Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбент физические характеристики

    РАБОТА 2. НЕКОТОРЫЕ ФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ АДСОРБЕНТОВ [14] [c.121]

    Таким образом, для мелкопористых сорбентов, для которых формальный расчет приводит к величинам эффективных радиусов г С 15 А, 5 5, значительная доля объема пор в общем сорбционном объеме представлена микропора-ми. Удельная поверхность скелета таких сорбентов, вычисленная по методу БЭТ или другому, а также кривая распределения объемов пор по размерам, являющаяся типичной характеристикой переходных пор, теряют физический смысл и совершенно не дают представления об адсорбционных свойствах мелкопористых минеральных адсорбентов. Для характеристики их адсорбционных свойств необходимо знать объемы различных разновидностей пор и константы уравнения теории объемного заполнения. [c.134]


    При исследовании межмолекулярных взаимодействий молекул с адсорбентом для характеристики строения поверхности используются понятия физически и математически (энергетически) однородной поверхности. Простейший случай физически однородной поверхности представляет одна бесконечная грань идеальной полу-бесконечной решетки твердого тела. Такая физически однородная поверхность является однородной и химически, и геометрически. Основным свойством физически однородной поверхности является периодическое изменение потенциальной энергии взаимодействия молекулы с поверхностью при движении молекулы вдоль такой поверхности. Это вызывается атомным строением твердого тела. Изменение потенциальной энергии зависит как от строения поверхности, так и от строения и размеров взаимодействующей с ней молекулы. Отсюда следует, что понятие физической однородности не сводится только к постоянству химического состава, т. е. оно предъявляет более жесткие требования к структуре поверхности, чем понятие химической однородности, которому может соответствовать поверхность аморфного вещества. [c.14]

    Для расчета капиллярной конденсации и полимолекулярной адсорбции должны быть известны константы молекулярного взаимодействия, определяемые на основании физических характеристик адсорбента и адсорбата — частотных зависимостей диэлектрических проницаемостей 81 (со) и б2 (ю). Так как в настоящее время зависимости е (со) получены для многих веществ [6], становятся возможными количественные расчеты этих процессов. [c.185]

    Как будет видно из дальнейшего рассмотрения, любой метод определения удельной поверхности включает измерение некоторой физической характеристики, которая заведомо качественно зависит от общей площади поверхности адсорбента и которая теоретически может быть связана с истинной удельной поверхностью. Важно понимать, что различные методы дают отличающиеся результаты и что таких различий и следует ожидать. Проблема заключается в том, что при внимательном анализе понятие удельная поверхность становится довольно туманным. [c.416]

    По своему характеру и энергии взаимодействия адсорбата с поверхностью твердого тела адсорбция подразделяется на физическую и химическую, для которых часто в качестве синонимов применяют соответственно термины вандервааль-сова адсорбция и активированная адсорбция , сопровождающаяся, как правило, химическим взаимодействием поглощаемого вещества с адсорбентом. Подробная характеристика и отличия этих двух видов адсорбции будут даны несколько ниже. [c.9]


    При проведении каждого Конкретного адсорбционного процесса наблюдают повышение температуры в адсорбционной системе, которое зависит от многих параметров массовой скорости потока, его концентрации, теплоемкости и теплопроводности, а также физических характеристик адсорбента, потерь в окружающую среду и теплоты адсорбции. [c.392]

    Адсорбент. Адсорбционные равновесные измерения были проведены на силикагеле с = 0,04 мм, а для хроматографических экспериментов были использованы фракции с / = 0,50 0,39 и 0,11 мм. Перед проведением эксперимента адсорбент прогревался в течение 18 ч при 200° С в потоке сухого гелия. Физические характеристики силикагеля удельная поверхность — 832 м Нг, свободный объем слоя — 0,43 мл/г, [c.118]

    В табл. 5.28 приведены некоторые характеристики адсорбентов. Физические свойства других адсорбентов см. в [52, 254]. [c.223]

