенные боковые цепи. Приводимые ниже примеры (реакции 1—3) иллюстрируют один из типов реакций, при которых используются арилмагнийгалогениды — реактивы Гриньяра, легко получаемые взаимодействием магния с ароматическими бромидами и иодидами  [c.181]

    Скорость взаимодействия алкилгалогенидов в реакции (Г. 7.170) падает от иодида к хлориду. Однако хлориды дают лучшие выходы, чем бромиды и иодиды. Из числа ароматических галоген-производных реагируют обычно только бромиды и иодиды. [c.194]

    Очевидно, что для замещения у насыщенного атома углерода требуется присутствие эффективной уходящей группы в то же время при замещении в олефинах или в ароматических соединениях они должны быть активированы заместителями. Очень большое влияние на ход реакции оказывает растворитель. Поскольку энергии сольватации галоген-ионов в воде составляют для 506 С1 364 Вг 335 1 293 кДж-моль, то неудивительно, что в водных системах наиболее эффективным нуклеофилом является иодид-ион. Однако в апротонных растворителях очень сильным нуклеофилом может быть фторид-ион, хотя в этом случае следует считаться также и со значительным влиянием противоиона. Совершенно очевидно, что взаимодействие с противоионом имеет очень важное значение, поскольку эффективность фторидов падает в ряду СзР > [c.645]


    Весьма общую реакцию мы имеем у галоидангидридов (хло ридов, бро мидов и иодидов) кислот как в жирном, так и в ароматическом ряду, у которых галоид весьма энергично замещается остатком аммиака [c.452]

    На восстановительных свойствах сахаров основано их определение при помощи щелочных растворов висмута, иодида ртути, тартрата никеля и т. п. Очень чувствительными являются также методы, основанные на образовании интенсивно окрашенных соединений при восстановлении сахарами ароматических нитросоединений нитрофенола, пикриновой кислоты, о-динитробензола и др. [c.178]

    Содержание некоторых групп в ароматическом радикале существенно ограничивает применимость сульфцрующнх агентов, особенно при повышенной температуре, так как в этом случае могут иметь место побочные реакщга. Бромиды и особенно иодиды в некоторых условиях испытывают перегруппировку или диспропорционирование. Некоторые полиалкилбензолы претерпевают аналогичное превращение, известное под названием реакции Якобсена. При нагревании нитробензола с серной кислотой выше 170° происходит бурное разложение, а сульфирование л-нитрофенола для получения удовлетворительного выхода сульфокислоты должно вестись при 0°. [c.8]

    Затем в реакционную смесь вводят первичный галогеналкил. Первичные галогеналкилы с разветвлением у второго углеродного атома цепи (КаСН—СНаХ) дают лишь следы монозамеш,енных ацетиленов вторичные и третичные галогенопроизводные в реакцию алкилирования не вступают, так как в этих условиях они, отщепляя галогеноводород, превращаются в этиленовые углеводороды. Наиболее часто применяются бромистые алкилы. Хлористые алкилы реагируют с меньшей скоростью. Выход уменьшается с увеличением. длины алкильного радикала. Иодиды реагируют хорошо, но образуют большее количество аминов, чем бромиды и хлориды. Ароматические галогенопроизводные в реакцию не вступают. Галогеналлилы образуют смесь соединений, содержащих 8 и 11 углеродных атомов строение этих соединений не установлено. [c.188]

    В целях улучшения структуры покрытий и повышения выхода по току рекомендуется введение в электролит добавок тио-мочевины, нафталина, ос- и р-нафтола, антрацена, салициловой кислоты, фурфурола, парафина, иодида тетраэтиламмония и др. Для приготовления электролита могут быть использованы смеси ароматических углеводородов этилбензол с ксилолом или толуолом с основным компонентом А1Вгз (50 %-й раствор). [c.111]

    Обработка диазониевых солей хлоридом или бромидом меди(1) приводит к образованию арилхлоридов или арилбро-мидов соответственно в обоих случаях этот процесс носит название реакции Зандмейера. Аналогичный процесс, проводимый с медью и НС1 или НВг, называют реакцией Гаттермана (не путать с реакцией 11-18, описанной в гл. И, т. 2). Реакция Зандмейера широко применяется для получения различных ароматических хлоридов и бромидов и по всей вероятности является лучшим методом введения хлора или брома в ароматическое кольцо, однако она непригодна для получения фторидов и иодидов. Арилхлориды и арилбромиды получаются обычно с высокими выходами. [c.103]

