Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полинуклеотиды полинуклеотидные

    Нуклеиновые кислоты. Основным типом организации вторичной структуры нуклеиновых кислот является двойная спираль, состоящая из двух полинуклеотидных цепей. Существует ли со стороны регулярной структуры спирали дополнительное-воздействие на воду по сравнению с воздействием отдельных нуклеотидов Этот вопрос исследовался акустическим методом для различных типов спиральных структур полинуклеотидов [149], В качестве гидратационной характеристики использовали концентрационный инкремент скорости ультразвука А, который связан с парциальными объемами и сжимаемостью соотношением [c.61]


    Конформация полинуклеотидной цепи в большой степени зависит от конформации рибозы (дезоксирибозы). В кристаллах нуклеозидов и нуклеотидов, а также полинуклеотидов, рибоза встречается в четырех конформациях, различающихся тем, какой из атомов пятичленного цикла Сг или Сз выведен из плоскости остальных четырех атомов. Перечислим эти конформации  [c.491]

    Дебаевский радиус экранирования изменяется обратно пропорционально корню квадратному из ионной силы раствора. Увеличение радиуса экранирования вызывает увели чение объема статистического клубка полинуклеотида (или /г ) по двум причинам. Во-первых, если радиус станет настолько большим, что соседние фосфатные группы вдоль цепи смогут взаимодействовать, то этот фрагмент становится жестким. Во-вторых, диаметр цепи при этом увеличивается, значительно увеличивая эффект исключенного объема. Согласно теоретическим работам [ПО], этот второй эффект — основной фактор, объясняющий поведение полиэлектролитов, включая однотяжевые ДНК [ИП- Однотяжевая ДНК исклюй чительно чувствительна к ионному эффекту во всех растворах солей при ионной силе ниже 1,0. Объем статистического клубка полинуклеотидной цепи значительно увеличивается с понижением ионной силы (Ц2]. Вне области pH от 5 до 9 при ионизации нуклеотидных оснований заряды вызывают ослабление сил, действующих между основаниями, и препятствуют образованию двойной спирали. [c.201]

    Необходимо отметить, что химия нуклеиновых кислот, как и всякая химия высокомолекулярных веществ, имеет ряд существен ных отличий от химии соответствующих мономерных компонентов. Уже нуклеозиды и нуклеотиды являются полифункциональными соединениями, хотя различие в реакционной способности определенных группировок, входящих в состав четырех обычных типов нуклеотидных звеньев, сравнительно невелико. Полинуклеотиды представляют собой гигантские молекулы с множеством реакционных центров. Особые сложности в химию нуклеиновых кислот вносят следующие обстоятельства. Реакционная способность отдельных группировок в нуклеотидных звеньях зависит не только от условий реакции (растворителя, pH, температуры и т. д.), но и от наличия и характера взаимодействия отдельных звеньев друг с другом (в одной и той же цепи и на комплементарном участке в двухспиральных двухцепочечных молекулах), а также взаимодействия с молекулами белков, ионами металлов и т. д. Все эти взаимодействия, как правило, кооперативны, т. е. нелинейно изменяются при изменении условий реакции. Модификация одного из звеньев полинуклеотидной цепи приводит к изменению характера и силы взаимодействия этого звена с соседними звеньями (или с молекулой белка в случае нуклеопротеидов), что в конечном счете сказывается на реакционной способности звеньев на обширных участках полинуклеотидной цепи. [c.15]


    Для изучения первичной структуры нуклеиновых кислот возможны три химических подхода а) последовательное отщепление и определение концевых звеньев б) специфическое расщепление полинуклеотидной цепи по определенным типам звеньев в) специфическая модификация нуклеозидных звеньев полинуклеотида и пря- [c.16]

    При любом способе сокращенной записи полинуклеотидной последовательности ее следует располагать так, чтобы справа находился З -конец цепи, слева — 5 -конец. Это в равной мере относится как к полной последовательности полинуклеотида, так и к его отдельным фраг.ментам. [c.23]

