Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разделение синтеза аммиака

    Азот для синтеза аммиака получают при разделении воздуха методом глубокого охлаждения. Водород получают различными методами конверсией метана, содержащегося в природном газе, попутных нефтяных газах, газах нефтепереработки и остаточных газах производства ацетилена методом термоокислительного пиролиза конверсией окиси углерода глубоким охлаждением коксового газа электролитическим разложением воды газификацией твердого и жидкого топлива. [c.33]


    На установках фирмы Тексас получают необходимый для конверсии кислород разделением воздуха, а побочный азот используют для синтеза аммиака. При таком варианте кислородная конверсия является экономически более выгодной по сравнению с конверсией водяным паром. [c.105]

    Для промышленных условий большое значение имеет динамическая активность цеолитов по парам воды, устанавливаемая при пропускании потока газа, содержащего влагу, через слой цеолита определенной высоты. Повышение температуры в адсорбенте приводит к снижению его динамической активности. На адсорбционную способность цеолитов повышение температуры оказывает меньшее действие, чем на адсорбционную способность силикагеля или алюмогеля. При увеличении скорости газового потока или при повышении давления адсорбционная способность цеолитов падает меньше, чем других адсорбентов, в частности силикагеля. В связи с этим они могут быть успешно использованы в процессах разделения воздуха, синтеза аммиака, осушки водорода и т. д. [c.109]

    Мембранное разделение газов используют в технологии переработки природных газов, обогащения воздуха кислородом, концентрирования водорода продувочных газов синтеза аммиака, для создания регулируемой газовой среды при хранении сельскохозяйственной продукции и многих других целей. Перспективно применение мембранного газоразделения для очистки отходящих газов, особенно от ЗОг, НгЗ. [c.6]

    Из рис. 109 видно, что в колоннах с неподвижным слоем катали.затора и трубчатой катализаторной коробкой (кривая 3), синтез аммиака протекает вдали от оптимальной кривой 2 и содержание аммиака в прореагировавшем газе равно 17,5 объемн. % в колоннах с пятью кипящими слоями весь катализатор разделен на ряд слоев и синтез аммиака протекает вблизи оптимальной кривой 2 — это приводит к повышению содержания аммиака в прореагировавшем газе до 22,5 объемн. %, при прочих одинаковых гидродинамических условиях. [c.212]

    Другим примером адиабатического многослойного реактора с промежуточным теплообменом является полочная колонна синтеза аммиака с охлаждением посторонним теплоносителем (рис. 9). В этой колонне катализатор разделен на шесть слоев, между которыми располагают змеевики. Через змеевики прокачивают под давлением дистиллированную воду, которая охлаждает покидающую слой [c.27]


    Установка БР-6 предназначена для производства чистого азота (не более 0,002% Ог) и технологического кислорода (рис. 138). Получаемые продукты разделения воздуха используют для синтеза аммиака. Технологическая схема построена по пиклу одного низкого давления необходимая холодопроизводительность обеспечивается за счет расширения части воздуха в турбодетандере. [c.431]

    В качестве источника сырья для производства продуктов нефтехимической промышленности стали использовать метан из природного газа. Конверсией метана с водяным паром или реакцией с кислородом получали газ синтеза (смесь окиси углерода и водорода) и водород. Таким образом, метан из природного газа стал одним из исходных продуктов для получения синтетического метилового спирта и синтетического аммиака. Синтез аммиака был разработан в Германии непосредственно перед первой мировой войной, за ним последовало развитие процесса производства синтетического метанола в обоих случаях исходным сырьем служил каменный уголь. Подобно этому и паро-метановый и метано-кислородный процессы получения газа синтеза имеют европейское происхождение, при этом в качестве сырья используется метан, являющийся побочным продуктом в процессах разделения коксового газа или при гидрогенизации угля. [c.21]

    Аргон получают при разделении жидкого воздуха, а также из отходов газов синтеза аммиака. Аргон применяют в металлургических и химических процессах, требующих инертной атмосферы (аргоно-дуго-вая сварка алюминиевых и алюмо-магниевых сплавов), в светотехнике (флюоресцентные лампы, лампы накаливания, разрядные трубки), электротехнике, ядерной энергетике (ионизационные счетчики и камеры) и т. п. [c.611]

    Широкое и эффективное применение высоких и сверхвысоких давлений (синтезы аммиака, метанола, мочевины и других веществ, конверсия окиси углерода, процессы гидрогенизации, разделение коксового газа, получение концентрированной азотной кислоты, электролиз воды и т. д.) обусловлено не только тем, что многие промышленно важные реакции протекают с уменьшением объема. Режим повышенного давления ускоряет процессы, позволяет уменьшить размеры аппаратуры, улучшить теплопередачу и т. д. — словом, интенсифицировать процесс. [c.134]

