Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дегидрогенизация угля

    Первая стадия дегидрогенизации с 15—20% Р1/уголь [c.220]

    Шестичленные нафтены моя но подвергнуть каталитической дегидрогенизации по методу Зелинского. Смесь углеводородов пропускают через трубку с температурой 300° С. В трубке помещен катализатор — уголь с нанесенной на него платиной и небольшим количеством железа. При этом происходит дегидрогенизация, и шестичленные нафтены превращаются в ароматические углеводороды. [c.232]


    Известно, что циклогексаны легко ароматизируются над алюмохромовыми, алюмомолибденовыми и алюмоплатиновыми катализаторами. Однако в лабораторных условиях эти катализаторы не всегда обеспечивают достаточно высокие выходы, что связано с высокой изомеризующей активностью кислой окиси алюминия, которая способствует превращению циклогек-санов в циклопентаны. Активированный уголь, являясь инертным носителем, часто используется в качестве подложки для катализаторов, содержащих 5% или 5% Рс1.Реакции проводят при 200-300°С и атмосферном давлении. Никелевые катализаторы обладают способностью проводить разложение углеводородов до углерода и водорода, а также до метана и водорода, и поэтому они менее надежны в реакции дегидрогенизации. [c.78]

    Научная деятельность академика Н. Д. Зелинского многогранна. Он одним из первых осуществил синтезы индивидуальных углеводородов нефтей. Первый синтетический нафтен, полученный им в 1895 г., был 1,3-диметилциклогексан. Он синтезировал также циклопропановые, циклобутановые, циклопентановые и другие углеводороды, в том числе с сопряженными двойными связями, а также бициклические углеводороды (спираны). Важнейшим направлением исследований Н. Д. Зелинского было изучение каталитических превращений углеводородов. Ему удалось найти эффективные катализаторы, обеспечивающие избирательность реакций дегидрогенизации. В частности, Н. Д. Зелинский применял платину и палладий, нанесенные на активированный уголь. В 1934 г. Н. Д. Зелинский совместно с Н. И. Шуйкиным открыл, что ароматические соединения могут быть получены каталитической дегидрогенизацией парафиновых углеводородов. Это направление в дальнейшем было развито Б. А. Казанским, А. Ф. Платэ и др. Прп дегидрогенизации низших углеводородов были получены олефины (1949). Н. Д. Зелинскому также принадлежат исследования по химии гетероциклических соединений. [c.292]

    Катализаторы, которые ослабляют С — Н связи и производят дегидрогенизацию парафинов в олефины и водород. Уголь, глинозем и окись хрома, принадлежащие к этому типу катализаторов, описаны в одном из предыдущих параграфов. [c.23]

    Дегидрогенизация органических соединений Г алоидные соединения. V е-ди, серебра, цинка, кадмия, свинца, олова, титана, кремния, ванадия, висмута, молибдена, вольфрама, урана, марганца, рения, никеля, железа или кобальта Активный уголь или активная двуокись кремния 179  [c.466]

    Дегидрогенизация этанола с образованием ацетальдегида Уголь 2233 [c.351]

    Дегидрогенизация борнеола и изоборнеола в камфору в присутствии водорода (промышленный процесс) Металлы, отщепляющие водород никель с 0,14% окиси натрия никель с 0,5— 1,0% азотнокислого натрия медь и щелочные земли древесный уголь (содержащий железо) 2968 [c.363]


    Дегидрогенизация изоборнеола в камфору Соли металлов, гидроокиси которых растворимы в избытке аммиака, например, цинк, медь, серебро или кадмий азотнокислый цинк, азотнокислая медь, азотнокислый кадмий, азотнокислое се -ребро носители активированный древесный уголь, кизельгур, силикагель, гель окиси алюминия или фуллерова земля 854 [c.364]

    Дегидрогенизация терпенов Древесный уголь, активированный воздухом или водяным паром молибдат аммония, сульфид, гидрат или хлорид молибдена на активированном древесном угле или геле кремневой кислоты 1 322 [c.364]

    Дегидрогенизация и циклизация углеводородов, т. е. дегидрогенизация циклогексана и циклизация н-октана и диизобутила температура 500— 550 Исследованы различные угли древесный уголь и уголь, полученный пиролизом бензола над железными опилками при 600° пригодны оба вида угля деактивация катализатора вследствие осаждения высокомолекулярных, бедных водородом веществ подавляется высокой температурой, ведущей к дальнейшему отщеплению водорода и образованию новых каталитически действующих углеродных поверхностей 2406 [c.368]

