Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Глицин крови

    Люмомагнезон Фл. pH 10,0—12,0, тартрат, Ме СО, глицин 0,024—1 млн-1 Са не мешает определение Mg в сыворотке крови, в цементе 12, 13 [c.417]

    На экскрецию аминокислот в значительной мере влияет степень их реабсорбции в почечных канальцах [47—54, 235]. В норме реабсорбции в канальцах подвергаются значительные количества аминокислот — тем большие, чем выше уровень аминокислот в крови. Экспериментальные исследования о почечной реабсорбции проведены преимущественно на собаках во многих опытах применялись рацемические аминокислоты. Полученные данные говорят о том, что аргинин, лизин и глутаминовая кислота труднее подвергаются реабсорбции, чем глицин, аланин, изолейцин, валин, треонин, триптофан, фенилаланин и метионин. Отмечено, что при реабсорбции существуют конкурентные отношения между креатином и аминокислотами (например, глицином или аланином), тогда как глюкоза с аминокислотами не конкурирует. Высказано предположение, что реабсорбция аминокислот обеспечивается единым механизмом, однако исследования, касающиеся цистинурии (см. ниже), наводят на мысль о наличии особого механизма для реабсорбции [c.467]


    Все природные аминокислоты (кроме глицина) оптически активны и принадлежат к L-ряду. При микробиологическом способе аминокислоты образуются в процессе жизнедеятельности бактерий. Гидролитический метод основан на гидролизе белковых природных продуктов, например рогов, копыт, крови (отходов преимущественно мясной промышленности), из которых выделяются аминокислоты. Оба способа приводят к получению смеси оптически активных а-ами- [c.263]

    В качестве примера высокоэффективного метода фракционирования при помощи органического растворителя можно привести метод фракционирования белков плазмы крови человека. Разделение основано на применении последовательно различных концентраций этанола, различных буферов, обеспечивающих на каждом отдельном этапе необходимую (различную) ионную силу и ионный состав. В составе буферов использовались ацетат натрия, глицин, цитрат натрия, ацетаты цинка, бария, уксусная, лимонная кислоты, компоненты фосфатного буфера. Осаждение вели при температурах —5°, —6—7°С, в различных зонах pH, примерно от 5,5 до 6,7. Точное выполнение условий pH, ионной силы и температуры имеет в этом сложном методе решающее значение. [c.146]

    Молекулярный вес отдельных аминокислот колеблется от 75 (глицин) до 240, а для бром- и иодсодержащих почти до 800. Величина среднего молекулярного веса аминокислот у большинства белков оказывается приближенно равной 110, следовательно в состав белков входят преимущественно простые а-аминокислоты. Исходя из такого среднего молекулярного веса, можно подсчитать, что для белков с наименьшим молекулярным весом—около 17000 (например, для альбумина молока и для миоглобина мышц) число аминокислотных остатков все же должно быть не менее 150, а для более сложных белков значительно больше, например для яичного белка с М = 43000—около 400, а для гемоглобина крови с >60000—около 500. [c.172]

    Альбумины, получаемые из различных частей организма (сыворотка крови, куриные яйца, молоко и т. д.), неоднородны их обычно удается разделить на 2—3 разновидности. Альбумин можно получить и в виде кристаллов. В молекуле альбумина много серусодержащих аминокислот, но очень мало глицина. Характерной чертой сывороточного альбумина является наличие в его молекуле положительно заряженных групп это приводит к активному поглощению им анионов жирных кислот, ионов хлора и др. В тканях организма альбумин связан с липидами и другими биологически активными веществами. Сывороточный альбумин составляет около 50% всего белка плазмы крови человека (всего в плазме около 7% белков). [c.63]


    Первичным сигналом, вызывающим увеличение синтеза глутамата. аланина, глицина и пролина. служит временное изменение концентрации солей, отражающее изменения в осмолярности крови. [c.138]

    Интерпретация данных, полученных изотопным методом, затрудняется тем, что мы не можем установить, была ли использована введенная в организм меченная изотопом аминокислота только однократно, для синтеза 1 молекулы белка, или же она многократно принимала участие в синтезе молекул белка, освобождаясь при распаде одних белков и входя в состав других. Опыты с N 5-глицином, при обработке которых принималось во внимание это усложняющее обстоятельство, показали, что в течение суток у человека образуется примерно 0,2 г, а у крысы около 1 г белков плазмы на 1 кг веса тела [45]. В ряде исследований для определения скорости образования альбуминов и глобулинов животным скармливался С -лизин, причем было найдено, что глобулины плазмы образуются быстрее, чем альбумины, и быстрее, чем альбумины, исчезают из крови [46]. В течение 24 час. обновляется около 10% белков плазмы [46]. Скорость обновления белков мышц значительно меньше скорости обновления белков плазмы и печени [47]. Медленнее всех остальных белков регенерирует гемоглобин, так как в течение суток обновляется только 2,5% этого белка [43, 47]. Период полураспада гемоглобина приблизительно равен 25—30 дням. [c.389]

