Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диффузия в гетерогенных системах

    В случае процесса, проходящего в гетерогенной системе и сопровождаемого химической реакцией, расчет наблюдаемой скорости превращения требует, как указано выше, учета параметров, имеющих решающее значение как для скорости химической реакции, так и для массопереноса. Для этого можно использовать различные методы. Один из них основан на изучении превращения в установившемся режиме, т. е. в состоянии динамического равновесия. Предположим, что реакционная система состоит из твердой фазы и жидкости (газа), в ядре потока которой концентрация исходного вещества постоянна и равна С. Исходное вещество диффундирует к межфазной поверхности и достигает там концентрации С . Скорость химической реакции на межфазной поверхности является функцией этой концентрации. При установившемся режиме количество исходного вещества, которое должно прореагировать в единицу времени на единице межфазной поверхности, равно количеству исходного вещества, перенесенному в зону реакции в результате диффузии. Для реакций первого порядка справедлива следующая зависимость [c.247]


    Обычно в каждом единичном процессе приходится иметь дело с явлениями, проходящими по разному механизму. Перенос массы может осуществляться диффузией и конвекцией, теплообмен — теплопроводностью, конвекцией и излучением химическое превращение проходит обычно через промежуточные стадии, нередко также с различными механизмами, а стехиометрическое уравнение представляет собой баланс многих частных реакций и выражает суммарно конечный результат Того, что происходит в системе. В гетерогенных системах реакция осуществляется на границе раздела фаз, ей сопутствует перенос исходных веществ из реагирующих систем в зону реакции и продуктов с поверхности контакта в глубь фаз (диффузия и конвекция). Одновременно происходит теплообмен, при котором тепловая энергия подводится в систему или отводится от нее. Все эти явления могут быть последовательными и параллельными. [c.348]

    Коэффициент самодиффузии. Для измерения самодиффузии воды в гетерогенных системах используется метод импульсного градиента (ИГ-ЯМР) [617—619]. При этом определяется макроскопический коэффициент диффузии D, так как минимальное время наблюдения за системой в данном методе (минимально возможное время между импульсами) превышает Ю с. Связь между D и микроскопическим коэффициентом самодиффузии Do определяется условиями диффузии в средах со стерическими препятствиями [620]. Для хаотически распределенных сферических препятствий [621]  [c.239]

    Анизотропия макроскопического коэффициента самодиффузии, связанная с эффектом препятствий, наблюдалась экспериментально для воды в упорядоченных гетерогенных системах [619, 621—623]. Эта анизотропия может проявляться даже в случае, когда микроскопический коэффициент диффузии изотропен ( >0 = /)ох). При использовании метода ИГ-ЯМР важно также учитывать эффекты пространственно ограниченной самодиффузии, которые могут приводить к искажению измеряемых величин D [617]. [c.239]

    В гетерогенной системе может происходить перенос вещества диффузией между разными фазами кроме того, между молекулами в данной фазе может проходить химическая реакция. Если химический процесс является равновесным, то между веществами (концентрациями веществ) в равновесной смеси устанавливается строго определенное распределение. В гомогенной или гетерогенной системах связь между равновесными концентрациями веществ устанавливается с помощью закона действующих масс. [c.156]


    В физико-химических процессах, происходящих в гетерогенной системе газ — жидкость, диффузия является физическим этапом, определяющим в большинстве случаев геометрические размеры реакторов. Реакторы для проведения процессов в системе газ — жидкость конструируются, главным образом, по принципу абсорбционных аппаратов, имеют большой объем, но относительно просты и легки в эксплуатации. Промышленные реакторы для систем газ — жидкость являются реакторами непрерывного действия реже используются реакторы полупериодического действия, имеющие непрерывное питание газом. При изучении процессов абсорбции, сопровождающихся химической реакцией (хемосорбция), необходимо одновременно рассматривать уравнения диффузии и химической кинетики, так как общая скорость процесса определяется скоростью перемещения реагентов к месту реакции и скоростью химической реакции. [c.137]

    Химические процессы в производстве катализаторов весьма разнообразны. Они могут проходить гомогенно в жидкой или газовой фазе и в гетерогенных системах. Широко применяют гетерогенные процессы, в которых химические реакции сопровождаются диффузией и переходом компонентов нз одной фазы в другую. В системе газ — жидкость часто используют процессы хемосорбции газовых компонентов и обратные процессы десорбции с разложением молекул жидкой фазы. В системе газ — твердое вещество также применяют хемосорбцию и десорбцию в системах жидкость — твердое вещество и жидкость — жидкость — избирательную экстракцию с образованием новых веществ в экстрагенте. Сложные многофазные процессы с образованием новых веществ происходят при термообработке катализаторов. При этом, как правило, в общем твердофазном процессе принимают участие появляющаяся при нагревании эвтектическая жидкая фаза или компоненты газовой фазы. [c.96]