    Независимо от намечаемого использования водорода, будет ли это прямое восстановление железных руд, синтез аммиака, метанола, гидрирование нефтяных фракций или производство топлив высокой теплотворности, для решения вопроса об экономике процесса необходимо предварительно выбрать оптимальный способ получения водорода. В будущем значительные усилия должны быть затрачены на разработку еще более дешевых источников получения этого ценного сырья. Для этого потребуется детальный анализ возможных методов разделения газовых смесей как абсорбция, адсорбция, диффузия, ректификация, связывание в виде комплексных соединений или при помощи химических реакций. [c.168]

    Очищенный газ смешивается с азотом из аппаратов разделения воздуха, сжимается до 28,4-10 Па (29 кгс/см ), подвергается водной очистке от СО2, компримируется до 313,6-10 Па (320 кгс/см ) и очищается от окиси углерода медно-аммиачным раствором. Для более тонкой очистки от двуокиси углерода используют раствор щелочи. После масляного фильтра газ поступает на синтез аммиака. [c.20]

    Схема 11. Производство газа для синтеза аммиака методом разделения коксового газа [c.23]

    Как указано выше, в схемах синтеза аммиака каталитическую очистку газа от оклей азота и ацетилена применяют в двух случаях перед стадией отмывки конвертированного газа жидким азотом и перед блоками разделения коксового газа, т. е. после всей предварительной системы его очистки. [c.438]

    Процесс мембранного разделения газов в настоящее время используют для решения ограниченного числа задач, что связано с необходимостью получения в каждом конкретном случае полупроницаемой мембраны, обладающей высокой селективностью и проницаемостью по компонентам данной смеси. Наиболее изучены следующие процессы мембранного разделения газов получение воздуха, обогащенного кислородом получение азота концентрирование водорода продувочных газов синтеза аммиака и нефтепродуктов выделение гелия, диоксида углерода и сероводорода из природных газов получение и поддержание состава газовой среды, обеспечивающего длительную сохранность овощей и фруктов. [c.319]

    Метод глубокого охлаждения дает возможность использовать для синтеза аммиака любые газовые смеси, содержащие достаточное количество водорода или относительно бедные водородом смеси, содержащие ценные компоненты для синтеза других продуктов. В последнем случае водород при разделении смеси является отходом. Например, при разделении коксового газа целевым продуктом является азото-водородная смесь, а побочными — этиленовая и метановая фракции. Наоборот, щ)и разделении газов крекинга нефти целевыми продуктами являются олефины, а побочными — парафины и метано-водородная фракция, которая может быть использована для получения аммиака. В промышленности низкие температуры для разделения газовых смесей применяются, как правило, при малых значениях коэффициентов разделения или в тех случаях, когда выделение из смеси ее отдельных компонентов в иных условиях невозможно или экономически нецелесообразно. [c.194]


    Агрегаты разделения коксового газа номинальной производительностью 32 ООО м ч. Предназначены дпя получения азото-водородной смеси для синтеза аммиака, концентрированной этиленовой фракции, метановой фракции, фракции окиси углерода (для агрегатов I и П производительностью 31 ООО и 31 600 м ч) и богатого газа (смеси фракций метана и окиси углерода — для агрегата III производительностью 30 800 лг /ч). Работают по схеме с предварительным аммиачным охлаждением до минус 40 — минус 45 °С, с холодильным циклом дросселирования азота высокого давления,, с расширением азота высокого давления в поршневом детандере (для агрегата 111) и с расширением фракции СО в турбодетандере (для агрегата II). [c.200]

    Значительный энергетический резерв имеют сами химические производства. Например, КПД синтеза аммиака находится в пределах от 25 до 42%, а винилхлорида — от 6 до 12%. Дело не только в объективных причинах. Химики по традиции многие годы стремились повысить выход продуктов реакции, но не занимались созданием энергосберегающих технологий. Как следствие многие технологические процессы исключительно расточительны в энергетическом смысле. Например, классические процессы ректификации имеют КПД от 6 до 15%. Замена этих методов разделения жидкостей методами, основанными на применении полупроницаемых мембран или селективной абсорбции, могла бы увеличить КПД в несколько раз. Неоправданно много энергии расходуется на химических предприятиях компрессорами, аппаратами для измельчения твердых фаз и вентиляторами. Создание более экономичных конструкций таких агрегатов значительно улучшило бы энергетический баланс химических производств. [c.78]