    По экспериментальным данным, приведенным в работе [11] была рассчитана характеристическая энергия адсорбции криптона на цеолите ЫаХ Е = 7740 Дж/моль и определена величина предельной адсорбции для различных температур. Теплота парообразования криптона ДЯо = 9018 Дж/моль. По формулам (2.1.8), (2.1.13) определяем критическую температуру адсорбированного криптона 7 р = 389 К и критическую плотность р р= 1240 кг/м . На рис. 2.4 приведена графическая иллюстрация, проведенных нами расчетов зависимости плотности адсорбированной фазы от температуры. Сравнение рассчитанной плотности адсорбированного криптона с экспериментальными результатами не оставляет сомнения в преимуществе разработанного метода. Адекватность описания экспериментальных данных связана, очевидно, с учетом при расчете не только основных физических свойств объемной фазы, но и характеристических характеристик адсорбции, а значит, и пористой структуры адсорбента. [c.33]

    Сущность работы. Для полной характеристики адсорбента необходимо прежде всего определить его физические параметры истинную, кажущуюся и насыпную удельную массу пористость Знание этих величин необходимо для правильного выбора адсор бента, расчета его количества для поглощения какого-либо ве щества, а в случае применения адсорбента для целей хромате графии — и для правильного расчета параметров хроматографи ческой колонки. [c.121]

    Из этого неполного перечня видно, как важны исследования химии поверхности неорганических и органических твердых тел и их межмолекулярного взаимодействия с компонентами различных сред. Эти исследования требуют объединения методов неорганического и органического синтеза с самыми современными физическими методами изучения структуры поверхности твердого тела и строения молекул. В кратком курсе лекций невозможно осветить все научные и прикладные аспекты химии поверхности твердых тел, ее модифицирования и влияния на межмолекулярные и химические взаимодействия с различными средами. В пособии рассмотрена хими/ поверхности адсорбентов, применяемых в газовой и молекулярной жидкостной хроматографии, и, соответственно, адсорбция из газовой фазы и жидких растворов при малых концентрациях, лежащая в основе селективности этих видов хроматографии. Эти проблемы исследованы как на макроскопическом уровне с использованием термодинамических характеристик адсорбции, так и на микроскопическом (молекулярном) уровне с привлечением молекулярно-статистической теории адсорбции и теории межмолекулярных взаимодействий. [c.7]

    Искажение хроматографических ников мешает эффективной работе колонки и точному определению характеристик удерживания. Для устранения термодинамических причин размывания и асимметрии хроматографических пиков подбирают адсорбенты, дающие линейную изотерму, или добиваются большей линейности благодаря термическому, химическому или физическому модифицированию носителя. [c.358]

    Значение тщательной конструктивной проработки элементов адсорбционной установки возрастает вследствие отсутствия расчетных методов, основанных на физической сущности явления процесса адсорбции. Реальные закономерности процесса взаимодействия частиц улавливаемого газа с поверхностными частицами адсорбента в общем случае не поддаются физико-математическому описанию. Даже после введения большого числа упрощающих предположений удается строго описать только самые простые модели, такие как адсорбция отдельного атома на чистой поверхности однородного кристалла. Подобные модели в принципе непригодны для инженерных расчетов адсорбционных установок, предназначаемых для обработки многокомпонентных газовых выбросов с нестабильными характеристиками при помощи реального адсорбента. Имеющего множественные загрязнения и дефекты поверхности. [c.389]

    Перекристаллизация до достижения постоянной температуры плавления — вероятно, самая простая методика очистки и характеристики чистоты твердых кристаллических веществ. Обычно этого бывает вполне достаточно, но в ряде случаев применение этой или какой-нибудь другой характеристики гомогенности вещества но одному единственному критерию может привести к серьезным ошибкам. Так, например, образование смешанных кристаллов может сильно затруднить разделение двух веществ, в то же время четкая температура плавления, не меняющаяся при перекристаллизации, будет создавать видимость чистоты вещества. Необходимо использовать, по крайней мере, два метода очистки, например хроматографию и кристаллизацию, при этом в первом случае можно менять адсорбенты, а во втором — растворители для перекристаллизации. Чтобы выявить скрытые смеси, проводят операции до тех пор, пока не перестанут изменяться все физические свойства, которые могут быть определены. Практически обычно добиваются постоянства температуры плавления и оптического вращения (для жидкостей — температуры кипения и показателя преломления), а также прекращения изменений тонкой структуры ИК-спектра. Если это возможно, то дополнительно проводят хроматографирование на бумаге (до получения одного пятна в разных системах растворителей) и сравнение экспериментальных и расчетных данных при противоточном распределении. [c.29]