    Концевой остаток нуклеозида (или нуклеотида), связанный с полимерной цепью только через гидроксильную группу при С-5, принято называть З -конце-вым остатком полинуклеотидной цепи. Аналогично 5 -концевым остатком называется остаток нуклеозида (или нуклеотида), связанный с цепью полимера только через гидроксильную группу при С-3. При обычном способе написания сокращенных формул полинуклеотидов (для одноцепочечных полимеров) З -кон ценой остаток находится на формуле справа, а 5 -концевой — слева. [c.44]

    Первый метод, известный обычно под названием гибридизация 2 , основан на следующем принципе. Если нагреть двухспиральный комплекс ДНК выше его температуры плавления и медленно охлаждать смесь полученных одноцепочечных полимеров в присутствии другого одноцепочечного полинуклеотида, наряду с восстановлением исходного комплекса происходит образование некоторого количества гибридного двухцепочечного комплекса, т. е. комплекса, в состав которого входят полинуклеотидные цепи, принадлежавшие ранее различным макромолекулам. Такой комплекс образуется тем в большей степени, чем больше в цепи добавленного полимера нуклеотидных последовательностей, [c.61]

    Известная специфичность ферментов позволяет воссоздать некоторые частичные последовательности полинуклеотидной цепи. Далее проводят расщепление исходного полинуклеотида на более крупные блоки (чаще всего для этой цели применяют частичный гидролиз гуанил-РНК-азой) и отыскивают в них участки нуклеотидных последовательностей, позволяющие однозначно расставить в полинуклеотидной цепи фрагменты, полученные ранее, и воссоздать таким образом полную структуру полинуклеотида. Существенным моментом для успеха такой реконструкции является присутствие в нуклеотидной последовательности уникальных участков, которые могут быть использованы как отправные точки. Для этой цели можно использовать концевые группы, а также редкие компоненты или олигонуклеотиды, встречающиеся в продуктах ферментативного гидролиза полинуклеотида только один раз. [c.73]

    В связи с проблемой установления нуклеотидной последовательности в полинуклеотидах очень большой длины, подобных ДНК, большие перспективы имеют, по-видимому, методы, основанные на применении электронной микроскопии. Расстояние между основаниями в полинуклеотидной цепи денатурированной ДНК составляет около 7 А. Можно надеяться, что применение электронных микроскопов с достаточно высокой разрешающей способностью позволит непосредственно увидеть отдельные нуклеиновые основания в полинуклеотидной цепи и определить таким образом последовательность мономерных звеньев. Возможность реализации та- [c.82]

    Наконец, олиго- или полинуклеотид может служить матрицей , которая определяет последовательность нуклеотидов в образующемся полимере и сама не входит в состав продукта реакции. При матричном синтезе продукт реакции является комплементарной копией полинуклеотидной цепи матрицы. Этот случай наблюдается в реакциях, катализируемых ДНК-полимеразой, РНК-поли-меразой и РНК-синтетазой. [c.99]

    Для того чтобы обеспечить эквивалентность всех углеводных и фосфатных групп в двойной спирали, полинуклеотидная цепочка должна обладать осью симметрии второго порядка, перпендикулярной оси спирали. В соответствии с этим Ы-гликозид-ные связи также имеют ось симметрии второго порядка. На основании рентгеноструктурных данных относительно размеров оснований и их конформации, а также предположения о кето-амино-таутомерных формах оснований были построены модели пар оснований в составе полинуклеотида (рис. 4.11), и оказалось, что они удовлетворяют всем перечисленным выще требованиям. [c.252]

    После завершения реакции защитные группы можно удалить в мягких условиях, не затрагивающих фосфодиэфирной связи. На этом основан фосфодиэфирный метод синтеза полинуклеотидов. Продукт реакции — фосфодиэфир со свободной, потенциально уязвимой для воздействия, отрицательно заряженной группой. Далее, с увеличением длины полинуклеотидной цепи число отрицательных зарядов в соединении также будет увеличиваться. Поэтому в зависимости от условий реакции эти потенциально нуклеофильные центры могут участвовать в нежелательных побочных реакциях. Кроме того, такое многозарядное соединение слищком полярно, чтобы можно было проводить его очистку обычными методами органической химии, например с помощью хроматографии на силикагеле. Вместо этого необходимо использовать хроматографию на ионообменных носителях, обладающих меньшей емкостью (например, на ДЭАЭ-целлюлозе). Фосфодиэфирный метод пригоден для получения веществ лишь в небольших количествах. Однако нейтрализация зарядов путем этерифи-кации подходящими защитными группами перед фосфорилирова-нием нуклеозидов устраняет проблемы, упомянутые выше. В этом случае продуктом реакции конденсации является фосфотриэфир. Фосфотриэфирный метод позволяет работать с большими количествами веществ. Ниже описаны некоторые защитные группы, используемые для блокирования фосфата. [c.167]


