Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулярные теории диффузи

    Как объясняет атомно-молекулярная теория следующие факты а) распространение запахов б) диффузию в) испарение и возгонку г) изменение объема тел при изменении температуры д) уменьшение суммарного объема при смешении некоторых жидкостей е) упругие свойства мяча ж) различную плотность вещества з) различные химические свойства  [c.7]

    Таким образом, явления молекулярного переноса — диффузия, теплопроводность и внутреннее трение — имеют один и тот же механизм, связанный с тепловым движением молекул. Согласно кинетической теории идеальных газов коэффициенты диффузии, температуропроводности и кинематической вязкости по порядку величины равны друг другу, т. е. [c.57]


    Подобным образом были проведены расчеты поверхностного натяжения жидкостей. Применение современных ЭВМ позволяет по данным о е(г) проводить абсолютные расчеты свойств жидкостей. При этом в основном используют два метода. По первому методу молекулярной динамики решаются уравнения Ньютона для коллектива частиц, связанных энергией взаимодействия и обладающих некоторой заданной энергией. Такие расчеты удается делать для больших коллективов частиц (порядка тысяч). По второму методу — методу Монте — Карло — рассчитывают общие суммы состояния системы при заданной энергии взаимодействия и выборе возможных конфигураций расположения молекул друг относительно друга. С помощью ЭВМ были рассчитаны Я(г) термодинамические функции, вязкость, диффузионные характеристики и др. Кроме того, удалось определить характеристики траекторий определенных частиц. Оказалось, что частицы осуществляют весьма малые как бы дрожательные движения, в которых участвуют соседи. Поэтому понятия блужданий в жидкостях приобретают другой смысл, так как в них сразу участвует большое число частиц. Атом смещается тогда, когда его соседи в результате подобного коллективного движения освободят ему место. Теория диффузии в жидкостях, основан- [c.214]

    Необходимо подчеркнуть, что уравнение (5.2), строго справедливое в теории диффузии газов, для нейтронов не строго корректно. В газах существует давление, обусловленное молекулярными столкновениями, более высокое в областях с большей плотностью. Это давление обусловливает д в и-жущую силу в сторону областей с низкой плотностью. В случае с нейтронами их столкновения между собой фактически отсутствуют перемещение из областей с повышенной плотностью в области с пониженной плотностью есть лишь чисто статистический эффект (ко-торый проявляется и в газе), обус-ловленный тем, что из области с повышенной плотностью в область с более низкой плотностью - [c.117]

    Если частицы дисперсной фазы достаточно малы, то обнаруживается их участие в тепловом движении. Это обусловливает в дисперсных системах такие явления, свойственные молекулярным растворам, как диффузия и осмос. Область коллоидной химии, изучающая эти явления, стала уже классической. Она получила значительное теоретическое развитие в работах Эйнштейна и Смолуховского и послужила основой для формирования ряда разделов современной физики и физической химии теории флуктуаций, микроскопической теории диффузии. Вместе с тем экспериментальные исследования молекулярно-кинетических свойств дисперсных систем, проведенные Перреном, Сведбергом и другими учеными, подтвердили правильность представлений материалистического естествознания, лежащих в основе молекулярно-кинетической теории тем самым эти исследования содействовали выходу из философского кризиса в физике, возникшего на рубеже XIX и XX вв. Это обусловливает общенаучное, мировоззренческое значение теории молекулярно-кинетических свойств дисперсных систем. [c.140]


    Идеальная объемная модель турбулентного горения — растянутое ламинарное пламя. Это означает, что характерное время турбулентности должно быть мало по сравнению с продолжительностью реакции. Такое соотношение может иметь место, например, при мелкомасштабной, но интенсивной и однородной по всему объему турбулентности. Для объемной модели полностью применима теорема ламинарного горения с заменой молекулярного коэффициента диффузии на турбулентный Таким образом, для расчета и . можно использовать формулы тепловой теории нормального горения, в которых вместо ол Ро) нужно подставить D = = %jl p >). Следовательно, [c.137]

    Видимо, всегда можно подобрать такие условия, при которых будет осуществляться та или иная модель горения. Задача теории заключается в количественном определении этих условий и в расчете характеристик горения скорости распространения, ширины зоны реакции, пределов воспламенения и т. д. В практически интересных случаях (камеры сгорания, топки и т. д.) в пламени одновременно могут наблюдаться признаки различных моделей. В теории турбулентного горения большую роль играют молекулярно-турбулентная диффузия и смешение. [c.138]

    Совместное решение уравнений молекулярно-турбулентной диффузии и учет процессов вырождения температурных и концентрационных полей при наличии реакции, видимо, дадут возможность создать строгую статистическую теорию, на основании которой можно будет рассчитать и , Ь- и другие характеристики для заданной горючей смеси и при заданных условиях ее течения. [c.138]