    В книге собраны материалы IV Всесоюзной конференции по теоретическим вопросам адсорбции. Она посвящена проблемам физической адсорбции и капиллярных явлений, лежащих в основе методов изучения химической и энергетической неоднородности поверхностей непористых и относительно крупнопористых адсорбентов, определения их удельных поверхностей п количественных характеристик пористости для пор с различной геометрической формой. Существенное внимание уделено физически обоснованным границам применимости различных методов. [c.4]

    В научно-справочном издании обобщены знания и опыт по классификации, выделению, разделению, анализу, структуре, физическим, химическим свойствам нефти и ее компонентов, областям применения, а также химическим превращениям при термических и термокаталитических промыщленных процессах нефтепереработки. Приведены справочные таблицы с товарными нефтепродуктами и присадками к ним, а также с нефтяными растворителями (по новым ГОСТам). В издании даются основополагающие характеристики месторождений нефтей России. В книге рассмотрены выделение, структура, способы выражения состава, физические, химические свойства и применение нефтяных остатков, а также новейшие адсорбенты из нефтяных остатков, по свойствам превыщающие существующие. В приложении даны справочные таблицы по классам органических соединений. [c.4]

    Большое число работ посвящено изучению магнитной восприимчивости адсорбционных и каталитических систем, в которых протекает хемосорбция [21. Значительно меньше исследований связано с характеристикой процесса физической адсорбции на основании данных исследования магнитной восприимчивости. Очевидно, при изучении физической адсорбции в качестве адсорбента должно быть выбрано пористое или высокодисперсное вещество, которое не способно в данных условиях вступать в химическое взаимодействие с молекулами адсорбата. [c.207]

    В отличие от традиционных сорбентов, иониты обладают комплексными свойствами адсорбентов поверхностного действия (по механическим характеристикам и физической форме),, абсорбентов (адсорбат распространяется по всей массе ионита) и хемосорбентов (обеспечивается химическая селективность процесса). [c.83]

    В последние годы, помимо обычных физических и химических критериев, поведение белков при хроматографировании стали использовать как важную характеристику для оценки чистоты белков. Опубликовано несколько превосходных обзорных статей по хроматографии белков [94, 122]. Разделение белков хроматографическими методами усложняется склонностью многих белков денатурироваться во время хроматографирования. Это ограничивает исследование мягкими адсорбентами и средами, свободными от таких детергентов и других органических растворителей, которые в других случаях являются желательными проявителями. Чувствительность методики была продемонстрирована рядом тщательно проведенных исследований. [c.331]

    Итак, рассмотренные методы получения чистой поверхности твердых тел позволяют в рамках современной экспериментальной техники и методов получения химически чистых веществ проводить адсорбционные исследования, относя их результаты к строго определенным кристаллографическим, химическим и структурным особенностям поверхности. Однако большинство материалов, в том числе адсорбенты и катализаторы, с которыми мы часто имеем дело, далеко не индивидуальные вещества и, естественно, обладают поверхностью, гетерогенной как в химическом, так и в энергетическом отношении. Поэтому при изучении их адсорбционно-структурных характеристик по данным физической адсорбции газов и паров подготовка поверхности сводится главным образом к удалению с нее адсорбированных веществ. Естественно, возникает вопрос, каковы граничные условия, обеспечивающие решение данной задачи Прежде чем ответить на него, произведем оценку времени, необходимого для загрязнения поверхности при заданных внешних условиях, и определим необходимые параметры, которые гарантируют получение достоверных результатов. [c.163]