    Фракционный рецикл используют при неполном превращении исходных реагентов. В системе разделения после реактора выделяют непрореагировавшие реагенты и возвращают на переработку. Типичный пример - синтез аммиака, в котором после конденсации и сепарации аммиака оставшуюся азотоводородную смесь снова направляют в реактор (см. рис. 3.5, 3.6). Во многих процессах нефтехимического синтеза образуется целый ряд продуктов. Их разделяют в многоколонной системе, и вьщеленный исходный компонент возвращают в систему вместе со свежей смесью. В этих случаях при неполном превращении реагентов в реакторе общее превращение исходного компонента в системе будет полным. [c.250]

    Разделение газообразных смесей дробной конденсацией и ректификацией при низкой температуфе нашло весьма широкое применение со времени разработки в начале XX века процесса Линде ожижения воздуха. Как правило, низкотемпературные процессы применяются не для удаления небольших количеств примесей пз газовых потоков, а скорее для ректификации и выделения чистых компопентов, папример, кислорода, азота, гелия, окиси углерода, водорода п различных углеводородов поэтому их нельзя считать специальными процессами очистки газов. Тем пе менее низкотемпературные методы используются для таких целей, как очистка водорода, предназначаемого для синтеза аммиака, или для удаления кислых газов при помощи недавно разработанного процесса ректизол. В обоих процессах поступающий на очистку газ предварительно охлаждают, причем часть примесей выделяется уже в результате конденсации. Окончательная очистка достигается пз тем абсорбции остающихся примесей жидкостными поглотителями азотом в первом случае п метанолом или ацетоном — во втором. [c.362]

    Когда реакция протекает в гомогенной системе, выделение нужного продукта из газовой смеси представляет во многих случаях сложную проблему. Конечно, если возникает серьезная практическая необходимость проведения реакции именно в газовой фазе, то так или иначе проблема разделения решается. Например, при синтезе аммиака из азота и водорода целевой продукт - аммиак - извлекается из смеси газов путем ее охлаждения. Аммиак конденсируется в жидкость гораздо легче, чем азот и водород. [c.79]

    Отдельные виды сырья рассматриваются при описании производств, которые их применяют. Наиболее общими и распространенными видами сырья являются воздух и вора. Сухой воздух содержит в объемных процентах около 78% N2, 21% Од, 0,94% Аг, 0,03% СО2 и незначительные количества водорода, неона, гелия, криптона и ксенона. Кроме того, в воздухе имеются переменные количества водяных паров, пыли и газообразных загрязнений. Кислород воздуха широко используется для процессов окисления, в том числе и для сжигания топлива, азот — для синтеза аммиака. Получение азота и кислорода разделением воздуха рассмотрено в гл. X. Применение водь рассмотрено в конце этой главы. [c.23]

    В настоящем курсе исходя из значимости отдельных промышленных способов получения водорода рассматриваются конверсия СО, конверсия СН4 и разделение коксового газа. Во всех этих способах попутно с водородом получается и азот, необходимый для синтеза аммиака, т. е. производится готовая азотоводородная смесь с соотнощением N2 H2=1 3. [c.228]

    Последнее обстоятельство ограничивает область применения разработанных диффузионных элементов (с толщиной стенки а = 0,1 мм) процессами, не требующими больших затрат драгоценных металлов и наиболее эффективно использующими специфические свойства этих мембран. К таким процессам относятся прежде всего процессы получения водорода высокой чистоты из углеводородов, включающие их паровую конверсию и диффузионное разделение образующейся смеси. Полимерные мембраны, как отмечалось выше, не обладают необходимой селективностью в системе Н,—СО,. Поэтому мембраны из палладиевых сплавов могут быть эффективно использованы для разделения отходящих газов при высоких давлениях, например продувочных газов синтеза аммиака и метанола, и в ряде других процессов разделения газовых смесей. [c.219]

    Аварии, связанные с загазованностью атмосферы производственных помещений взрывоопасными и токсичными газами, происходили при разрыве в результате коррозии трубопроводов между холодильниками и маслоотделителями на газовых компрессорах, маслоотделителей и цилиндров вследствие их низкого качества изготовления, а также в результате проскока газа через фланцевые соединения и сварные швы трубопроводов и сосудов. Так, в производстве аммиака разорвался газопровод нагнетания первой ступени поршневого компрессора фирмы Сюрт , предназначенного для сжатия и подачи коксового газа в отделение очистки цеха синтеза аммиака и далее в агрегаты разделения коксового газа. Авария произошла на участке между компрессором и холодильником нагнетательного газопровода первой ступени компрессора. Причина аварии — цлохое качество сварного шва газопровода. [c.181]