    Использование дихлорфосфитов — одно из последних достижений практического полинуклеотидного синтеза [40, 41]. При этом применяется активированный фосфорилирующий агент и, таким образом, отпадает необходимость в конденсирующем агенте. Однако в качестве фосфорилирующего агента выступает ие фосфат, а фосфит, повышенная реакционная способность которого делает возможным одностадийное превращение in situ нуклеозида O свободной З -гидроксильной группой в фосфомоноэфпр, а затем в фосфодиэфир путем взаимодействия со свободной 5 -гид-роксильной группой второго нуклеозида, и наконец образуется фосфат в результате быстро протекающего окисления иодом. Реакционная способность хлорфосфита так велика, что обе реакции фосфорилирования проводят при пониженной температуре. Вся последовательность операций занимает меньше одного дня (а время имеет большое значение при синтезе длинных полинуклеотидов). Ниже приведена схема одностадийного синтеза защищенного тимидилил- (3 50-тимидина. о [c.178]

    Аналогичные закономерности наблюдаются при катализированном ферментами синтезе (биосинтезе) полимеров. Мономеры в этом случае являются бифункциональными соединениями, ио вследствие высокой специфичности катализатора оказывается возможным взаимодействие лишь одной из функциональных групп мономера с определенным концом растущей полимерной цепи. Например, фермент полинуклеотид-фосфорилаза, с помощью которого происходит биосинтез полирибо-нуклео1идов из нуклеозиддифосфатов, катализирует взаимодействие концевой З -ОН группы растущей полинуклеотидной цепи с пиро-фосфатной связью в мономере  [c.365]

    Стратегические проблемы синтеза полипептидов и полинуклеотидов носят существенно иной характер. Здесь также требуется последовательное построение необходимых межмономерных связей и, следовательно, применение эффективных и общих методов создания амидной и фосфодиэфирной связей соответственно. Однако в отличие от типичных полисахаридов эти биополимеры состоят из линейных, но нерегулярных последовательностей не идентичных мономерных звеньев. Именно эта специфическая последовательность определяет уника,тьные химические, физические и биохимические свойства каждого из этих биополимеров. Таким образом, стратегической проблемой в синтезе этих соединений является обеспечение строго определенной последовательности мономерных звеньев в растущей полнпептидной или полинуклеотидной цепи, тогда как задача построения самих межмономерных связей низводится на тактический, рутинный уровень. Очевидно, что для построения таких нерегулярных полимерных цепей реакции типа полимеризации или поликонденсации принципиально неприменимы (в противоположность синтезу регулярных полисахаридов), а присоединение к растущей цепи каждого очередного мономерного звена превращается в самостоятельную операцию, требующую собственного набора реагентов и условий ее проведе- [c.298]

    I Механизм сорбции нуклеиновых кислот и их производных на оксиапатите, ио-видимому, во многом аналогичен механизму сорбции кислых белков. Вместо карбоксилов во взаимодействии с ионами кальция на поверхности сорбента участвуют остатки фосфатов полинуклеотидной цепи. Для моно- и олигонуклеотидов наблюдается явная зависимость силы сорбции от длины цеии (из-за многоточечной сорбции Мононуклеотиды в присутствии 1 мМ фосфатного буфера задерживаются на сорбенте слабо, а основания и нуклеозиды не задерживаются вовсе. Ди- и тринуклеотиды сорбируются гораздо прочнее решающую роль играют здесь фосфаты. Любопытно, что сказывается не только их число, но и расположение) Наиример, нуклеозидтрифосфаты сорбируются заметно прочне ё чем тринуклеотиды. Небольшие олигонуклеотиды хорошо сорбируются в 1 мМ фосфатном буфере, но относительно легко элюируются (0,02—0,0.3 М фосфатным буфером). орбция самих нуклеиновых кислот гораздо более прочна ]Я1 Элюцию осуществляет фосфатны буфер с концентрацией 0,12—0,25 М Размер высокомолекулярной нуклеиновой кислоты сказывается мало. По-видимому, достаточно отдаленные участки длинной цепи полинуклеотида благодаря их гибкости элюируются одновременно и независимо друг от друга. [c.229]