    Глобулины — глобулярные белки, обладающие низкой растворимостью в солевых растворах и совершенно не растворяющиеся в воде. Полностью высаливаются раствором сульфата аммония в пределах насыщения 50%. Широко распространены в природе, в организме высших организмов выполняют защитную функцию. Так, глобулинами являются специфичные антитела, защитный белок крови (фибриноген) также глобулин. По химической природе глобулины близки к альбуминам, однако они несколько богаче аминокислотой глицином. [c.19]

    Порфирин образуется в молодых клетках крови костного мозга, очевидно, из глицина, сукцината и метильных групп ацетата. Сразу же происходит присоединение железа, так что в организме обычно содержатся только следы свободных порфиринов. [c.350]

    Глицин является также предшественником гемина крови, что было доказано по появлению в гемине у человека, которому был введен N -глицин [1423], и при введении крысам в пищу глицина с С в метиленовой группе. [c.493]

    Определение аминокислот (МС отрицательных ионов) Оценка пула глицина и скорости обмена Определение аминокислот в плазме крови (ХИ — МС) Определение глицина в тканях головного мозга Синтез аминокислот для масс-спектрометрии [c.87]

    Организм человека использует не весь образующийся порфобилиноген в норме небольшие его количества обычно выводятся с мочой, главным образом в виде копропорфиринов (гл. 10, разд. Б, 1). Существуют наследственные и приобретенные нарушения, при которых содержание порфиринов в крови повышено и с мочой выделяются значительно большие 1 количества (порфирия). Бывают случаи, когда порфирия протекает в легкой форме и почти не сопровождается какими-либо симптомами, но в других случаях в коже под роговым слоем откладываются интенсивно флуоресцирующие свободные порфирины, что сопровождается фотосенсибилизацией и приводит к изъязвлению кожи. В наиболее тяжелых случаях экскретируемые порфирины придают моче винно-красный цвет. У больных развиваются тяжелые неврологические поражения. Наблюдается и целый ряд других симптомов . При одной форме врожденной порфирии с мочой выделяются большие количества уропорфирина I. Биохимический дефект в этом случае, по-видимому, сводится к недостаточному синтезу косинтетазы, необходимой для образования протопорфирина IX. Другая форма порфирии обусловлена образованием в печени избыточных количеств б-аминолевулиновой кислоты. Существует предположение, что лечить таких больных, возможно, следует введением бензоата или я-аминобензоата [87]. Смысл такого воздействия состоит в том, чтобы переключить обмен глицина на синтез гиппуровой кислоты (дополнение 9-А) или ее п-аминопроизводного, снижая тем самым скорость синтеза порфиринов. [c.129]

    Исходными субстратами в биосинтезе порфирнновых соед. служат сукцинат и глицин. Порфириновые соед. выполняют в О.в. важные ф-ции, принимая участие в окислит.-восстановит. процессах. В частности, в составе гема в гемоглобине порфириновое кольцо участвует в переносе О2 в крови. Порфириновое кольцо входит в состав цитохромов и хлорофиллов. Катаболизм порфиринов в животном организме состоит в раскрытии и частичной деградации пор-фиринового кольца. Продукты катаболизма в виде окраш. соед. (биливердина, билирубина и др.) наряду с продуктами частичного окисления стероидов (холевыми к-тами) выводятся через желчные протоки в кишечник. [c.315]

    Хорошо растворим в воде и спирте. В организме животных синтезируется не свободный холин, а холин в составе фосфолипидов. Донорами метильных групп являются метионин (в составе 8-аденозилме-тионина) или серии и глицин (при синтезе метильных групп). Вследствие этого при белковой недостаточности, которая в свою очередь может быть связана с дефицитом белка в пище или эндогенного происхождения, развиваются симптомы холиновой недостаточности жировая инфильтрация печени, геморрагическая дистрофия почек, нарушение процесса свертывания крови (нарушение синтеза V фактора свертывания—акцелерина) и др. [c.246]