    Варка стекломассы — это совокупность сложных физикохимических процессов, протекающих в гетерогенной системе через стадии собственно варки, осветления (гомогенизации) массы и ее охлаждения. Эти процессы начинаются в твердой фазе до расплавления шихты и продолжаются в расплаве. Скорость процесса варки в значительной степени зависит от скорости диффузии компонентов как в твердой, так и в жидкой фазах. В твердой фазе протекают реакции образования силикатов, в жидкой при температуре 1200—1240°С — процессы стеклообразования. В табл. 20.3 представлена последовательность процессов, протекающих при варке стекломассы с изменением температуры. [c.318]

    Из элементарных курсов общей химии и физики известно, что вследствие сильно развитой межфазной поверхности гетерогенные дисперсные системы обладают большим избытком свободной поверхностной энергии и, следовательно, являются в принципе неустойчивыми. Позднее мы еще обсудим этот вопрос и покажем, что данное утверждение, которое во многих случаях не вызывает возражений, не настолько правильно, чтобы его абсолютизировать. Возникает вопрос, в какой мере законно применение термодинамических зависимостей к фазовым равновесиям в подобных системах. Гетерогенная дисперсная система может приобретать за счет замедляющих кинетику факторов известную устойчивость, позволяющую ей существовать в дисперсном состоянии достаточно долгое время. В течение этого времени вследствие молекулярного переноса (например, благодаря диффузии) устанавливается такое распределение ее компонентов в объеме и около межфазной поверхности, которое практически соответствует равновесию. Очевидно, что возникающее при этом состояние можно анализировать на основе соответствующих термодинамических представлений. В дальнейшем при рассмотрении вопроса об устойчивости лиофобных коллоидов мы увидим, что такая устойчивость действительно существует и именно этим объясняется широкое распространение подобных систем в природе и технике. Если какая-либо жидкость диспергирована в газе или п другой жидкости, то состояние относительного равновесия, о котором мы говорили выше, придает частицам термодинамически устойчивую форму — форму с наименьшей поверхностью, которая в простейшем случае является сферической. Не будем приводить других аргументов в пользу приложимости термодинамики равновесных систем к дисперсным гетерогенным системам и перейдем к рассмотрению самой термодинамики гетерогенных систем. [c.75]

    Поверхностное натяжение [1—3]. Поверхностная энергия играет исключительно важную роль в большом числе самых разнообразных явлений. Свойства поверхности раздела сказываются прежде всего на испарении, сублимации и конденсации, так как при переходе вещества из одной фазы в другую его молекулы должны пройти через эту поверхность. В таких процессах, как адсорбция, диффузия, катализ, химические реакции в гетерогенных системах, вещество либо переходит через поверхностный слой, либо поглощается им, либо вытесняется из него в объем. Трение, смазочное действие и адгезия также связаны с поверхностными свойствами веществ. [c.5]


    Скорость реакции в гетерогенных системах. Гетерогенные реакции имеют большое значение в технике. Достаточно вспомнить, что к ним принадлежат, например, горение твердого топлива, коррозия металлов и сплавов. Рассматривая гетерогенные реакции, нетрудно заметить, что они тесно связаны с процессами переноса вещества. В самом деле, для того, чтобы реакция, например, горения угля могла протекать, необходимо, чтобы диоксид углерода, образующийся при этой реакции, все время удалялся бы от поверхности угля, а новые количества кислорода подходили бы к ней. Оба процесса (отвод СО2 от поверхности угля и подвод О2 к ней) осуществляются путем конвекции (перемещения массы газа или жидкости) и диффузии. [c.196]

    В зависимости от того, в одной или нескольких фазах находятся компоненты, реакции, различают кинетику гомогенных реакций и кинетику гетерогенных реакций. В гетерогенных системах процесс в целом состоит по меньшей мере из двух последовательных стадий диффузии реагирующих веществ к поверхности раздела фаз и химической реакции на поверхности. Разница между скоростями каждой стадии может быть очень большой. В этом случае скорость процесса в целом определяется скоростью наиболее медленной стадии, которая называется лимитирующей, или определяющей стадией. Если скорость процесса определяется химическим взаимодействием веществ на поверхности, то говорят, что реакция протекает в кинетической области. Если же определяющая стадия — подвод реагирующего вещества в зону реакции за счет диффузии, то считается, что реакция протекает в диффузионной области. Скорости реакции и диффузии могут быть соизмеримы. Тогда скорость всего процесса представляет собой сложную функцию кинетических и диффузионных явлений, и процесс протекает в переходной области. [c.228]