    Для дегидрогенизации используется платиновый катализатор с добавкой железа. В качестве носителя при.меняют активированный уголь марки БАУ. [c.363]

    Хотя некоторые первичные реакции крекинга и обладают как будто бы обратимостью (например дегидрогенизация парафинов в олефины и углеводородов ряда циклогексана в углеводороды бензольного ряда, а также, возможно, полимеризация и деполимеризация некоторых олефинов), однако большая часть реакций крекинга— реакции необратимого характера, причем конечным устойчивым состоянием, по всей вероятности, является хорошо изученное равновесие метан — водород — уголь. [c.108]

    Экспериментальная часть. Мирзаанский бензин был выделен нами путем фракционирования мирзаанской нефти. Ароматические углеводороды удалялись 99% серной кислотой. Из деароматизированного бензина отбиралась фракция 95—122° и подвергалась дегидрогенизации ыа платинированном угле при 300—305° со скоростью 6 мл/час. Платинированный уголь был приготовлен по указанию Пак-кендорфа и оТедер-Паккендорф [9], Катализатор в количестве 33 г помещался в стеклянную трубку диаметром в 2 см длина слоя катализатора 60 см. Трубка нагревалась в электропечи типа Гереуса, температура которой измерялась термопарой и регулировалась терморегулятором. Активность [c.62]

    В случае достаточно высокой температуры крекинга могут также иметь место вторичные реакции. Дегидрирующие катализаторы, в частности, платинированные или палладированные уголь или асбест, никель и хромовые катализаторы способствуют ароматизации нафтеновых колец. Если кольцо по величине недостаточно для образования ароматического кольца, тогда дегидрогенизация идет с большим трудом и обычно сопровон дается крекингом кольца. [c.111]

    Согласно Дунстан и Хоуэс [20] окиси молибдена, цинка и магния,, окись хрома на силикагеле, окись титана на древесном угле, окиси никеля, алюминия, цинка на древесном угле, окись магния на древесном угле, медь или глинозем на древесном угле и сам активированный уголь являются катализаторами для дегидрогенизации н-бутана в известных пределах температур, зависящих от природы катализатора. Окиси молибдена, цинка и магния, например, активны между 400 и 475° С, а окись алюминия на древесном угле — между 525 и 650° С. Предельное количество бутанов, пропускаемое над вышеупомянутыми катализаторами при температурах от 400 до 600° С, составляет от 250 до 2000 объемов на объем катализатора в час в зависи-мости от активности катализаторов. [c.15]

    Бургин, Гроль и Робертс [14] сообщают, что активированный уголь и активированная окись алюминия обладают высокой активностью для дегидрогенизации парафиновых углеводородов при высоких, температурах. Присутствие небольшого количества воды или сероводорода существенно для активности катализаторов. Температура, приемлемая при непрерывном процессе дегидрогенизации пропана и бутанов, находится в интервале от 550 до 650° С. Активность окиси алюминия может быть заметно повышена введением добавок более активных катализаторов, таких, как окись хрома или окись железа. При использовании в качестве катализатора активированной окиси алюминия изобутан превращается в изобутилен при 600° С на 36,2%. Процент конверсии повышается до 37—38 при более низкой температуре (550° С), когда катализатор пропитывается окисью хрома или железа. [c.15]

    Для объяснения факта сохранения каталитической активности катализаторов в начальный период их закоксовывания Баландин, Котелков и 1П[атри кеев предложили дендритную теорию роста углистого вещества [92, 93, 102, 103]. Согласно этой теории, уголь отлагается на поверхности катализатора не сплошной пленкой, а в виде дендритов, образующихся на границах раздела фаз. Молекулы реагирующего вещества продолжают контактировать с поверхностью катализатора, попадая на нее подобно тому, как дождь попадает на почву в лесу [102]. Благодаря этому активность катализатора может не изменяться даже при заметной степени закоксовывания. Увеличение активности авторы дендритной теории объясняют разрыхлением границ раздела фаз, на которых растут дендриты, что приводит к их удлинению и к увеличению числа активных центров. Изменение специфичности, например в случае дегидрогенизации и дегидратации спиртов на металлических катализаторах, связывается с тем, что дегидрогенизация и образование дендритов идут на одних и тех же активных центрах, а дегидратация — на других. В связи с этим имеет место экранировка центров дегидрогенизации и изменение соотношения между скоростями дегидрогенизации и дегидратации [103]. Обоснованием дендритной [c.286]