    Иногда для повышения эффективности приходится заменять адсорбент на другой, имеющий большую сте-хиометрическую емкость. Таким образом, важно знать, чем определяется характеристика процесса стехиометрией или равновесием, т. е. факторами, подчиненными преимущественно химическому влиянию, или скоростью насыщения, которая часто контролируется изменениями физических свойств. [c.548]

    Наряду с частотами полос поглощения колебательного спектра для характеристики адсорбционного взаимодействия все чаще привлекаются и интенсивности этих полос. Как и в случае измерения частот, величины интенсивностей полос поглощения сами по себе мало дают для понимания строения молекулы и ее изменений при различных взаимодействиях, если не установлена связь между величинами интенсивностей полос поглощения и внутренними физическими параметрами молекулы. Однако интенсивности более сложным образом зависят от строения молекулы, чем частоты, и установление такой связи сильно затруднено. Кроме того, затруднительно и само измерение величин интенсивностей полос поглощения колебательного спектра вообще и особенно при адсорбционных исследованиях (см. главу П1), когда значительная часть инфракрасного излучения рассеивается адсорбентом и на исследуемую полосу часто накладывается поглощение адсорбента. [c.53]

    Ф эакцию 50—150° С подвергают адсорбционной хроматографии 1а силикагеле для разделения на ароматическую и парафино-нафт новую часть. (Берется силикагель, поглощающий на 100 г не менее 11 г бензола. Размер частиц адсорбента проходят через сито. № 40 и не проходят через сито № 80.) Фракцию ароматических углеводородов перегоняют на колонке № 3 — сначала для удаления пентана (или изопентана), добавленного при адсорбции в качестве смещающего растворителя. Для депентанизированной фракции определяют физические характеристики п , й , ани-линоьую точку). После этого фракцию перегоняют, причем снимают кривую перегонки и выделяют следующие фракции  [c.99]

    Рассуждение по аналогии с процессом возникновения пограничного слоя при нормальных давлениях будем вести для случая движения жидкости в цилиндрической трубе. Началом образования пограничного слоя при конденсации пара в вакууме следует считать адсорбированный слой молекул Н2О на поверхности. Такой адсорбированный слой образуется в условиях редкого падения молекул пара на поверхность этот слой является крайне неустойчивым. Молекулы адсорбированного слоя совершают колебательные и вращательные движения на поверхности адсорбента —льда процесс десорбции протекает при малом количестве сообщенного тепла. Адсорбированный слой есть нижняя граница пограничного слоя он непосредственно прилипает к твердой поверхности, т. е. ко льду. Верхней границей пограничного слоя является слой, который по своим физическим характеристикам совершенно не отличается от основного потока пара. Между нижней и верхней границами находится область, котр-Л6 [c.86]

    При физической адсорбции энтропия адсорбции многих газов лежит в пределах 80—]00Дж/(моль К). Если принять предельное значение адсорбции Гоо= = 10 моль-см и толщину адсорбционного слоя 5-10 см, то концентрация газа в адсорбционном слое будет равна 10 /5 10 1 = 0,02 моль/см , или 20 моль/л. Если рассматривать газ как идеальный, то уменьшение энтропии газа в результате адсорбции при нормальном давлении газа над адсорбентом будет равно / 1п20 22,4 и 54 Дж/(моль К). Если учесть двухмерное состояние адсорбированного газа, то изменение энтропии будет еще больше. Следовательно, при взаимодействии субстрата с поверхностью катализатора только за счет физической адсорбции изменение энтропии газа Д 5° будет равно 80 Дж/(моль К)- Это равносильно тому, что энергия Гиббса адсорбированного газа, если рассматривать его как идеальный, возрастает примерно на 24 Дж/(моль К), так как при изотермическом сжатии идеального газа ДО + 4- /"Д 5 =0 (см. 71). Тепловой эффект физической адсорбции изменяется в широких пределах. Термодинамические характеристики процесса адсорбции некоторых веществ на саже приведены ниже. [c.641]