    В гомогенных системах усиление перемешивания обеспечивает выравнивание концентраций, а в гетерогенных системах — увеличение до некоторого предела поверхности соприкосновения фаз, уменьшение толщины диффузного слоя, замену молекулярной диффузии более быстрой турбулентной. В гетерогенных системах изменение характера контакта фаз путем перехода от условий переноса вещества молекулярной диффузией к турбулентным условиям особенно эффективно для процессов, лимитируемых диффузией. [c.197]

    В гомогенных системах реакция идет во всем реакционном объеме, так как мы называем гомогенной именно систему, имеющую одинаковый химический состав во всех ее участках. В гетерогенных системах химический состав фаз различен, и реакция осуществляется на границе раздела фаз. Поэтому кинетика взаимодействия определяется не только кинетикой собственно химической реакции — кинетикой образования нового вещества, но и скоростью транспорта реагентов в зону реакции и сквозь зону. Этот транспорт осуществляется путем диффузии вещества как внутри объема контактирующих фаз, так и сквозь слой образующегося вещества. [c.227]

    Перейдем к рассмотрению нового класса химических реакций — гетерогенным реакциям. До сих пор мы считали, что реакция протекает в гомогенной системе — газе или растворе. Но реакция может протекать и в гетерогенной системе, состоящей из нескольких фаз, например, газ — твердое тело, газ — жидкость, жидкость — твердое тело. В этом случае реакция протекает на поверхности двух фаз. Такая реакция состоит по крайней мере из двух последовательных стадий диффузии реагирующего вещества к поверхности раздела и собственно химической реакции. [c.261]

    Высокополимерные и высокомолекулярные соединения (ВМС) и их растворы занимают особое место в коллоидно-химической классификации. Растворы ВМС, являясь, по существу, истинными молекулярными растворами, обладают в то же время признаками коллоидного состояния. При самопроизвольном растворении ВМС диспергируются до отдельных макромолекул, образуя гомогенные, однофазные, устойчивые и обратимые системы (например, растворы белка в воде, каучука в бензоле), принципиально не отличающиеся от обычных молекулярных растворов. Однако размеры этих макромолекул являются гигантскими по сравнению с размерами обычных молекул и соизмеримы с размерами коллоидных частиц. Приведенные на стр. 13 данные показывают, что размеры макромолекул (гликоген) могут быть не меньшими, а иногда большими, чем размеры обычных коллоидных частиц (золь Аи) и тонких пор. Поскольку дисперсность, как мы уже видели, существенно влияет на свойства системы, очевидно, что растворы ВМС должны обладать рядом признаков, общих с высокодисперсными гетерогенными системами. Действительно, по целому ряду свойств (диффузия, задержка на ультрафильтрах, структурообразование, оптические и электрические свойства) растворы ВМС стоят ближе к коллоидным системам, нежели к молекулярным растворам. Поскольку растворы ВМС диалектически сочетают свойства молекулярных растворов и коллоидных систем, целесообразно называть их, по предложению Жукова, молекулярными коллоидами, в отличие от другого класса, — типичных высокодисперсных систем — суспензоидов [1].  [c.14]

    Поскольку дисперсность существенно влияет на свойства системы, очевидно, что растворы ВМС должны обладать рядом признаков, общих с высокодисперсными гетерогенными системами. Действительно, по многим свойствам (диффузия, задержка на ультрафильтрах, структурообразование, оптические и электрические свойства) растворы ВМС стоят ближе к коллоидным системам, нежели к молекулярным растворам. Поскольку растворы ВМС диалектически сочетают свойства молекулярных растворов и коллоидных систем, целесообразно называть их, по предложению Жукова [1], молекулярными коллоидами, в отличие от Другого класса,— типичных высокодисперсных систем — су с п е н-ЗОИ до в [1].  [c.16]