    Данные о специфичности транспорта аминокислот через биомембраны клеток были получены при анализе наследственных дефектов всасывания аминокислот в кишечнике и почках. Классическим примером является цистинурия, при которой резко повышено содержание в моче цистина, аргинина, орнитина и лизина. Это повышение обусловлено наследственным нарушением механизма почечной реабсорбции. Цистин относительно нерастворим в воде, поэтому он легко выпадает в осадок в мочеточнике или мочевом пузыре, в результате чего образуются цистиновые камни и нежелательные последствия (закупорка мочевыводящего тракта, развитие инфекции и др.). Аналогичное нарушение всасывания аминокислот, в частности триптофана, наблюдается при болезни Хартнупа. Доказано всасывание небольших пептидов. Так, в опытах in vitro и in vivo свободный глицин всасывался значительно медленнее, чем дипептид глицилглицин или даже трипептид, образованный из трех остатков глицина. Тем не менее во всех этих случаях после введения олигопептидов с пищей в портальной крови обнаруживали свободные аминокислоты это свидетельствует о том, что олигопептиды подвергаются гидролизу после всасывания. В отдельных случаях отмечают всасывание больших пептидов. Например, некоторые растительные токсины, в частности абрин и рицин, а также токсины ботулизма, холеры и дифтерии всасываются непосредственно в кровь. Дифтерийный токсин (мол. масса 63000), наиболее изученный из токсинов, состоит из двух функциональных полипептидов связывающегося со специфическим рецептором на поверхности чувствительной клетки и другого — проникающего внутрь клетки и оказывающего эффект, который чаще всего сводится к торможению внутриклеточного синтеза белка. Транспорт этих двух полипептидов или целого токсина через двойной липидный слой биомембран до настоящего времени считается уникальным и загадочным процессом. [c.426]

    Эта реакция является начальным этапом синтеза креатина (см. главу 20). Глицин-амидинотрансфераза была открыта еще в 1941 г., но только в 1965 г. У. Хорнер и соавт., а затем С.Р. Мардашев и A.A. Карелин (1967) впервые отметили диагностическую ценность определения фермента в сыворотке крови при заболевании почек. Появление данного фермента в крови может быть связано либо с поражением почек, либо с начинающимся или развившимся некрозом поджелудочной железы. [c.615]

    Напомним, что синтез креатина в основном происходит в печени. Из печени с током крови он поступает в мышечную ткань, где, фосфори-лируясь, превращается в креатинфосфат. В синтезе креатина участвуют три аминокислоты аргинин, глицин и метионин (см. главу 1). [c.651]

    Период жизни салицилатов у взрослых составляет приблизительно 3 часа при использовании в дозе 300 - 400 мг, и в норме не существует риска возникновения кумуляции. Небольшое увеличение дозы препарата, однако, приводит к непропорционально высокому подъему концентрации в плазме крови. При использовании препарата в больших дозах происходит конъюгация его с глицином и насыщение образования салицилмочевой кислоты. [c.522]

    Что касается аминокислот, входящих в состав гликопротеинов, то последние представлены чаще всего во всем их разнообразии, хотя можно отметить несколько интересных особенностей. Так, содержание ароматических и серусодержащих аминокислот обычно очень невелико. Отмече-но , что все известные гликопротеины по аминокислотному составу могут быть разделены на две довольно определенные группы. Гликопротеины одной группы, содержащие небольшой процент сахаров и близко стоящие к белкам, имеют обычный стандартный набор аминокислот к этой группе относятся гликопротеины плазмы и многие другие углеводсодержащие белки. Гликопротеины второй группы содержат относительно меньше аминокислот, но состав этих аминокислот более специфичен наиболее характерным признаком этой группы гликопротеинов является очень высокая доля оксиаминокислот (серина и треонина), которые в отдельных случаях, например в групповых веществах крови, составляют половину всех аминокислот аномально высоким бывает также содержание пролина и глицина.  [c.568]

    Некоторые ацилированные аминокислоты имеют биологическое значение. С их образованием связано обезвреживание ядовитых веществ, всасывающихся в кровь из кишечника Так, например, ядовитая бензойная кислота связывается глицином и удаляется из организма с мочой в форме гиппуровой кислотьп [c.782]