    По характеру действия на нуклеиновую к-ту Н. делятся на экзо- и эндонуклеазы. Экзонуклеазы осуществляют ступенчатое отшепление мононуклеотидов от конца полинуклеотидной цепи. Эндонуклеазы разрьгеают внутримол. связи на всем протяжении цепи. Ряд эндонуклеаз деполимеризуют только однонитевые участки полинуклеотидов, нек-рые-как одно-, так и двухцепочечные формы нуклеиновых к-т. [c.296]

    Специфич. наборы водородных связей между пиримидиновыми и пуриновыми основаниями в комплементарных участках цепей (см. Комплементарность), а также меж-плоскостные взаимод. между соседними основаниями в цепи определяют формирование и стабилизацию вторичной и третичной структуры нуклеиновых к-т. Последовательность пуриновых и пиримидиновых оснований в полинуклеотидной цепи определяет генетич информацию ДНК и матричных РНК. Модификация Пов полинуклеотидах под воздействием мутагенов может приводить к изменению информац. смысла (точковой мутации). [c.530]

    Эти задачи сводятся в сущности к последовательному фосфорилированию нуклеозидов, причем фосфорилирующим агентом должен служить нуклеотид, который тем самым займет соседнее место в создающейся полинуклеотидной цепи. Поскольку методы фосфорилирования в настоящее время развиты достаточно хорошо, то главной задачей при разработке методов синтеза полинуклеотидов является осуществление изби- [c.254]

    Если представить, что две спаренные нити-слирали ДНК отделяются одна от другой и попадают в среду, где происходит биосинтез полинуклеотидов из мононуклеотидов, то можно ожидать, что благодаря специфическому спариванию оснований около каждой полинуклеотидной цепи будет образовываться совершенно аналогичная ей вторая цепь, т. е., другими словами, воспроизведется исходная двойная спираль. [c.261]

    Перемещение матричного полинуклеотида как тест транслокации наиболее сложен в техническом отношении. Он может быть или непрямым, когда основан на появлении компетентности к связыванию аминоацил-тРНК, специфической к кодону, следующему за ранее фиксированным в рибосоме, или прямым, если анализируется непосредственно изменение закрытого (защищаемого) рибосомой отрезка матрицы. В прямом тесте было показано, что сдвиг полинуклеотидной матрицы относительно рибосомы на один триплет нуклеотидов сопровождает появление компетентности к пуромицину и к связыванию аминоацил-тРНК. [c.198]

    Инициация в процессе биосинтеза белка означает не просто начало элонгации. Прежде всего, так как начало кодирующей последовательности мРНК не совпадает с началом полинуклеотидной цепи, а всегда находится, отступя от ее 5 -конца (иногда на значительное расстояние), необходимо точное узнавание первого кодона на внутренней части цепи. Это узнавание определяет не только начало полипептидной цепи, которая синтезируется, но и задает фазу всего дальнейшего считывания мРНК по триплетам, т. е. абсолютно критично для всей аминокислотной последовательности полипептида. Другими словами, именно инициация определяет фиксированную точку на матричном полинуклеотиде, с которой начинается отсчет триплетов без запятых (см. гл. А.П). [c.221]

    Эйгеи приходит к заключению об эволюционной необходимости автокаталптпческого гиперцикла, построенного из элементарных полинуклеотидных циклов г (с. 544) с каталитическим участием белков, синтезируемых с помощью этих же полинуклеотидов. [c.545]

    Имеются три энергетически благоприятные конформации при вращении вокруг С4—С5-связи, отвечающие значениям угла 0 2 60, 180, 300°, тогда как существует лишь одна конформация, отвечающая вращению вокруг С5—О5, а именно 01 180°. Последняя соответствует наиболее растянутой конформации полинуклеотидной цепи. Для угла 0 3 стерически разрешены все значения углов в поеделах от 210 до 260°. Конформации относительно связей Оз—Р—О5 во всех без исключения полинуклеотидах и фосфорных диэфирах — гош — гош или гош — транс, причем углы ф и равны 60, 60 и 300, 300° для гош — гош-конформации, [c.491]