    При рассмотрении механизма электродных процессов различают реакции, протекающие в одной среде (гомогенные реакции) и реакции, которые протекают на поверхности раздела фаз (гетерогенные реакции). Для электрохимии характерно, что в сферу ее изучения входят преимущественно гетерогенные системы, состоящие из двух или более различных гомогенных областей. Известно, что в гетерогенных реакциях важную роль играет скорость диффузии, миграции, конвекции исходных реагентов и конечных продуктов реакции в направлении к поверхности раздела фаз либо в обратном направлении от этой поверхности. Нона кинетику электродных процессов, помимо диффузионных ограничений (концентрационная поляризация), могут заметно влиять химические реакции, протекающие у электродной поверхности, и особенно электрохимический акт взаимодействия между частицами реагирующего вещества и электронами (замедленный разряд, ионизация). Помимо этого, ряд специфических затруднений может внести явление адсорбции на электроде частиц вещества, участвующих в реакции. [c.16]

    Понятие о термодинамическом равновесии ие исключает, а наоборот, предполагает наличие хаотического молекулярного теплового движения. Поэтому, когда говорят, что в гетерогенной системе между фазами установилось равновесие, прекратилась диффузия, то имеют в виду лишь видимый результат диффузии. Фактически переход молекул из одной из соприкасающихся фаз в другую и обратно не прекращается, но число молекул любого вещества, перешедших из одной фазы в другую, делается равным числу молекул этого> же вещества, перешедших в обратном направлении. Таким образом, равновесие между фазами является подвижным, динамическим. [c.72]

    В гомогенных п роцессах усиление перемешивания содействует выравниванию концентраций исходных веществ во всем объеме и увеличению числа столкновений реагирующих молекул. В гетерогенных системах Г—Ж, Г—Т, Ж—Т, Ж—Ж при отсутствии перемешивания фаз массопередача полностью определяется скоростью молекулярной диффузии передаваемого компонента в неподвижном слое жидкости или газа, прилегающем к поверхности соприкосновения фаз. При перемешивании толщина неподвижных слоев или ламинарных слоев, в которых жидкость или газ текут спокойно параллельно поверхности соприкосновения, уменьшается происходит завихрение (турбулизация) спокойных параллельных струй медленная молекулярная диффузия заменяется быстрой турбулентной. В то же время перемешивание, как правило, увеличивает поверхность соприкосновения реагирующих фаз. [c.74]

    Все параметры можно измерить известными методами. Число частиц или отдельных образований в зерне катализатора, образующих его пористую структуру достигает 10 -10 , и поэтому к построению модели процесса в нем возможен статистический подход. В этом случае пористое зерно катализатора, являющееся неоднородной гетерогенной системой, представляют как однородную сплошную среду, а перенос компонентов в нем — результат диффузии с эффективным коэффициентом /)зф. Реакция протекает во всем объеме. Скорость превращения в такой однородной среде Ж Действительная скорость превращения на поверхности пор Жуд (отнесена к единице поверхности) и связана с Ж соотношением [c.136]

    Поскольку в расплавах, в двухфазных гетерогенных системах транспорт реагирующих молекул осуществляется посредством диффузии, то на основе закона Фика, используя уравнение Стока-Эйнштейна, учитывая механизм диффузии в жидкости и расплавах, рассчитав деформацию химической связи при образовании активированного комплекса и вязкость реакционной массы, были рассчитаны скорости транспорта реагентов при различных температурах по формуле  [c.12]

    Классификации гетерогенных систем и структурных форм распределения фаз друг в друге приведены в работе Подробный анализ диффузии и проницаемости в гетерогенных системах был проделан Баррером [c.164]

    Значительные осложнения при изучении окислительно-восстано-вительных свойств твердых редокситов связаны с большим временем достижения равновесия в системе редоксит - раствор медиатора. Время, необходимое для получения только одной точки на кривой титрования, может колебаться от нескольких часов [140] до нескольких суток [141] и даже недель [142, 143]. Однако и по истечении этого срока сложно сделать однозначное заключение о том, наступило равновесие для окислительно-восстановительной реакции между редокситом и медиатором или же установившийся потенциал является стационарным и определяется кинетическими факторами. Скорость установления равновесия в гетерогенной системе редоксит - раствор медиатора определяется скоростью химической реакции окисления-восстановления и диффузии медиатора к функциональным группам редоксита. Реакция окисления-восстановления редко является лимитирующей стадией. Как правило, стадия, определяющая скорость превращения в гетерогенной системе редоксит - раствор медиатора, -это диффузия [131]. Ускорить диффузионные процессы в редокс-полимерах можно созданием определенной структуры полимеров, [c.154]