    Современный уровень развития молекулярной теории жидкого состояния не позволяет дать определения коэффициентов диффузии с такой степенью достоверности, которая возможна для разбавленных газовых систем. [c.513]

    Физико-химические закономерности адгезии полимеров, изложенные в первой части монографии, и экспериментальный материал, приведенный во второй части, позволяют выработать единый подход к проблеме адгезии полимеров, теоретической основой которого является молекулярная теория адгезии [1—4]. Таким образом, учитываются физико-химические особенности полимерных адгезивов, закономерности взаимодействий полимер — субстрат и факторы, обусловливающие прочность адгезионного соединения. По существу, это единственно возможная позиция, позволяющая анализировать проблемы адгезии всесторонне, в то-время как другие теории адгезии рассматривают частные [вопросы диффузию при формировании адгезионного соединения, реологические эффекты, закономерности деформации и разрушения адгезионных соединений. Эти вопросы, как мы видели, рассматриваются и молекулярной теорией адгезии, но именно как частные-вопросы при анализе той или иной стороны проблемы. [c.363]

    Молекулярная теория жидкостей разработана относительно слабо и поэтому невозможно оценивать коэффициент диффузии в жидкостях с такой же точностью, как для газов. [c.31]

    Теория диффузии в жидкостях. При наличии точного объяснения механизма молекулярной диффузии можно было бы рассчитывать коэффициенты диффузии, исходя из других свойств растворов такой расчет необходим при отсутствии опытных данных о величинах коэффициентов диффузии. Кинетическая теория оказалась чрезвычайно полезной для расчета коэффициентов диффузии и других характеристик переноса в газах. Однако теория диффузии в жидкостях до сих пор разработана недостаточно, что затрудняет точный расчет коэффициентов этого процесса. [c.172]

    В связи с ограниченным объемом книги в пей рассматриваются только те результаты теории, которые относятся к состоянию термодинамического равновесия. Свойства растворов, связанные с нарущением термодинамического равновесия (вязкость, теплопроводность, диффузия), а также ультраакустические, оптические, электрические, магнитные и ряд других свойств растворов здесь не рассматриваются. Так как теория растворов электролитов была освещена в отечественной учебной литературе и в монографиях значительно более полно, чем другие разделы современной молекулярной теории растворов, то в главе X дано сравнительно краткое изложение принципиальных основ теории растворов электролитов, причем главное внимание обращено на некоторые новые результаты в этой области. [c.9]

    Если молекулярная масса т растворенного вещества намного-больше молекулярной массы растворителя, то д, переходит в т. Такой же результат был получен на основе теории диффузии Эйнштейна  [c.119]

    Довольно часто скорость электрохимического процесса определяется переносом реагирующих компонентов к поверхности электрода за счет диффузии или конвекции. В других процессах решающую роль играет омическое падение потенциала в растворе. В данной части книги излагается феноменология процессов переноса в растворах электролитов — миграции и диффузии. Хорошо известно, что прохождение электрического тока связано с движением заряженных компонентов. Однако при этом мы не ставим перед собой задачу выразить количественно электропроводность через молекулярные свойства компонентов. Такой подход обусловлен тем, что для приложений совсем не требуется предсказывать свойства переноса с помощью молекулярной теории— вполне достаточно знать измеренные значения соответствующих величин. [c.243]


    Согласно теории Гильдебрандта и др., разработанной на основе тщательного анализа имеющихся данных ио простым не ассоциированным) жидкостям, все молекулы принимают одинаковое участие в тепловом движении, что приводит к максимально беспорядочной ориентации. Предполагается, что все различия между кристаллическим и жидким состояниями исчезают уже при плавлении. Если в кристалле имеются вакансии, то занимаемый ими объем равномерно распределяется по жидкости, слегка увеличивая меж,молекулярные расстояния. Следовательно, теория диффузии в твердых телах, предполагающая наличие пустот, сравнимых с размерами молекул, не имеет физического смысла в применении к жидкостям. В неполярных жидкостях не существует на-направленных сил, действующих на молекулы (например, электрическое или гравитационное поле). Среднее перемещение молекул за определенное время зависит от отношения межмолекулярного объема V к такому объему Уо, при котором молекулы расположены настолько близко, что невозможны ни движение жидкости как целого, ни ее диффузия. Авторы работы [16] считают, что на основании многих данных текучесть ф в широком интервале параметров можно выразить следующей формулой  [c.101]

    Гидродинамическая теория диффузии раскрывает некоторые соотношения процесса диффузии, но не может дать более глубокого толкования его молекулярного механизма, так как считает жидкость континуумом и не учитывает ее молекулярную структуру. Кинетические статистические теории стремятся объяснить молекулярный механизм диффузии. Наиболее значительная из них — теория, предложенная Эйрингом и соавторами. Ее современная модификация дает более глубокое объяснение элементарных процессов диффузии, несмотря на то что выводы из этой теории нельзя считать абсолютно удовлетворительными [29]. [c.191]