    АЛЬБУМИНЫ — простейшие представители природных белков, присутствующие во всех растит, и животных тканях в отличие от глобулинов, с к-рыми они составляют группу растворимых белков, растворяются в гюлунасыщенном (50% насыщения) р-ре сернокислого аммония и в дистиллированной воде. Изоэлоктрич. точка А. в пределах pH 4,6—4,8 мол. в. не превышает 75 ООО. Вое А. — глобулярные белки. А. способны к образованию хорошо оформленных кристаллов в электрофоретич. поле А., как правило, могут быть ра.зде.лены на 2 и более комнонептов. А. растворимы в к-тах, щелочах, при нагревании свертываются нри гидролизе образуют различные аминокислоты, для состава к-рых характерно отсутствие или относи 1 ельно низкое содержание глицина (не более 2%). А. богаты серусодержащими и дикарбоно-выми аминокис.потами. В живых тканях А. обычно находятся в виде соединений с липидами, углеводами и др. белками содержатся в белке яиц, сыворотке крови, мо,локе, семенах растений. А. получают из плазмы крови фракционир, осаждением при пизких темп-рах этот препарат широко применяют в медицинской практике, особенно для питания, путем введения в кровь. Кроме того. А, получают также из крови животных (сывороточный А.), отделением белка яиц от желтка (яичный А.), а также из молочной сыворотки при нагревании до 75° (молочный А.). А. применяются в фармацевтич., кондитерской, текстильной и др. отраслях промышленности и для осветления вии. [c.68]

    Аминокислоты можно получить из природных материалов или приготовить путем химического синтеза. В первом случае обычно получают Ь-изомеры аминокислот аминокислоты, полученные методами химического синтеза (за исключением глицина, р-аланина и т. п.), представляют собой рацематы. Способы выделения аминокислот многообразны, и этому вопросу посвящена весьма обширная литература. Некоторые белки служат хорошим сырьем для получения определенных аминокислот клейковина (глютен) пшеницы служит основным сырьевым материалом для производства Ь-глутаминовой кислоты глютен кукурузы — хороший источник для выделения Ь-лейцина и Ь-тирозина Ь-ар-гинин можно получить из желатины и из крови. Продажные препараты Ь-аспарагина получают из побегов спаржи (ср. [14]). [c.91]

    Процессу всасывания аминокислот в кишечнике посвящен ряд исследований. В опытах на интактных животных было показано, что содержание аминного азота в крови быстро нарастает после приема отдельных аминокислот (например, глутаминовой кислоты, лейцина) [6, 7]. В некоторых исследованиях [8—10] получены данные, согласующиеся с механизмом всасывания путем простой диффузии, однако очевидно, что существует и механизм активного всасывания. Так, было найдено, что всасывание аланина, глицина и валина не пропорционально концентрации этих аминокислот в просвете кишечника [11]. Далее, установлено, что при внесении растворов DL-аминокислот в изолированную петлю тонкого кишечника крысы L-изомеры аминокислот поглощаются со значительно большей скоростью, чем соответствующие D-изомеры [12]. В других опытах с препаратами тонких кишок также было отмечено более быстрое всасывание L-аминокислот по сравнению с их D-изомерами [13—20]. Так, например, после внесения рацемического аланина [c.165]

    В опытах на крысах было показано, что внутривенно введенный N -аммоний может выводиться как таковой [71] однако в физиологических условиях аммиак крови, по-видимому, не имеет существенного значения как источник аммиака мочи. Главную роль в образовании аммиака играют а) дезамидирование глутамина и б) действие ферментной системы, состоящей из глутамат-трансаминазы и глутаматдегидрогеназы. Следует учитывать также возможность участия в этом процессе глицин-оксидазы, поскольку в моче обнаружена глиоксиловая кислота [62]. Однако значение глициноксидазы в обмене веществ взято под сомнение [72] возможно, что глиоксиловая кислота мочи представляет продукт других превращений. [c.175]

    Шоффиниельс и его сотрудники, кратковременное повышение внутриклеточных концентраций ионов (отражающее соответствующий сдвиг в крови) должно, по-видимому, активировать ГДГ и тем самым приводить к повышению содержания свободной глутаминовой кислоты в клетке, а также содержания аланина, глицина и пролина. Таким образом, в клетке происходит передача ряда высокоспецифическпх регуляторных сообщений (рис. 44). [c.138]