    Целью работы является исследование сорбционных характеристик по рению новых активных углей (АУ), получаемых термообработкой отходов сельского хозяйства - мукомольно-крупяной промышленности (рисовой шелухи и лузги гречихи) (ТУ 92.95.12.9660 67.001-96) и отличающихся низкой стоимостю. Адсорбент на основе рисовой шелухи (P ) имеет следующий химический состав, масс. % SiOa 89,7 Ре Оз 0,5 СаО 1,1 MgO 2,0 К2О 1,5 КагО 1,6 Р2О5 1,9 S 0,9. Физические и поровые харатеристики активного угля P приведены в табл. 1. [c.133]

    Теплота адсорбции является нторой важнейшей количественной характеристикой адсорбционгюй системы, определяющей механизм адсорбционного процесса. При физической адсорбции ее теплота близка по величине к теплоте конденсации, при кемосорбции - - к теплоте химической реакции. Энергия адсорбции зависит как от природы и строения молекул адсорбата, так и огТ1рироды и структуры поверхности адсорбента. [c.130]

    Основной интерес представляло сравнение упомянутых количественных характеристик мезопористости, полученных из экспериментальных данных по адсорбции и капиллярному испарению двух различных паров. Помимо этого, важно сопоставить значения удельных поверхностей мезопор, вычисляемые из опытов капиллярного испарения, соответствующими значениями, определяемыми по независимым методам. Так как активные угли —это микропористые адсорбенты, содержащие значительные объемы микропор, в основном определяющих их адсорбционные свойства, то применение таких распространенных методов, как метод БЭТ или /-метод де Бура и Ли-пенса, является физически необоснованным [20, 21]. [c.118]

    Эффективность работы адсорбционной установки в первую очередь зависит от соответствия способа организации процесса физикохимическим характеристикам обрабатываемых газов и адсорбента. По расходу, температуре, влажности, давлению отбросных газов, концентрации загрязнителя и его свойствам практически однозначно подбираются вид адсорбента (нейтральный, поляризованный или импреги-нированный), конструкция аппарата (с подвижным или неподвижным слоем и т.д.), вид адсорбции (физическая или химическая), режимы обработки (периодическая или непрерывная). На этой стадии разработки должны быть тщательно подобраны и проверены на соответствие друг другу все элементы системы адсорбционного обезвреживания. Необходимо также конструктивно определить способы охлаждения и нагрева адсорбента при сорбции и регенерации, компоновки аппаратов, их обвязки коммуникациями, выгрузки, загрузки и перетока адсорбента, предусмотреть возможность автоматического регулирования процесса. Должны быть разработаны системы удаления или утилизации уловленного загрязнителя, отработанного адсорбента и других отходов Конструктивные параметры адсорбера, свойства адсорбента должны соответствовать времени пребывания, необходимому для полного улавливания или обезвреживания загрязнителя. [c.389]

    Ркследование адсорбции газов и паров на силикагелях и кремнеземных порошках проводилось главным образом для получения необходимых характеристик твердых веществ. Кроме того, подобные данные представляются существенными для оценки практических достоинств силикагелей, используемых в качестве адсорбентов. Обширный обзор по физической адсорбции газов и паров, который был дан в первой части гл. 5, можно также использовать при рассмотрении настоящего раздела. Здесь же будет представлено только несколько аспектов по данной теме, причем они ограничиваются в основном примерами адсорбции на поверхностях кремнезема, не содержащих микропор. [c.896]

    Очевидно, что надежная качественная характеристика и количественное описание пористости адсорбентов, катализаторов, разнообразных материалов и естественных сред приобретают все возрастающее значение в науке и технике. Были предложены многочисленные методы изучения и оценки пористости, основанные как на визуальном наблюдении и количественном описании характера, формы и размеров пор при помощи оптических и электронных микроскопов, так и на использовании явлений адсорбции, капиллярности, проницаемости д других, для вычисления общей поверхности и объема пор и их, расяред ления по размерам. Помимо этого различные физические методы позволяют получать в разных приближениях количественную информацию о некоторых параметрах пористости. [c.5]