    Химические реакции в гетерогенных системах широко используются в технологии самых различных веществ. В гетерогенной системе реагенты и продукты диффундируют в противоположном направлении. Реакционная зона может находиться на самой новерхности раздела фаз или в объеме любой из фаз прилегающей к этой поверхности. Глубина проникновения реакции определяется соотношением скоростей химической реакции и диффузии реагентов п продуктов реакции. В предельном случае очень медленной реакции п быстрой массопередачи реакция протекает в объеме одной из фаз. При этом скорость экстракции зависит от скорости реакции. [c.357]

    Если подобрать подходящий реагент, то, используя конкурирующую реакцию, можно получить действительно бесспорное доказательство кинетического или диффузионного режима. Если процесс контролируется кинетикой, соотношение получаемых продуктов должно быть тем же самым независимо от того, происходит ли реакция в гомогенной или гетерогенной системе. Вильсон использовал одновременно идущие реакции нитрования бензола и толуола, чтобы доказать, что нитрование толуола контролируется диффузией. [c.375]

    Наибольшее распространение получило сухое ксантогенирование, которое иногда называют ксантогенированием в волокнистом состоянии. Процесс ведут при достаточно высокой температуре 26—35 °С, так что значительная часть сероуглерода находится в газообразном состоянии. Щелочная фаза представляет собой измельченную щелочную целлюлозу. До температуры 30 °С (рис. 4.3) реакция протекает в кинетической области, так как ее температурный коэффициент выше 2,0—2,5 [И]. Лишь при температурах выше 50°С температурный коэффициент химических реакций приближается к 1,5. Это говорит о том, что процесс начинает лимитироваться диффузией, обусловленной гетерогенностью системы. [c.86]

    В протонной ЯМР-спектроскопии многоэкспоненциальность может быть также связана с кросс-релаксацией или спиновой диффузией между протонами воды и протонами поверхности. Теория кросс-релаксации в гетерогенных системах построена в работе [591]. Анализ экспериментальных данных показывает, что этот механизм чрезвычайно важен для водных растворов полимеров и биологических объектов [576, 591]. Наиболее отчетливо важность этого механизма продемонстрирована с помощью методики двойного разонанса [592], а также путем селективного возбуждения сигналов ЯМР в узком спектральном диапазоне [593]. [c.233]

    Большое внимание в последнее десятилетие уделялось взаимосвязи между скоростями химической реакции и диффузии. Дамкел-лер и особенно Франк-Каменецкий широко развили эту область. Последний различает микрокинетику (т. е. химическую кинетику) и макрокинетику (т. е. физический транспорт — перенос реаги-руюш их веществ). Следуя ван Кревелену мы должны учитывать при макрокинетическом анализе величины среднего моле1 улярного пробега, распределения вещества в гетерогенных системах (диффузия) и в реакторе в целом (перенос конвекцией). Укажем, что для получения сведений о химической кинетике мы все еще должны полностью полагаться на экспериментальные данные по каждой отдельной исследуемой реакции. [c.20]

    Так же, как и в гетерогенных системах, описанных в главах XII— XIII, не все эти стадии необходимо одновременно анализировать. Часто двумя последними стадиями можно пренебречь или объединить с первыми двумя. Например, при протекании реакции без изменения числа молей обратная диффузия продукта может быть учтена просто, если рассматривать эквимолекулярную противодиффузию реагента через поры, а не его диффузию через неподвижную среду. [c.412]

    Укрупнение частиц может происходить по нескольким причинам. Как известно, мелкие капельки и кристаллики имеют повышенное давление пара и соответственно повышенную растворимость. Увеличение давления пара или растворимости связано с линейными размерами частиц уравнением Гиббса—Томсона. Согласно этому уравнению, эффект должен быть заметен даже для частиц коллоидных размеров, поэтому в гетерогенной системе с достаточно высокой степенью дисперсности большие частицы растут за счет меньших. Так как скорость этого процесса определяется скоростью диффузии растворенного вещества от одной частицы к другой, то он наблюдается только в золях достаточно растворимых веществ. Известно, что Ag l и Ва304, которые сравнительно хорошо растворимы в воде, образуют не очень устойчивые золи. При добавлении спирта растворимость Ва804 понижается, а устойчивость золя повышается. Процессы рекристаллизационного укрупнения играют важную роль в весовом анализе и во многих других случаях. Этим же процессам приписывают, например, рост частиц галогенидов серебра при приготовлении фотоэмульсий.  [c.192]