    При электрофоретическом разделении нуклеиновых кислот в геле удается разделять фрагменты длиной в сотни нуклеотидов, различающиеся на одно звено. При этом действуют два фактора — удлинение полинуклеотида приводит одновременно к возрастанию заряда и к увеличению сопротивления среды его перемещению. Второй фактор пересиливает, и в связи с этим быстрее перемещаются более короткие полинуклеотидные фрагменты. Примеры злектрофореграмм приведены на рис. 77 и 78. [c.242]

    Хотя оба метода позволяют получать полинуклеотиды длиной до 100 нуклеотидов и более, с их помощью нельзя получить функциональные гены. Поэтому синтетические олиго- и полинуклеотиды, используемые для сборки гена, и в настоящее время сшивают способом, который на заре развития полинуклеотидно-го синтеза был предложен Г.Корана для соединения 20-мерных олигонуклеотидов, полученных фосфодиэфирным методом (рис. 83). Для соединения олигонуклеотидов I и II используется третий, вспомогательный, нуклеотид III, которых комплементарен 5 -концу одного и 3 -концу другого олигонуклеотида, образуя дуплекс с ником. Этот вспомогательный нуклеотид III играет роль матрицы для олигонуклеотидов I и II, причем его 3 -конец комплементарен 3 -концу олигонуклеотида II, а 5 -конец — 5 -концу олигонуклеотида I, несущего фосфомоноэфирную группу. Размер матрицы должен обеспечивать достаточную устойчивость дуплекса с ником, для чего каждый из сшиваемых олигонуклеотидов должен перекрывать матрицу III длиной по 8—10 пар нуклеотидов. Обработка комплекса олигонуклеотидов I, II и III ДНК-лигазой в присутствии доноров остатков АМР (АТР или NAD ) приводит к сшиванию олигонуклеотидов I и II. Как видно из рис. 83, двуцепочечный фрагмент образуется с выступающими одноцепочечными концами. Эти концы могут быть использованы для дальнейшего наращивания цепи. Для этого необходимо синтезировать олигонуклеотиды IV и V, частично перекрывающие выступающие 3 - и 5 -концевые фрагменты I — II нуклеотида. Обработка комплекса, содержащего олигонуклеотиды I — II, III, IV [c.298]

    Молекула ДНК представляет собой комплекс из двух полимерных цепочек, связанных между собой межмолекулярными силами (рис. 4.2). Каждая цепочка в комплексе образует правую спираль (точнее, винтовую линию) и состоит из сахаро-фосфатного хребта с присоединенными к нему азотистыми основаниями четырех сортов — аденина (А), гуанина (Г), тимина (Т) и цитозина (Ц). Повторяющийся элемент цепочки (азотистое основание + сахар + фосфат) называется нуклеотидом. Таким образом, ДНК состоит из двух закрученных относительно друг друга полинуклеотид-ных цепочек. Существенно, что если связи между нуклеотидами внутри каждой цепочки являются жесткими, ковалентными и имеют энергию около 60 ккал/моль (3 эВ), то связи между полинуклеотидными цепочками по крайней мере на порядок слабее. Существует строгое правило компле-ментарности (соответствия) этих цепочек. Именно, всегда против аденина находится ТИМИН, а против гуанина цитозин. Комплементарность определяется стерическим соответствием оснований. При этом комплементарные пары оснований стабилизированы водородными связями (изображенными на рис. 4.3 пунктиром), электростатическими и ван-дер-ваальсовыми силами. Существенное значение для стабильности ДНК имеет взаимодействие между соседними парами оснований в двойной спирали. Параметры структуры ДНК следующие диаметр молекулы 20 А, расстояние между соседними парами оснований 3,4 А на виток спирали приходится 10 пар оснований, так что соседние пары повернуты относительно друг друга на угол [c.71]