    В. М. Чертов (Институт физической химии им. Л. В. Писаржевского АН УССР, Киев). Новые интересные возможности получения различных адсорбентов корпускулярного строения с изменяющимися в широких пределах характеристиками пористой структуры открывает гидротермальный метод [1—3]. В гидротермальных условиях удалось регулировать текстуру пористых тел, относящихся к различным классам химических соединений (окисям, гидроокисям, солям). В таблице в качестве примера представлены данные, показывающие характер изменения и некоторые возможности регулирования пористой структуры адсорбентов в гидротермальных условиях. [c.62]

    Специалистов по катализу часто интересует доля поверхности для серии катализаторов сходного состава (например, С0/А12О3), которая имеет заметное сродство к данному субстрату. Поэтому для ряда задач катализа можно ввести различия в понятия геометрическая и физическая емкости монослоя. Будем называть геометрической емкостью — емкость монослоя йт, измеренную по БЭТ стандартным инертным газом, например аргоном. Физической емкостью будем называть величину для данного катализатора в ряду химически сходных катализаторов, определенную для всех членов этого ряда одним и тем же способом. Очевидно, что физическая емкость — величина условная, имеющая смысл лишь для сопоставления некоторых физико-химических характеристик реальных адсорбентов. [c.169]

    Г. Г. Ал ександров, О. Г. Ларионов (Институт физической химии АН СССР, Москва). Кинетика адсорбционного процесса, будучи тесно связанной со структурными и энергетическими характеристиками адсорбента и адсорбата, позволяет получать дополнительную ценную информацию о процессах адсорбции. [c.467]

    Лефтин и Хобсон не стремились в своей оригинальной статье к исчерпывающему охвату материала по применению спектрометрии для изучения каталитических систем. Поскольку по ИК-спек-троскопии адсорбированных молекул уже был опубликован ряд хороших обзоров, ей уделено относительно небольшое место. В настоящее время это представляется тем более оправданным, что в 1966 г. появилась фундаментальная монография Литтла ИК-спектры адсорбированных молекул ). Авторы, уделив основное внимание спектроскопии адсорбированных молекул в ультрафиолетовой и видимой областях, по существу дали первый систематический обзор данных, полученных в этих двух областях, подводящий итоги значительного этапа в изучении элементарных актов адсорбции и катализа. После кратких введения и описания общей методики и аппаратуры в статье рассмотрено применение метода для характеристики поверхностных групп и их взаимного расположения в процессах гидмтйции -г- дегидратации на различных катализаторах и адсорбеитахУ, а Также эффекты адсорбции. Авторы приводят результаты "исследования влияния физической адсорбции на спектры различных адсОрбатов на окислах, ионных солях, катализаторах крекинга. Несоменно, наиболее интересен раздел обзора, посвященный хемосорбции. Он охватывает адсорбенты различной природы — металлы на носителях, окислы, соли и кислотные катализаторы. Большая часть материала этого раздела относится к электронным спектрам углеводородов однако в нем представлены и данные, касающиеся адсорбции Нг, СО, НСООН и ряда других полярных молекул. На основе приведенных данных авторы обсуждают некоторые стороны механизма адсорбции углеводородов. [c.5]

    При изучении физической адсорбции обычно измеряют две характеристики количество адсорбированного вещества и теплоту процесса. Изменение первой лежит в основе широко используемого метода БЭТ [2] и его модификаций при определении поверхности. Вторую характеристику используют для определения поверхности калориметрическими методами, например методом Харкинса и Юра [ 3]. Количество адсорбированного вещества на единицу веса адсорбента является функцией давления пара и температуры при постоянном объеме. Если объем системы изменяется с давлением, это необходимо принять во внимание. Зависимость количества адсорбированного вещества от давления при постоянных температуре и объеме называется изотермой адсорбции. При низких давлениях все адсорбированные молекулы находятся на поверхности (монослойная адсорбция), а при более высоких давлениях они могут адсорбироваться друг-на друге (многослойная адсорбция). В пористых адсорбентах при достаточно высоких давлениях может происходить конденсация паров в порах (капиллярная конденсация). [c.304]