    По мнению Зелинского и Борисова [489] существуют катализаторы, более пригодные для процесса гидрогенизации, чем для процесса дегидрогенизации. Эгги исследователи нашли, что хороший катализатор для гидрогенизации получается, если 30 г активированного угля смешать с раствором платинохлористо-водородной кислоты, содержащей 5,2 г платины, жидкость слить, а уголь высушить при 100° и затем нагреть в токе водорода до 100°, по истечении приблизительно двух часов температура повышается до 140—150° после полного восстановления катализатор обрабатывают водородом в течение 1 —2 час, при 300°, т. е. при температуре процесса дегидрогенизации. Такой катализатор дегидрирует метилциклогексан непосредственно в толуол при 290—300°, но при 180° не полностью гидрирует бензол до циклогексана. Аналогичный результат был получен и с платинированным асбестом. [c.260]

    Окись щнка известна как специфический катализатор дегидрогенизации этилового спирта в альдегид. При дегидрогенизации спирта Брюккер получил выход 95% [83]. Ададуров и Крайний [8] превратили альдегидный тип реакции в этиленовый, осаждая окись цинка на уголь, применяемый в качестве носителя. С тонким слоем окиси цинка на угле при 400° они получили 50% разложение пропущенных паров спирта. Характер разложения, который удается наблюдать вьш1е и ниже этой температуры, дает основание ожидать полное изменение направления реакции в сторону исключительно этиленового разложения, если значительно увеличить количество осажденной окиси цинка. Уменьшая осаждаемое количество окиси цинка на одну треть, эти исследователи получили результаты, представленные в табл. 132. Температура —важный фактор для получения соответствующей деформации наружного поля катализатора, необходимого для проведения реакций специфического типа. Разложение муравьиной кислоты можно привести в качестве другого примера, показывающего влияние носителя на направление реакции  [c.449]

    Адсорбционные свойства древесного и костяного угля известны давно. Ловиц (1785) применял уголь для обесцвечивания растворов винной кислоты. Фигье (1811) обнаружил, что костяной уголь тоже обладает заметной обесцве-чивающей способностью. Адсорбционные и каталитические свойства активных углей растительного и животного происхождения, приготовленных различными способами, изменяются в зависимости от размера пор и содержания посторонних веществ. Структура и примеси посторонних веществ влияют на применение углистых материалов в каталитических реакциях. Некоторые активированные угли могут служить адсорбентами для газов и жидкостей и в известной степени катализаторами. Например, в присутствии кислорода некоторые виды угля легко окисляют сероводород другие окисляют окись углерода. Многие угли пригодны для хлорирования, восстановления, дегидрогенизации и полимеризации. Аналогично поведение геля кремневой кислоты и цеолитов. Проницаемость и пропитываемость являются другими факторами, с которыми следует считаться при применении углистых материалов как носителей для катализаторов. Отверстия пор или капилляров неактивированного угля закрыты пленками, состоящими из ориентированных, насыщенных атомов. Обычно такие пленки образуются в результате адсорбции смолистых веществ во время процесса коксования. У активированного угля полости образуются системами атомов, в которых на один ненасыщенный активный углеродный атом приходится двенадцать неактивных углеродных атомов [342]. Различные виды углей имеют поры различного размера. Например  [c.480]

    Адсорбционная способность различных форм угля значительно превосходит адсорбционную способность других веществ. Она изменяется не только в зависимости от природы и характера предварительной обработки угля, но также связана с типом адсорбируемого вещества. Адсорбционная способность жидкостей зависит от сжимаемости. Эфир значительно более сжимаем, чем вода, поэтому он занимает внутри древесного угля объем, который равен лишь одной десятой объема, занимаемого водой. Харкинс и Эвинг [217], работая с кокосовым маслом, пришли к заключению, что жидкости, проникающие в поры угля, сжимаются под действием сил молекулярного притяжения, равных давлению в несколько тысяч атмосфер. Неорганические электролиты нормально адсорбируются на угле анион и катион адсорбируются почти одинаково. Эта адсорбция слабая, она достигает приблизительно 0,01—0,5 миллимолей на 1 г адсорбента. Большие молекулы органических электролитов адсорбируются углем легче. Если уголь распределяется между двумя несмешивающимися гидрофобными жидкостями, то он лучше смачивается органическими жидкостями, чем водой или водными растворами. Когда угли применяются с осажденным на них катализатором в процессах гидрогенизации или дегидрогенизации, часто наступает потеря активности это можно устранить применением обработки воздухом или кислородом. Но вследствие того, что эта обработка помогает лишь временно, рекомендуется применять активированный уголь, подвергнутый тер мической, кислотной или газовой обработке. Обладая высокими адсорбционными силами, носитель действует как вещество, придающее катализаторам устойчивость при отравлении. [c.480]