    Соединения поливалентного иода. — Ароматические иодиды способны образовывать ряд производных, содержащих многовалентный иод первое из них было открыто Вильгеродтом в 1886 г. Взаимодействием иодбензола с хлором он получил хлористый иодбензол (фенилиоддихлорид, eHsI b) — желтое вещество, умеренно растворимое в хлороформе или п бензоле и плохо растворимое в эфире, которое при нагревании до ПО—120°С быстро разлагается главным образом по следующей схеме  [c.338]

    В реакцию вступают почти все алифатические галогениды, а также ароматические бромиды и иодиды (см. разд. Г, 7,3.6). Взаимодействием полученных соединений Гриньяра с диметилформ-амидом можно перевести галогенпроизводные также в альдегиды, которые легко идентифицируются в виде 2,4-динитрофенилгидразонов [c.314]

    Недавно было показано [251, что перфторалкилиодиды могут взаимодействовать с ароматическими иодидами в присутствии медного комплекса. Эта реакция, хотя и специфическая, весьма выгодна, поскольку реакционноспособные ароматические галогениды, такие, [c.34]

    Эта глава включает следующие разделы А. Замещение Б. При--соединение к ненасыщенным соединениям и эпокисям В. Алифа-тическое замещение Г. Ароматическое замещение и Д. Различные реакци - Была сделана попытка рассмотреть не только хлориды и бромидь , но также иодиды и фториды. Самым последним обзором, посвященным фторидам, является, по-видимому, обзор Стефенса И Тэтлоу [1]. [c.374]

    Родственными альдоксимам производными, которые также служат промежуточными соединениями на пути к нитрилам, являются К-хлоримины [59], иодиды N,N,N-тpимeтилгидpaзиния [60], окиси К,Н-диметилгидразона (пример 6.5) [61], 4-алкилиденамино-], 2,4-триазолы [62] и азины [63, 64]. Они требуют применения реагентов, более редких, чем гидроксиламин, хотя азины легко получаются с хорошим выходом из сульфата гидразина [65]. Нагревание или различные реагенты, как уже указывалось, необходимы для превращения промежуточного соединения в нитрилы. Интересно отметить, что облучение ряда ароматических азинов в неполярных растворителях дает нитрилы с выходами от 80 до 95% [64]. Эти методы применимы главным образом к ароматическим, а не к алифатическим альдегидам. Метод, включающий 4-алкилиденамино-1,2,4-триазолы в большей степени, чем остальные четыре, был использован для получения ряда гетероциклических и полициклических соединений. [c.452]


    В р-цию вступают разл. альдегиды и кетоны (насыщенные или ненасыщенные, ароматические, галогензамещенные и др.). Второй компонент-обычно эфиры а-бромкарбоновых к-т (а-хлорэфиры малоактивны, а соответствующие иодиды малодоступны). Р-ция экзотермична ее осуществляют в безводном диэтиловом эфире, ТГФ или диоксане, либо в ароматич. р-рителе (бензоле, толуоле, ксилоле и др.). Цинк (обычно в виде мелкодисперсного порошка) предварительно активируют выходы р-ции возрастают, если использовать амальгаму Zn или Zn, получаемый in situ при восстановлении его галогенидов интеркалатом калия в графите. Р-ция инициируется с помощью или HjMgl. Выход эфиров -гидроксикарбоновых к-т составляет 50-75%. [c.260]

    Густус и Стивенс также сообщили что ароматические эфиры (дифениловый эфир и дибензофуран), которые не взаимодействуют с HI даже при 250 °С, легко расщепляются ацетил-иодидом при комнатной температуре. Однако, подтверждающие это экспериментальные данные не приводятся. [c.31]

    В избытке монохлоруксусной кислоты при рН = 9—10 в реакцию дополнительно вступает фенольный гидроксил с образованием производных гидроксифенилиминотриуксусной кислоты. Для избежания этого реакцию проводят при более низких значениях pH (7—8), что, однако, приводит к уменьшению выхода продукта. В реакции с о-аминофенолом использование в качестве добавки иодида калия позволило снизить pH реакции, уменьшить тем самым реакционную способность фенольного гидроксила и предотвратить образование соответствующих лактона и карбоксиалкилпроизводного. Нежелательного карбокси-метилирования ароматической гидроксигруппы можно избежать, осуществляя реакцию цианметилирования аминов. [c.36]