    Современное изучение адсорбционных и каталитических свойств твердых пористых тел немыслимо без знания площади их поверхности и внутренней структуры. Эти показатели с точки зрения физической адсорбции и каталитических процессов наряду с химической природой поверхности являются наиболее важными характеристиками адсорбентов и катализаторов. Во-первых, величина удельной поверхности определяет количество вещества, адсорбируемого единицей массы адсорбента, дает необходимые сведения о характере адсорбционного процесса, о наличии моно- или полимолекулярно-адсорбцион-иых слоев, позволяет сравнить результаты теоретических вычислений адсорбции, поверхностной энергии, работы и теплоты адсорбции с экспериментальными данными и целым рядом других факторов, тесно связанных с применением адсорбентов (катализаторов) в различных отраслях промышленности и народного хозяйства. Во-вторых, удельная поверхность и структура адсорбентов дают возможность глубже понять механизм адсорбции и гетерогенных каталитических реакций, протекающих на поверхности и в объеме адсорбента (катализатора), позволяют судить о количестве и протяжспности активных центров, а также о кинетике и избирательности сорбционного и каталитического процессов. [c.102]

    Для детализированного исследования реактивных и дизельных топлив их разделяют хроматографически на силикагеле тонкого помола (65—150 меш) с выделением фракций предельных углеводородов — парафиновых и нафтеновых в смеси, моноциклических ароматических, бициклических ароматических и высших ароматических [54, 95]. Если предварительно отделены смолистые вещества на более грубом порошке адсорбента (28—65 меш — силикагель или окись алюминия), все углеводороды вытесняют изопентаном (или петролейным эфиром). После характеристики выделенных ароматических фракций по физическим константам их подвергают четкой ректификации и но возможности масс-спектральному анализу. Для идентификации бициклических ароматических углеводородов дополнительно можно использовать газо-жидкостную хроматографию или пикратный метод. [c.227]

    Четыре газа — аргон, азот, кислород и окись углерода — проявляют большое различие в химической реакционной способности, но их конденсационные характеристики очень сходны. Точка кипения кислорода — 183°, аргона — 186°, окиси углерода — 190° и азота — 195°. Три из четырех молекул — аргон, кислород и азот — не имеют дипольных моментов, окись углерода обладает очень малым дипольным моментом. Так как поляризуемости, энергии ионизации и диаметры этих четырех молекул приблизительно одинаковы, то, на основании изложенного в гл. VII, мы должны были бы ожидать, что теплоты их ван-дер-ваальсовой адсорбции на одном и том ке адсорбенте также должны быть приблизительно равными. И в действительности, Дьюар [ ] экспериментально измерил теплоты адсорбции этих четырех газов на угле с помош ью калориметра с жидким воздухом (гл. III) и получил величины в 3600 кал1моль для аргона, 3700 — для азота, 3700 — для кислорода и 3400 — для окиси углерода. Таким образом, теплоты физической адсорбции этих четырех газов на угле приблизительно одинаковы и составляют около 3000—4000 кал моль. [c.309]

    С точки зрения физической адсорбции величина удельной поверхности является одной из наиболее важных характеристик адсорбента, но не единственно важной. Неоднородность поверхности играет весьма существенную роль, в частности при адсорбции газов при низких давлениях, как это было установлено в предыдущей главе. Первая часть настоящей главы посвящена обсуждению влияния неоднородности поверхности на ван-дер-ваальсову адсорбцию. Эта часть включает адсорбционные опыты, проведенные на гладких, или обычно считаемых гладкими, поверхностях, что представляет большой теоретический интерес. [c.431]


Смотреть страницы где упоминается термин Адсорбент физические характеристики: [c.342]    [c.206]    [c.166]    [c.101]   
Жидкостная колоночная хроматография том 3 (1978) -- [ c.232 , c.235 ]




ПОИСК







© 2025 chem21.info Реклама на сайте