    Производство синтетического каучука в СССР [1] основано на использовании бутадиена, получаемого из этилового спирта. Развитие производства синтетического каучука зависит от производства дешевых бутадиена и изопрена л<аталитическая дегидрогенизация бутиленов или амиленов представляет удачное решение этой проблемы. Сырьем для производства каучука могут быть углеводородные масла, углеводородные газы и уголь. Гроссе, Моррелл и Мевити [40] дают подробное описание результатов каталитической дегидрогенизации моноолефинов в диолефины. Из бутена-1 и бутена-2 они получили бутадиен-1,3 из нормальных пентенов—пиперилен (пентадиен-1,2) и из пентена с разветвленной цепью — изопрен (2-метилбутадиен-1,3). Первоначальное положение двойной связи в цепи углеродных атомов олефинов, повидимому, не имеет значения, так как в присутствии катализатора с основанием из окиси алюминия происходит миграция связей [47, 70]. Таким образом, из З-метилбутена-1 или из смеси 2-метилбутена-1 и 2-метилбутена-2 получаются приблизительно одинаковые выходы изопрена. Однократной операцией дегидрогенизации из циклопентана получен диолефин циклопентадиен. Образование диолефинов из насыщенных углеводородов не ограничено циклической системой циклопентана. При дегидрогенизации н-бутана в бутилены получается небольшой процент бутадиена-1,3. Количество бутадиена зависит от условий процесса. [c.720]

    Гидрогенизация лимонена в я-ци-мол и п-ментан (группа ментана) ЗСюНи—У 2 ( H 4 -Ь С Нзо /г-цимол отделяют от л-ментана путем обработки серной кислотой в виде бариевой соли п-цимол сульфоновой кислоты Катализаторы дегидрогенизации фуллерова земля, кизельгур, активный уголь, окись алюминия 1615 [c.290]

    Дегидрогенизация спиртов, имеющих в молекуле больше двух углеродных атомов, например изопропилового спирта в ацетон темпера= тура 400— 700° выход 71% Уголь в кусках или тонкоизмель-ченный в железной, медной, латунной, серебряной, стеклянной трубке или трубке из хромовой, хромоникелевой или хромомолибденовой стали 920 [c.357]

    Дегидрогенизация арол1атических аминов (дифениламина, анилина) в карбазол (прямая конверсия) Платина — уголь 3652 [c.358]

    Дегидрогенизация гомологов индена, а также а- и / -метилгидро-индена в нафталин температура 450 производные индена при нагревании до 350° превращаются в производные гидриндена, которые гидрогенизуются при этой температуре Палладий — уголь 1 2896 [c.363]

    Дегидрогенизация би- и трицикли-ческих терпеновых углеводородов в присутствии углекислоты температура 300° кроме дегидрогенизации происходит расщепление три-метиленового и тетраметиленового циклов, например карен превращается в цимол Платинированный древесный уголь 3641 [c.363]

    Дегидрогенизация терпеновых углеводородов, например, пинена или дипинена в цимол 1) температура 170—185°, выход 25% и 60% полимеров 2) температура 160— 220°, хороший выход п-цимола 3) температура 420° самый высокий выход цимола 1) Фуллерова земля или кизельгур 2) Окись алюминия или активный древесный уголь 3) Активный древесный уголь 1614 322 [c.363]

    В 1926 г. Зелинский применил платинированный уголь Р С — катализатор, который широко применялся в практике гидрогенвз ации и дегидрогенизации [30]. [c.120]