    Для высоких степеней сжатия при большой производительности практикуется совместное использование центробежных и поршневых компрессорных машин. Созданы наддувные турбокомпрессоры давлением до 30 ат и производительностью 40 000 м ч, которые подают сжатый газ или воздух непосредственно в третью ступень поршневого компрессора высокого давления. Создание наддувных компрессоров явилось крупным шагом в совершенствовании таких производств, как синтез аммиака, спиртов и разделение газовых смесей. [c.263]

    К водороду, идущему на синтез аммиака, предъявляются довольно жест 1ие требования в отношении его чистоты. Содержание посторонних примесей в нем не должно превышать 2—3%. Очистку водорода для синтеза аммиака после удаления из него СОг и воды, помимо ранее указанной медно-аммиачной очистки, можно проводить также промывкой жидким азотом, так как содержание азота в нем в этом случае не будет недостатком процесса. Жидкий азот для этих целей получают обычно сжижение1л чистого газообразного азота с установки разделения воздуха. [c.110]

    Нестационарный процесс синтеза аымиака из продувочных газов. Один из эффективных путей совершенствования технологии синтеза аммиака — утилизация продувочных газов [7]. На современных установках аммиак из продувочных газов выделяется главным образом вымораживанием. После извлечения аммиака продувочные газы обычно используют в качестве низкокалорийного топлива или иногда сбрасывают в атмосферу. Газы направляются на сжигание в трубчатую печь отделения конверсии метана, что позволяет экономить природный газ. Возможен другой способ утилизации продувочных газов их разделение методами глубокого охлаждения, что позволяет снизить себестоимость аммиака. Кроме того, получаемый при этом аргон дешевле аргона, извлекаемого в установках разделения воздуха. Продувочные газы характеризуются повышенным содержанием инертов (примерно 30%), что и обусловливает менее интенсивное протекание реакции, чем в основном процессе синтеза. [c.217]

    Применяют М. р. для разделения газовых смесей (напр., выделение компонентов из смесей, образующихся при синтезе аммиака, создание регулируемой газовой среды в фрукто-овощехранилищах) для опреснения морских и солоноватых вод и деминерализации речной и артезианской воды (см. Водоподготовка) для концентрирования и очистки р-ров высокомол. соед., в т. ч. биологически активных, молока и соков в микробиол., мед., пищ. пром-сти для изготовления массообменников мед. назначения (гемодиализаторы, оксигенаторы крови). [c.32]

    Как уже упоминалось, для синтеза аммиака необходимы во дород и азот. Поскольку ресурсы атмосферного азота огром ны, то производство аммиака в осногзном определяетсяспособоь получения водорода. К промышленным способам производств водорода относятся конверсия природного и попутного газов низкотемпературное разделение коксового газа, газификацш кокса и угля. Водород может быть получен также в результата электролиза воды. [c.58]

    В рс.чультате разделения коксового газа получают 24 820 ы /ч азсуговодо-родной смег.и для синтеза аммиака, 10 950 м / богатого газа, который возвращается на коксохимический завод и 1300 м /ч этиленовой фракции, поступающей на технологическую переработку. [c.77]

    Возврат рецикл) части компонентов возможен после системы разделения Р (схема 7). Это — фракционный рецикл (возвращается фракция потока), который широко применяется для более полного использования сырья. В синтезе аммиака в реакторе превращается около 20% азотоводородной смеси. После отделения продукта непрореагировавшие азот и водород возвращают в реактор, таким образом достигается полное превращение исходного вещества. Фракционный рецикл применяют также для полного использования вспомогательных материалов. В том же производстве аммиака азотоводородная смесь получается с большим содержанием СО2. Его абсорбируют раствором моноэтано-ламина (МЭА), который быстро насыщается диоксидом углерода. Насыщенный раствор МЭА рециркулирует через десорбер, где отделяется от СО2, и восстановленным возвращается в абсорбер. К фракционному рециклу можно отнести схему 8. Свежая смесь нафевается в теплообменнике теплотой выходящего из реактора потока. Рециркулирует тепловая фракция потока (а не компонентная, как в схеме 7). [c.236]