    Поэтому с учетом условий, благоприятствующих растворимости, обмен атомов галогенов обычно вполне успешно осуществляется в полярных апротонных растворителях, если только термодинамические факторы способствуют реакции [77 ]. Основность по отношению к атому углерода в отличие от нуклеофильности по отношению к атому углерода в полярных апротонных растворителях [17, 77] соответствует ряду Ыз>Р >С1 , S N" > Вг" > 1 другими словами, иодид-ион замещается у атомов углерода в ароматическом кольце и у насыщенного атома углерода всеми галогеноидными (псевдогалогенными) ионами. Реакции алкилиодидов с механизмом 5jvr2 протекают быстрее, чем такие же реакции других алкилгалогенидов, и наиболее чувствительны к замене протонного растворителя полярным апротонным [12]. Иодид и тозилат относятся к числу групп, которые наиболее легко замещаются при алкилировании. [c.39]

    Некоторые реакции окисления аренов уже были рассмотрены в разд. 2.З.6.7. Здесь основное внимание будет уделено окислению боковых цепей в аренах п окислению аренов в хиноны. Окисление незамещенных ароматических колец, сопровождающееся снижением энергии стабилизации, требует жестких условий, о чем упоминалось ранее (см. разд. 2.5.7), и представляет препаративную ценность, по-видимому, только в случае полициклических углеводородов. Так, озонирование антрацена смесью озона и азота дает после обработки щелочным пероксидом водорода 9,10-антрахинон с выходом 73%. При озонолизе фенантрена в метанольном растворе с последующей обработкой иодидом калия (для удаления промежуточных пероксидов) образуется бифенил-2,2-дикарбоксальде-гид с отличным выходом. Озонолиз пирена (уравнение 193) позволяет получать с удовлетворительным выходом функционально замещенные производные фенантрена, в которых заместители находятся в положениях 4 и 5. Такие соединения трудно получить иным способом. [c.414]

    Известно небольшое число простых аминофуранов, и поэтому спектроскопические данные о положении имин-аминного таутомер-ного равновесия для таких соединений отсутствуют. Однако по химическому поведению они никоим образом не напоминают ароматические амины. Большая часть классических методов синтеза оказалась непригодна для получения 2-аминофурана [I]. Как этиловый эфир (фурил-2)карбамиыовой кислоты, так и 2-(ацетилами-но)фуран теряют аммиак при кислотном или щелочном гидролизе. Первое из этих соединений было получено из этилового эфира 5-нитрофуранкарбоновой-2 кислоты или при действии метилмагний-иодида на (фурил-2) изоцианат, получаемый реакцией Курциуса из азида фуранкарбоновой-2 кислоты. Однако 2-аминофуран был получен гидразинолизом N-(фурил-2) фталимида, синтезированного с выходом 30 % из фталимида и 2,5-дигидро-2,5-диметоксифурана. 2-Аминофуран не был выделен, но его присутствие было установлено с помощью хроматомасс-спектрометрии и спектроскопии ПМР, Судя по спектру ЯМ.Р, имино-таутомер отсутствует [160]. [c.154]

    Продуктов, то дальнейшие поиски прямых методов представляют практически важную задачу. С этой целью была проведена работа по непосредственному полярографическому определению полизамещенных стиролов, для чего в качестве фона предложен раствор иодида тетраэтиламмония в диметилформамиде. Как видно из табл. 5, смещение начала восстановления фонового-электролита в этом случае достигает 0,3—0,7 В, что позволяет изучать соединения с 1/2 до —2,60- —2,65 В. В то же время значения потенциалов полуволн ароматических веществ изменяются не так сильно при переходе от протогенных растворителей к, диметилформамиду. Так, 1/2 стирола в 75%-м диоксане (25% Н2О) составляет —2,42 В, а в диметилформамиде, по нашим измерениям, —2,43 В. [c.88]

    Для идентификации отдельных аминов могут служить их соли с галогеноводородами или пикриновой кислотой. Первичные и вторичные амины часто превращают в амиды ацилированием уксусным ангидридом, бензоилхлоридом или 4-нитробензоилхлоридом. Из третичных аминов и иодистого метила получают четвертичные иодиды аммония, так называемые иодметилаты (метоиодиды). В ИК-спектрах аминов наблюдаются полосы поглощения валентных колебаний С—N в области 1020—1220 см- (алифатические соединения) или 1250—1360 см- (ароматические амины). У первичных и вторичных аминов проявляются полосы свободных валентных колебаний Ы—-И в области 3300—3500 см > (положение сильно зависит от степени ассоциации) и деформационных колебаний Ы—И в области 1550—1650 см . [c.492]