    До работ Зелинского уголь был известен как адсорбент. В качестве катализатора он использовался весьма редко и то лишь в реакциях окисления и присоединения хлора. Для платины он является носителем, но таким, который имеет большое значение в изменении физико-химических условий реакций гидрогенизации— дегидрогенизации. Адсорбировав на своей поверхности большое количество водорода в относительно малом объеме, уголь таким образом как бы заменяет давление и этим ускоряет или замедляет реакции- гидрогенизации — дегидрогенизации в зависимости от смещения равновесия адсорбционно-десорбцион-ных процессов. [c.120]

    Однако в последнее время стали появляться указания на то, что уголь сам по себе является катализатором дегидрогенизации и деалкилирования углеводородов. Так, Рабинович, Снегирева и Теснер в 1953 г. показали, что активированный уголь и сажа катализируют разрыв С — Н- и С — С-связей и реакции циклизации [31]. Дегидрогенизация декалина при 520° С на активированном угле протекает бурно, на саже в 12 раз медленнее. Октан при 500° С на угле при объемной скорости 0,7 мл1час дает катализат с содержанием 8—10% ароматики и 10—12% олефинов. В реакциях дезалкилирования порядок активности катализаторов следующий активированный уголь > алюмосиликатный катализа- [c.120]

    С циклогексановые углеводороды не дегидрируются. В присутствии алюмосиликатов реакция идет, однако катализатор быстро отравляется. Тогда авторы применили активированный уголь (он один практачески не катализирует реакцию), который вместе с двуокисью серы при 460—490° С является хорошим катализатором дегидрогенизации. Замена ЗОг на СОг приводит к прекращению дегидрогенизации. [c.227]

    Разделить эти угеводороды из-за их близких температур кипения невозможно, поэтому была сделана попытка охарактеризовать эти соединения в виде производных бензола (бутил-, метилизопропил- и диэтилбензола), с одной стороны, потому, что физические константы их не так близки, как у нафтеновых углеводородов, а с другой — потому, что инфракрасные спектры позволяют легче различить природу ароматических углеводоро-дш, чем нафтеновых, дающих слабые полосы. Для этой цели фракции 5-я, 6-я и 7-я были слиты вместе и подвергнуты деги-дрогенизационному катализу по Зелинскому над нанесенным на уголь палладием в атмосфере водорода со скоростью пропускания 5—6 капель в минуту. После 10-кратного пропускания дегидрогенизация была закончена, на что указывали неизменяю- [c.39]

    Естественно поэтому встал вопрос о применении при пиролизе нефтяных продуктов таких катализаторов, которые могли бы благоприятствовать образованию ароматики. Однако длительное время не было, пожалуй, такой области химии, в которой применение катализаторов приносило бы так мало пользы, как при получении ароматических углеводородов пиролизом нефтяных продуктов. В первую очередь внимание было обращенно на катализаторы дегидрогенизации. Однако применение при пиролизе, например, никеля или железа не дало ожидаемых результатов. Это, собственно, вполне понятно, так как в тех температурных пределах, в которых проводится пиролиз, ароматика могла бы образоваться лишь в качестве промежуточного продукта, так как при такой температуре никель катализирует распад ароматических углеводородов на уголь и водород, благоприятствуя образованию сажи. [c.15]

    Опыты проводились при температурах 440, 460, 470, 480 и 500° и объемной скорости около 0.6. Анализ выделившегося газа показал, что он на 85% состоит из водорода. Кажущаяся энергия активации суммарной реакции дегидрогенизации оказалась равной 31 500 ккал/моль для свен его катализатора и 34 900 ккал/моль для регенерированного катализатора, т. е. эти величины оказались того же порядка, что и величины энергии активации реакции дегидрогенизации на окисных катализаторах для углеводородов другихклассов. Количество отложившегося на катализаторе кокса за 30 мин. равнялось 2.13% при 440° и 4.55% при 500°, считая на количество пропущенного этилциклопентана. Углистый остаток состоял на 97% из углерода. Сравнение этих результатов с результатами, полученными в тех же условиях А. Ф. Платэ и Г. А. Тарасовой при контактном превращении н.-гептана (0.05% угля при 450° и 0.53 /,, при 500° за 66 МШ1.), показывает, что этилциклопентан крекируется в 10—40 раз сильнее, чем н.-гептан. Поскольку именно уголь вызывает отравление катализатора, можно было сделатг. вывод, что при ароматизации бензиновых фракций входящие в их состав гомологи циклопентана будут отравлять катализатор в значительно большей степени, чем парафиновые углеводороды. [c.130]