    Самую многочисленную группу составляют химические процессы, из которых наиболее важными в технологии являются следующие процессы горение (сжигание жидкого, твердого и газообразного топлива с целью получения энергии, серы — для получения серной кислоты) пирогенные (коксование углей, пиролиз и крекинг нефтепродуктов) окислительно-восстановительные процессы (газификация твердых и жидких топлив, конверсия углеводородов) электрохимические (электролиз воды, растворов и расплавов солей, электрометаллургия, химические источники тока) электротермические (электровозгонка фосфора, получение карбида и цианамида кальция) плазмохимические (реакции в низкотемпературной плазме, включая окисление азота и пиролиз метана, получение ультрадисперсных порошкообразных продуктов) термическая диссоциация (получение извести, кальцинированной соды, глинозема и пигментов) обжиг и спекание (высокотемпературный синтез силикатов, получение цементного клинкера и керамических кислородсодержащих и бескислородных материалов со специальными функциями) гидрирование (синтез аммиака, метанола, гидрокрекинг и гидрогенизация жиров) комплексообразова-ние (разделение и рафинирование платиновых и драгоценных металлов, химическое обогащение руд, например путем хлорирующего или сульфатизирующего обжига для перевода металлов в летучие или способные к выщелачиванию водой соединения) химическое разложение сложных органических веществ (варка древесных отходов с растворами щелочей или бисульфита кальция с целью делигнизацми древесины в производстве целлюлозы) гидролиз (разложение целлюлозы из отходов сельскохозяйственного производства или деревообрабатывающей промышленности с по- [c.211]

    Особенно широкое распространение АСУТП получили в нефтехимической промышленности (перегонка нефти, риформинг, процессы пиролиза и разделение газов), в синтезе аммиака, в производстве и переработке пластмасс и химических волокон. В мировой практике АСУТП внедрены также в производство ферментов, гербицидов, красителей, матанола, мочевины, серной кислоты. [c.219]

    Экономика процесса. Хотя применение схем с разделенным потоком в процессе очистки газа горячим раствором карбоната калпя позволяет получать низкие концентрации СОа очищенном газе, вероятно, экономически наиболее целесообразно использовать этот процесс для извлечения из газа основной массы содержащейся в нем СОа тех случаях, когда не требуется высокая степень очистки газа или когда для доочистки можно использовать другие процессы. В одной из опубликованных работ [49 приводите я подробный анализ экономики различных методов очистки от СОа газа, применяемого для синтеза аммиака. Рассмотрено семь различных схем, в трех из которых применялась очистка горячим раствором карбоната калия в сочетании с другими процессами окончательной очистки газа. Результаты этого анализа представлены в табл. 5.6. Из семи рассмотренных схем наименьшие капиталовложения требуются для процесса очистки горячим раствором карбоната калия с последующим извлечением остаточной СО 2 водным раствором моноэтаноламина. Эта схема и схема водной промывки газа с дальнейшей очисткой его водным раствором МЭА требуют и минимальных эксплуатационных расходов. Однако последние лишь немного меньше эксплуатационных расходов, требуемых при процессах очистки горячим раствором карбоната калия с последующей промывкой газа диэтаноламином и едким натром или водным раствором аммиака и едким натром. Последние две схемы сравнительно сложны, но преимущество их состоит в том, что они пригодны для очистки газов, содержащих OS и другие примеси, препятствующие применению ыоноэтаноламина дая окончательного извлечения СОа- Сравнение экономики процессов очистки газа горячим раствором карбоната калия и раствором моноэтаноламина [50] также выявляет преимущества первого процесса для очистки газов с высоким содержанием СОа- Из этого же сравнения видно, что оба процесса становятся равноценными при парциальном абсолютном давлении СОа около 1,4 ат. При меньшем давлении СОа процесс очистки газа раствором амина более экономичен, чем процесс очистки горячим раствором карбоната калия, а при более высоком парциальном давлении СОа — наоборот. [c.108]

    Метан в настоящее время чаще всего выделяют из природного газа. Метановые фракции получают также при низкотемпературном разделении газов пиролиза и крекинга нефтепродуктов, продувочных газов синтеза аммиака. Метан получают либо каталитическим гидрированием оксида углерода, либо из метилиодида, метилбромида по реакции Гриньяра через магнийиодметил или соответственно магнийбромметил. Дополнительная очистка метана может быть проведена низкотемпературной ректификацией с использованием жидкого азота в качестве хладоагента, а также низкотемпературной адсорбцией. Наиболее чистый метан содержит (мол. %) основного вещества — 99,9995, примесей азота — 210 кислорода —0,5-10 водорода — 0,110 СОг — 1-10 мол. %. [c.912]


Смотреть страницы где упоминается термин Разделение синтеза аммиака: [c.17]    [c.97]    [c.13]    [c.13]   
Технология связанного азота Синтетический аммиак (1961) -- [ c.11 ]




ПОИСК





Смотрите так же термины и статьи:

Разделение разрывы колонн синтеза аммиака

Синтез аммиака

Синтез аммиака синтеза аммиака

Установки для комплексного разделения отдувочных газов цикла синтеза аммиака



© 2024 chem21.info Реклама на сайте