    Влияние pH на конформации полинуклеотидных цепей в растворе обусловлено тем обстоятельством, что водородные связи, стабилизующие спиральную структуру, образуются в этих молекулах между группами, способными к ионизации, и поэтому ионизация хотя бы одной из групп, участвующих в об.разовании водородной связи, означает одновременно разрыв последней, что ведет к изменению конформации молекулы. В этом случае мы встречаемся с ярким примером специфических взаимодействий, о которых говорилось ранее применительно к полипептидам (см. 26, 27). Действительно, ионизация оснований, т. е. процесс отдачи или связывания протона (соответственно для кислотных и основных ионизуемых групп) осуществляется лишь при отсутствии водородных связей в спиральной форме такой процесс не имеет места. Пуриновые и пиримидиновые основания, входящие в ДНК и синтетические полинуклеотиды, образуют водородные связи между аминогруппой и атомом азота, включенным в цикл, с одной стороны, и группой —МН—СО — с другой. Отрицательные логарифмы констант диссоциации этих групп соответственно равны —2,9 (гуанин) 3,7—3,8 (аденин) 4,5—4,8 (цитозин) р/Скн-со 9,5—11,4 (гуанин, тимин, урацил). Поскольку аминогруппа присоединяет протон, а группа —NH—СО— отдает его, то первая заряжена при pH < рКш2 а вторая при pH > рКш-со- Таким образом, в диапазоне рК 2 < рН < / АГын-со пуриновые и пиримидиновые основания не заряжены, и здесь возможно существование спиральной конформации молекул. Интересный [c.372]

    Экстракты из тканей животных содержат фермент, осуществляющий добавление нуклеотидильных звеньев к концам полинуклеотидных цепей. Обычная ДНК-полимераза требует присутствия всех четырех дезоксирибонуклеозидтрифосфатов, ионов магния и ДНК-затравки, представляющей собой одноцепочечный полинуклеотид, на котором собирается новая, комплементарная цепь. Поэтому фермент можно назвать репдикациопным ферментом его активность подавляется при отсутствии одного или нескольких трифосфатов. Второй фермент, описанный в 1962 г. [46], катализирует включение концевых нуклеотидных звеньев в молекулу ДНК-затравки за счет отдельных трифосфатов. Он не стимулируется добавлением остальных трех трифосфатов, но цистеин усиливает его активность. Его можно назвать концевым или терминальным ферментом [47, 48] его можно использовать при биосинтезе полидезоксиадениловой кислоты [491. [c.211]

    Здесь и далее мы испо.пьзуем термин первичная, вторичная, третичная и четвертичная структуры нуклеиновых кислот в следующем смысле. Первичная структура — последовательность пуклеозндпых звеньев, соединенных фосфо-диэфирной связью в непрерывную и неразветвленную полинуклеотидную цепь. Вторичная структура — в случае одноцепочечных, главным образом монотонных полинуклеотидов, — пространственное расположение нуклеозидных звеньев, обусловленное межплоскостным взаимодействием оснований. В случае двух комплементарных цепей вторичная структура представляет собой жесткую двойную спираль, стабилизованную как ме.жплоскостным взаимодействием соседних оснований в пределах одной цепи, так и водородными связями между противолежащими основаниями в параллельных цепях. Третичная структура образуется в результате реализации наряду с двухспиральными иных типов фиксированной укладки полинуклеотидных цепей. Четвертичная структура — пространственное расположение взаимодействующих макромолекул (обычно полинуклеотидов и полипептидов) в нуклеопротеидах — рибосомах, вирусах и т. д. [c.16]

    Нуклеозиды, являющиеся мономерными составляющими нуклеиновых кислот, связаны друг с другом фосфодиэфирными связями и образуют цепь полинуклеотида. Фосфодиэфирная группировка связывает между собой З -гидроксильную группу остатка одного нуклеозида с 5 -гидроксильной группой остатка соседнего нуклеозида. Таким образом, полинуклеотидная цепь нуклеиновых кислот представляет собой линейную структуру, в которой моно-нуклеозиды связаны между собой 3, 5 -фосфодиэфирными связями, причем мононуклеозиды расположены в цепи в строго определенной для данной нуклеиновой кислоты последовательности. Об- [c.26]