    Из хлоридов арилдиазониев и иодида натрия или калия при аналогичных условиях образуются арилиодиды эта реакция является лучшим методом введения иода в ароматические соединения. Диазогруппа может быть также замещена и на другие анионы с высокой нуклеофильностью с азидом натрия получаются арилазиды, с арсенитом натрия — ариларсоновые кислоты реакция Барт, 1910 г.), с оксидом сурь-11 ы(111)—арилсурьмяные (арилстибоновые) кислоты  [c.527]

    Влияиие природы галогена. Сравнительная активность галогенопроизводных в реакциях с магнием падает при переходе от иодидов к бромидам и хлоридам. Однако иодопроизводные, особенно жирного ряда, в некоторых случаях дают более низкие выходы алкилмагнийиодидов вследствие побочных реакций. Поэтому применение иодидов наиболее целесообразно тогда, когда соответствующие бромистые соединения трудно реагируют. В жирном ряду чаще всего используют бромиды и хлориды. В ароматическом ряду применяют главным образом бромиды и иодиды, поскольку ароматические хлориды в обычных условиях в эфире весьма мало активны. [c.301]

    Аммониевые основання как ароматического, так и жирного ряда также выделяются из сильно кислых растворов их иодидов, хлоридов и сульфатов при помощи железистосинсродистого калия в виде кислых ферроцианидов. Это может служить методом изолирования легко растворимых аммонийных соединений из разбавленных растворов или из растворов, загрязненных другими солями. [c.702]

    Внутримолекулярное гомолитическое ароматическое замещение можно использовать как метод замыкания цикла. Этот тип реакций был ключевым в синтезе Ы-бензоилнорну-циферина (15) и заключался в фотолизе иодида (14) [7  [c.194]

    Нагревание смеси анилина, концентрированной серной кислоты, глицерина и мягкого окисляющего агента приводит в результате необычной реакции к образованию хинолина [97]. Как было показано, при этом происхлодит дегидратация глицерина, приводящая к образованию акролеина, затем анилин присоединяется к акролеину по типу сопряженного присоединения. В дальнейшем происходит катализируемая кислотой циклизация с образованием 1,2-дигидрохинолина. Окисление на заключительном этапе приводит к ароматической структуре. В классическом варианте в качестве окислителя используется нитробензол или мышьяковая кислота введение в реакционную смесь небольшого количества иодида натрия позволяет серной кислоте выступать в роли окислителя [12]. Синтез Скраупа наиболее пригоден для получения не замещенных по гетероциклу хинолинов [98]. [c.182]

    Соединения роданида кобальта с органическими аминами. Методы отделения и фотометрического определения кобальта в виде соединении тетрароданида кобальта с крупными органическими катионами описаны на стр. 156. Экстракция кобальта заствором трибутилфосфата нз 10 У раствора соляной кислоты 407] позволяет выделить микрограммовые количества кобальта из металлического никеля. Трибутилфосфат рекомендуется для отделения урана от кобальта и других элементов [1383]. Экстракция легкоплавкими ароматическими аминами (а-нафтиламин и др.) из растворов иодидов и бромидов позволяет отделить кобальт от меди [187]. [c.74]

    Браун и Кришнамурти [3] сообщили, что ароматические иодиды и бромиды с высоким выходом восстанавливаются реагентом в ТГФ иодиды восстанавливаются с заметной скоростью даже при комнатной температуре, а для восстаиовлеиия бромидов требуются более высокие температуры (кипячение). Чтобы создать оптимальные условия, надо взять по меньшей мере 2 моля восстановителя на моль арилгалоген ида. [c.146]

    Синтез ароматических иодидов. При обработке б/ с-(тр]к[ггораце-татов) арилталлия водным раствором иодистого калия при комнат- [c.247]

    Ароматкческке хлорзамещенные соедкиения. Для синтеза три-фенилов, фенантренов, фосфор- и борорганических соединений применяется фотолиз ароматических иодидов [1 , Проведение фот лиза в У. ч, при облучении светом с длиной волны 3000 А в течение 5 час приводит к образованию соответствующих хлорзамещенных ароматических соединений с выходами от 50 до 95% [2 . [c.307]


Смотреть страницы где упоминается термин Иодиды ароматические: [c.370]    [c.24]    [c.331]    [c.91]    [c.329]    [c.636]    [c.491]    [c.171]    [c.243]    [c.297]    [c.175]    [c.149]    [c.168]    [c.425]    [c.54]    [c.478]   
Интерпретация масс-спекторов органических соединений (1966) -- [ c.233 , c.234 ]

Определение строения органических соединений (2006) -- [ c.335 ]




ПОИСК





Смотрите так же термины и статьи:

Иодиды



© 2025 chem21.info Реклама на сайте