    Рассмотрим гранулу иммобилизованного фермента, помещенную в раствор субстрата. Для осуществления ферментативной реакции субстрату необходимо, во-первых, подойти к грануле. Это перемещение молекулы субстрата происходит обычно не за счет молекулярной диффузии, а за счет конвективного движения, скорость которого намного выше скорости диффузии. Во-вторых, молекуле субстрата необходимо продиффундировать через неперемешиваю-щийся слой жидкости (слой Нернста), прилегающий к поверхности в любой гетерогенной системе. В этом слое происходит лишь молекулярная диффузия при отсутствии конвективного движения, что значительно замедляет общий процесс. Толщина слоя Нернста [c.267]

    Скорость взаимодействия, протекающего в гетерогенной системе, зависит и от состояния реакционной поверхности, которое во многом определяется интенсивностью отвода от поверхности продуктов реакции. Последние иногда резко искажают свойства реакционной поверхности, изменяя ее природу. Так, например, ведет себя сульфат свинца, образующийся на поверхности раздела РЬ —H2SO4 при реакции свинца с серной кислотой. Весьма существенно меняются свойства поверхности алюминия за счет образования на ней пленки АЬОз, малопроницаемой для кислорода, что значительно снижает скорость гетерогенной реакции 4А1 + ЗО2 — 2AI2O3. Стадия отвода реагента от поверхности раздела фаз также часто лимитирует процесс. Скорости подвода реагентов к реакционной поверхности и отвода от нее продуктов реакции (стадий переноса вещества) определяются процессами конвекции и диффузии они зависят от вязкости среды и других факторов. [c.114]

    В спектроскопии ЯМР строго однокорреляционным, согласно этому определению, является только процесс броуновской вращательной диффузии. Зависимости времен релаксации Т1 и Гг от тс Хг 1Т для данного процесса представлены на рис. 14.2 сплошными линиями. В минимуме Т] (при < оТгЛ 0,616, (йo = 2яvo — резонансная частота) выполняется условие Т 1Т2 1,6. Экспериментально обычно получают зависимости Г] и Гг от -Хс ЦТ, которые схематически представлены на рис. 14.2 пунктирными линиями. Минимум Г1 более пологий, чем для броуновской вращательной диффузии (иногда наблюдаются даже два минимума [597]), и в точке минимума Т выполняется условие Г1/Г2>1. Это свидетельствует о наличии распределения времен корреляции, т. е. о том, что вид временной автокорреляционной функции заметно отличается от экспоненциальной [576]. В гетерогенных системах для воды возможно однородное и неоднородное распределение времен корреляции [596]. Однородным называется распределение, которое связано с внутренней неэкспоненциальностью функции 0 1), что справедливо, на- [c.233]

    Пример, для трансляционной диффузии, систем с анизотропной диффузией или пониженной размерностью. Неоднородное распределение связано с пространственной неоднородностью, например с неоднородностью энергий активации в различных точках гетерогенной системы. Используя для описания неоднородного распределения тс логарифмически-нор-мальный закон, Г. Резинг [573] из экспериментальных значений и Гг вычислил функции распределения времен релаксации воды в цеолитах и некоторых других гетерогенных объектах. Однако ширина полученных распределений, по-видимому, является завышенной [591, 598], так как наблюдаемые зависимости Г1(тс) и Гг(тс) можно отчасти объяснить и эффектами кросс-релаксации, а также при учете явлений, связанных с однородным расп]ределением времен корреляции. [c.234]

    Проблемы, как сорбция ионов осадками, электрофоретические свойства суспензий, диффузия ионов в кристаллах, изотопный обмен в гетерогенных системах и многие вопросы, относящиеся к области структурной химии. Кроме того, для многих ненабухающих трехмерных ионообменников с жесткой структурой теоретическая обработка данных по термодинамике и кинетике ионного обмена часто бывает намного проще, чем для органических смол, даже в тех случаях, когда стерические эффекты и ограниченная взаимная растворимость твердых фаз могут приводить к осложнениям. [c.8]


Библиография для Диффузия в гетерогенных системах: [c.203]   
Смотреть страницы где упоминается термин Диффузия в гетерогенных системах: [c.243]    [c.92]    [c.233]    [c.234]    [c.409]    [c.488]    [c.226]    [c.17]    [c.375]    [c.8]   
Смотреть главы в:

Диффузия в полимерных системах -> Диффузия в гетерогенных системах


Технология связанного азота Синтетический аммиак (1961) -- [ c.505 ]




ПОИСК





Смотрите так же термины и статьи:

Система гетерогенная



© 2025 chem21.info Реклама на сайте