    Практически, однако, дело обстоит несколько сложнее. Расщепление полинуклеотидов с концевой фосфатной группой гладко протекает лишь при использовании химических методов деградации, при расщеплении же под действием ферментов существенным условием быстрого протекания реакции является отсутствие фосфатной группы на З -конце полинуклеотидной цепи в случае фосфодиэстеразы змеиного яда и на 5 -конце—в случае фосфодиэстеразы селезенки (см. стр. 67). По этой причине перед ферментативным расщеплением необходимо удаление концевых фосфатных групп действием фосфомоноэстеразы, что приводит к исчезновению специфического фрагмента, образующегося из фосфорилированного конца цепи. [c.46]

    Нагревание полинуклеотида LII при температуре несколько ниже температуры плавления и последующее медленное охлаждение приводит к образованию циклической структуры LIII за счет нековалентного взаимодействия комплементарных липких концов . Такая структура может быть обнаружена с помощью электронной микроскопии. Этот прием был использован для доказательства того, что концевые участки полинуклеотидных цепей ДНК фагов ТЗ и Т7 имеют одинаковую последовательность. Пользуясь сочетанием гибридизации и циклизации , можно различить вирусные ДНК, содержащие уникальную последовательность нуклеотидов и представляющие набор циклически переставленных фрагментов 74 (см. стр. 32). [c.63]

    Задача установления нуклеотидной последовательности является весьма сложной практически она успешно решена пока лишь в случае относительно низкомолекулярных РНК, таких, как тРНК и 5S РНК. Имеющие в настоящее время практическое значение методы установления последовательности нуклеотидов в полинуклеотидной цепи основаны на частичном расщеплении полинуклеотидов. Поэтому перед рассмотрением основных принципов, с помощью которых производится установление строения полинуклеотидов, и применением этих принципов к различным типам природных нуклеиновых кислот целесообразно коротко остановиться на используемых методах избирательного расщепления полинуклеотидной цепи. [c.64]

    Если в реакцию, катализируемую РНК-полимеразой, вводится только один нуклеозид-5 -трифосфат (из четырех), происходит синтез гомополимера, структура которого не является комплементарной копией добавленного полинуклеотида. При таком синтезе — синтезе повторением (reiteration)—полимеризация начинается на участке полинуклеотидной матрицы, содержащем последовательность по крайней мере трех остатков нуклеотидов, комплементарных добавленному единственному нуклеозидтрифосфату. Продукт, образовавшийся в результате такого частичного копирования последовательности матрицы, служит затравкой для дальнейшей ферментативной полимеризации, приводящей к гомополинуклеотиду. [c.99]

    В настоящее время накоплен достаточно большой фактический материал по различию физико-химических характеристик олиго-и полинуклеотидов, содержащих рибо- и дезоксирибонуклеотиды (подробнее — см. гл. 4). Разумной причиной таких различий является, по-видимому, какое-либо участие гидроксильной группы при С-2 остатка рибозы в стабилизации конформации полинуклеотидной цепи в случае рибополимеров. Помимо образования водородной связи с карбонильной группой пиримидинового основания (или N-3 пуринового основания), для объяснения наблюдаемых свойств предполагается образование водородных связей с кислоро-дами фосфатной группы [c.142]

    Специфичность функционирования нуклеиновых кислот и нуклеотидкоферментов определяется реакционной способностью нуклеозидных звеньев и в первую очередь входящих в их состав гетероциклических оснований. При этом реакционную способность следует понимать в самом щироком смысле, имея в виду не только взаимодействия, приводящие к образованию или разрыву ковалентных связей, но и взаимодействия иных типов — с соседними основаниями в той же полинуклеотидной цепи или с комплементарными основаниями другого полинуклеотида, с белками (гистонами, белками вирусной оболочки, ферментами нуклеинового обмена и т. д.), ионами металлов и т. д. [c.146]


Смотреть страницы где упоминается термин Полинуклеотиды полинуклеотидные: [c.386]    [c.53]    [c.136]    [c.108]    [c.581]    [c.298]    [c.322]    [c.91]    [c.94]    [c.949]    [c.145]   
Молекулярная биология клетки Том5 (1987) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Полинуклеотиды



© 2024 chem21.info Реклама на сайте