    В отличие от этих авторов, исследовавших реакцию угле-образования только при одной температуре 480°, А. Ф. Плата и Г. А. Тарасова изучили эту реакцию при трех температурах. Оказалось, что за 66 мин. при 450° в уголь превращается 0.06% пропущенного н.-гептана при 480°— 0.25%, и при 500°— 0.53%. Облад, Маршнер и Хёрд показали, что в течение 5-часового опыта при 482° в углистый остаток превратилось на хромовом катализаторе 0.29 и 0.31% пропущенного гептана. С точки зрения количественного баланса суммарной реакции дегидрогенизации реакция углеобразования имеет подчиненное значение, и ею можно было бы пренебречь, если бы не решающее влияние малых количеств угля на активную поверхность катализатора. Образующийся уголь в отличие от всех других продуктов реакции не удаляется, а остается на катализаторе, покрывает его активные центры и тем самым отравляет катализатор. [c.220]

    Уже давно было известно, что при пиролизе каменного угля и нефтяных масел образуется стир10л. Оказалось, что как сам стирол, так и его гомологи являются весьма подходящим материалом для получения других веществ, особенно смол, в которые стирол и его гомологи превращаются в результате полимеризации. Исходным сырьем для получения стиролов посредством пиролиза обыкновенно является этилбензол и его гомологи. Так например в способе, который описали Mark и Wulff гомологи бензола, содержащие хотя бы один этильный радикал, претерпевают каталитическую дегидрогенизацию в паровой фазе при температуре от 500 до 800° в присутствии такого инертного разбавителя, как например во дяной пар, азот или углекислый газ. Катализаторами этой реакции являются соединения таких металлов (особенно их окислы и сульфиды), которые не восстанавливаются или восстанавливаются толькО частично в условиях пиролиза. Сюда относятся окислы кальция, лития, стронция, магния, бериллия, циркония, вольфрама, молибдена или урана, фосфат хрома, алюминат кальция, хромат магния и фосфат кальция, антрацит, активированный уголь, силикагель и глина, а также смеси этих веществ друг с другом. Прибавление 1—3% легко восстанавливаемых соединений металлов, например окислов меди или железа, часто способствует увеличению каталитической активности. Указывается также, что на повышение продолжительности работы катализатора и на увеличение его активности благоприятно влияет предварительная обработка катализато ра при 300—600° газами, не содержащими углерода, как-то водородом, водяным паром, азотом или аммиаком. При таком способе работы из этилбензола образуется стирол, а из этилтолуола — метилстирол. [c.165]

    Регенерация адсорбированных углеводородов производилась при температуре 350 С и остаточном давлении 2 мм р1.С1. Выход нормальных углеводородов составил 22 и 25%, смеси изопарафинов и нафтенов — 72 и 68% от парафиновонафтеновой части сульфидов первой и второй ступеней экстракции соответственно. Нафтеновые углеводороды после адсорбции на цеолите СаА подвергались каталитической дегидрогенизации [201]. Каталитическое дегидрирование проводилось на катализаторе след>ющего состава платина 19,6%, железо 2%, активированный уголь 78,4%. Активность катализатора проверялась перед каждым опытом по циклогексану. Каталитическая установка из трубки длиной 340 мм и диаметром 18 мм с краном для термопары, электропечи, автоматической бюретки, приемника и змеевиковой ловушки. Приемник охлаждался жидким азотом до —70° С. Температура печи автоматически регулировалась на участке длиной 80 мм, записывалась с помощью потенциометра ЭПП-09 и поддерживалась на уровне 300 2°С. Реакцию проводили в токе водорода. Водород подавался в реактор из баллона после трех поглотительных склянок (с 10%-ным щелочным раствором пирогаллола, ангидрона и аскарита) со скоростью 1 л/ч, остатки продукта с катализатора вытеснялись водородом в течение двух часов. Суммарный выход продукта составлял 90%. Продукты разрушения сульфидов анализировались с помощью газожидкостной хроматографии и масс-спектрометрии. [c.66]


Смотреть страницы где упоминается термин Дегидрогенизация угля: [c.223]    [c.500]    [c.71]    [c.690]    [c.173]    [c.142]    [c.207]   
Органическая химия Том 1 перевод с английского (1966) -- [ c.306 ]




ПОИСК





Смотрите так же термины и статьи:

Дегидрогенизация

Платинированный уголь как катализатор При дегидрогенизации



© 2025 chem21.info Реклама на сайте