    Первичным событием здесь является активация глутаматдегидрогеназы ионами известно, что этот фермент активируют как катионы, так и анионы, но механизм их действия различен. Образующийся в результате реакции глутамат служит донором аминогрупп для синтеза аланина и глицина (что способствует образованию этих двух аминокислот в тех случаях, когда возросшие концентрации ионов в крови должны быть осмотически уравновешены повышением содержания аминокислот внутри клетки). Обе аминокислоты, аланин и глицин, так же как и серии, тормозят по принцииу обратной связи реакцию глутамин-синтетазы — важный путь дальнейшего использования глутамата в результате этого концентрация глутамата может еще больше возрастать и он может использоваться для дополнительного синтеза аланина и глицина. Такого рода взаимодействия ведут к экспоненцио.льному повышению концентраций всех четырех аминокислот — глутаминовой кислоты, аланина, серина и глицина (рис. 44) первоначальным сигналом для запуска этого регуляторного каскада может быть что-то очень простое, вроде, например, изменения концентрации Ыа+ или С1 , происходящего сначала в окружающей среде, а затем в крови и, наконец, в клетке. Система этого тина является автокаталитической и автоматической изменение внешней солености очень быстро приводит к надлежащему сдвигу внутриклеточной концентрации аминокислот, поддерживающему осмотический баланс (а тем самым и постоянство объема клетки). [c.139]

    Одним из самых старых методов получения кристаллических белков является осторожное добавление этилового спирта или ацетона к холодному белковому раствору. Этим способом в конце прошлого столетия Гонпе-Зейлер и Гюфнер получили из крови многих животных кристаллический оксигемоглобин. В руках прежних авторов этот метод был, однако, чисто эмпирическим, и результаты его применения более или менее случайными. Значительного улучшения этого метода достигли Кон, Эдсалл, Онклей и их сотрудники [17]. Применение этилового спирта и других органических растворителей для осаждения белков основано на том, что органические растворители уменьшают диэлектрическую постоянную водных растворов белка. Противоположный эффект — увеличение диэлектрической постоянной — достигается добавлением глицина. Ввиду того что растворимость белков в большой степени зависит от диэлектрической постоянной растворителя, эти методы можно использовать для ступенчатого уменьшения растворимости белков и для их выделения в кристаллической форме. Само собой разумеется, что при подобной процедуре нужно контролировать и другие физикохимические факторы температуру, pH, ионную силу. Варьируя эти факторы, можно достичь разделения некоторых белковых фракций. Результаты, полученные при помощи этих методов, более подробно описаны в гл. УП1. [c.13]

    Метод высаливания белков нейтральными солями благодаря своей простоте и доступности нашел широкое применение в лабораторной практике. Для получения больших количеств белковых фракций плазмы он, однако, непригоден, так как на удаление солей путем диализа требуется слишком много времени и труда [14]. Поэтому Кон и его сотрудники разработали новый метод разделения белков плазмы, используя в качестве осадителя этиловый спирт [15]. Во избежание денатурирования белков спиртом, осаждение белков по этому методу проводится при низких температурах. Спирт легко удаляется при высушивании белков в замороженном состоянии под вакуумом или путем диализа. Осаждающее действие спирта обусловлено главным образом низкой диэлектрической постоянной смеси спирт—вода по сравнению с диэлектрической постоянной воды. Известно, что силы электростатического притяжения и отталкивания обратно пропорциональны диэлектрической постоянной среды, поэтому понижение этой постоянной способствует взаимодействию белковых молекул и образованию агрегатов. Противоположный эффект — увеличение растворимости белков — наблюдается при добавлении глицина, повышающего диэлектрическую постоянную воды (см. гл. УП). Растворимость белков в воде или в водно-спиртовых смесях зависит также от температуры, от концентрации водородных ионов и от ионной силы раствора. Варьируя все эти факторы, Кон, Эдсалл и Онклей получили из плазмы крови большое количество отдельных белковых фракций, а также выделили ряд [c.173]

    Предположение о том, что искусственная смесь аминокислот, введенная парентерально, во всех отношениях эквивалентна соответствующему количеству принятого с пищей белка, полностью, однако, не оправдалось. Было показано, что у собак при инъекции смеси аминокислот, содержащей глутаминовую кислоту, возникает рвота [48] и что смесь аминокислот, содержащая более 10% глицина, вызывает признаки отравления и остановку роста у крыс [49]. Вредное действие глицина и глутаминовой кислоты оказалось весьма неожиданным, так как обе аминокислоты являются важными компонентами белков пищи и соматических белков, образующихся в организме. Следует, однако, вспомнить, что в нормальном организме они подвергаются очень быстрому обмену, в связи с чем концентрация их в тканевой жидкости остается все время очень низкой. Резкое же повышение их концентрации в сыворотке крови при введении per os или внутривенно свободных аминокислот может служить причиной указанных интоксикаций. [c.370]

    Печень собаки насыщали окисленной кровью in situ. Во время опыта производили непрерывное вливание глицина-1- С со скоростью 17 мккюри/мин. Каждые 30 мин. делали биопсию печени и отбирали пробы плазмы. Протеины отделяли электрофорезом и затем гидролизовали, после чего измеряли удельные активности полученных аминокислот. Кроме того, определяли удельные активности свободных аминокислот в образцах [c.230]

    Подобные длительные опыты с человеком и млекопитающими не дают надежных результатов, так как у них фосфор недостаточно прочно связан в эритроцитах. Для них был применен меченый глицин, из которого в эритроцитах синтезируется гемин. Применение глицина, содержащего N , вводимого в кровь человека в течение 3 дней, дало следующие результаты [ 1488].Содержание М в крови росло в течение 30 дней и затем, в течение 60 дней, оставалось постоянным, после чего падало по экспоненциальной кривой. Математический анализ этой зависимости приводит к времени жизни эритроцитов в разных опытах от 115 до 140 дней. У кролика аналогичным способом было найдено около 65 дней [1489]. Глицин, меченный N или С , был также применен в ряде работ для изучения времени жизни эритроцитов в разных патологических условиях. Для изучения кровообращения была применена также меченая плазма, что достигается добавлением к ней в виде иодук сусной кислоты [1490] или Сг в видеСгС1з [1491 ]. Оба прочно связываются белком плазмы. Радиоактивный хром в виде хромата был также применен для получения меченых эритроцитов [1492, 1493]. [c.508]

    Нарушения биосинтеза, вызванные недостатком некоторых вещ еств. Биосинтез гемоглобина может нарушаться не только в тех случаях, когда имеются какие-то неправильности в структуре генетического материала, но и при недостатке некоторых веществ, необходимых для его синтеза. В случае недостатка железа в пище или при потерях крови, включающих и потерю железа, развивается микроцитарная анемия, характеризующаяся малыми размерами эритроцитов и понижением содержания в них НЬ. Железо необходимо на двух этапах синтеза порфиринов при конденсации глицина и сукцинил-кофермента А с образованием б-аминолевулиновой кислоты и при внедрении железа в протопорфирин IX, поэтому отсутствие его блокирует синтез сразу в двух местах. Этот недостаток легко восполняется принятием внутрь соли двухвалентного железа, обычно в виде карбоната. [c.147]

    Интенсивность развиваюшейся окраски пропорциональна содержанию азота глицина. Для полуколичественной оценки пробы можно сравнивать ее с цветной шкалой. Для получения шкалы берут 3, 6, 9, 18, 24, 36 и 54 мл раствора глицина, что соответствует 1 2,5 5 7,5 10 и 15 мг азота, и обрабатывают так же, как и мочу. Результаты выражают или в миллиграммах на литр азота глицина, или в миллиграммах на суточный диурез. В норме аминоазот мочи за сутки у детей не превышает 1-2 мг/кг массы тела в ночное время выделяется 2/3-3/4 суточного количества аминоазота. Гипераминоацидурия возникает при ряде наследственных (аномалии обмена аминокислот, сахаров, гликогена и др.) и приобретенных (гепатиты, цирроз печени, нефротический синдром и др.) заболеваний. Для выяснения причины гипераминоацидурии необходимо определить концентрации аминокислот в крови и моче и вычислить их клиренс. [c.280]

    Биологическое действие. Соединение N -формил-ТГФК называют фолиниковой кислотой. Она является главной формой дериватов фолиевой кислоты в крови. Фолиевая кислота играет важную роль в метаболизме глицина, серина, глутамата, гистидина, бетаина и холи-на. Ее производные играют роль в биосинтезах путем включения фор-мильного углерода в пуриновый скелет и в синтезе тимина. У низших организмов фолиевая кислота необходима для образования N-фор-милметионина — инициирующей аминокислоты в синтезе белка. [c.362]


Смотреть страницы где упоминается термин Глицин крови: [c.379]    [c.40]    [c.453]    [c.615]    [c.24]    [c.176]    [c.175]    [c.137]    [c.196]    [c.391]    [c.328]    [c.379]    [c.68]    [c.91]    [c.207]    [c.186]   
Аминокислотный состав белков и пищевых продуктов (1949) -- [ c.333 , c.367 ]




ПОИСК





Смотрите так же термины и статьи:

Глицин

Глициния

Кровь содержание аланина и глицин



© 2024 chem21.info Реклама на сайте