    Молекулярно-кинетическая теория диффузии [c.403]

    В настоящее время не установлено какой-либо простой взаимосвязи между исходной плотностью полимера (связанной с содержанием кристаллитов и морфологией) и величинами Р и В для паров, в которых полимер набухает. Плотность полимера и его морфология в отсутствие паров обусловлены его структурными особенностями, например разветвленностью цепей, и происхождением образца, например температурой и давлением в процессе кристаллизации. Присутствие растворителя безусловно нарушает исходную локальную конформацию макромолекул полимера, так что эффективная плотность и локальные молекулярные конс юрмации изменяются со временем и по толщине образца нелинейно. Кроме того при прохождении конкурирующих процессов сорбции и диффузии могут происходить изменения структуры. Такие системы часто проявляют аномальное поведение, не поддающееся учету в рамках простых теорий диффузии. [c.252]

    Так как ни одна из приведенных выше теорий не является удовлетворительной, автором была развита применительно к экстракции жидкости и абсорбции газов новая гипотеза, известная как теория диффузии на свободной поверхности . Эта теория исходит из того, что в системе твердое тело—жидкость растворенное вещество диффундирует через ламинарный слой, примыкающий к поверхности твердого тела, пока не достигнет промежуточного слоя, в котором становится заметной турбулентная диффузия. С другой стороны, как допускает Кишиневский в пограничных слоях систем жидкость—жидкость (газ) массопередача обязательно происходит через свободную поверхность жидкости, причем турбулентность передается через поверхность раздела от одной фазы к другой. Вследствие этого пограничный слой на поверхности раздела не образуется, если только эта поверхность не очень близка к стенке аппарата, как в колоннах с орошаемыми стенками. Предполагается, что скорость массопередачи через свободную поверхность жидкости определяется одновременно молекулярной и турбулентной диффузией, т. е. соответственно коэффициентами О п в уравнении (14), и для колонны с орошаемыми стенками эти коэффициенты являются, вероятно, величинами одного порядка. [c.84]

    Подоб гоо распространение результатов кинетической теории диффузии в газах на жидкузо фазу пе вполне надежно, однако мы еще пе располагаем другим, более эффективным сродством для ренгеыия вопроса о механизме молекулярной диффузии в жидкостях. [c.66]

    Для оценки скорости диффузии обычно пользуются коэффициентом молекулярной диффузии. В связи с тем, что молекулярная теория жидкостей разработана относительно слабо, то невозможно оценивать коэффициент диффузии в жидкостях с такой же точностью, как, например, для газов. Учитывая то, что остатки являются многокомпонентными смесями высокомолекулярных соединений, диффузионные явления в которых осложнены стерическими факторами и межмолекулярными взаимодействиями, обычно прибегают к различного рода упрощениям, в частности условно относят рассматриваемую смесь к двухкомпонентной. Например, дисперсную фазу относят к компоненту 1, а дисперсионную среду, в которой диффундирует дисперсная фаза, к компоненту 2. Для количественной оценки значений коэффициентов молекулярной диффузии в растворах могут быть использованы эмпирические корреляции, которые достаточно подробно рассмотрены Саттерфилдом [27]. Так, для оценки коэффициента диффузии В молекул соединений с относительно малыми размерами широко используется соотношение Вильке и Чанга  [c.29]

    Напомним ход выводй соотношений молекулярной диффузии (по элементарной кинетической теории). Диффузия и другие явления переноса в газах (вязкость, теплопроводность) связаны с тепловым движением молекул. В установившемся равновесном состоянии распределение скоростей молекул газа отвечает распределению Максвелла (газы в дальнейшем будем рассматривать как идеальные). Средняя тепловая скорость молекул при максвелловском распределении [c.63]

    В отличие от молекулярной вихревая диффузия зависит от скорости потока газа-носителя. Согласно сопряженной теории Гиддинг-са, при любой скорости потока влияние вихревой диффузии на размывание хроматографической полосы определяется величиной блуждания молекулы Л и скоростью потока газа и  [c.96]

    Ди Бенедетто и Пауль предложили термодинамическую и молекулярную теорию газовой диффузии в аморфных полимерах [50]. Аморфный полимер рассматривают как гипотетическое тело, состоящее из независимых N кинетических единиц (центровых сегментов), а сорбированную молекулу газа в полимере — как трехмерный гармонический осциллятор, находящийся в потенциальной яме внутри пучка параллельно расположенных сегментов макромолекул. Диффузионному перемещению газовой молекулы предшествует отделение четырех соседних сегментов на достаточное расстояние и образование цилиндрической дырки . Одна степень свободы колебательного движения заменяется на степень свободы поступательного движения и молекула перемещается по образовавшейся полости. [c.32]

    Однако для самых быстрых реакций эта интерпретация уравнения Аррениуса непригодна. Известно совсем небольшое число реакций с константами скоростей порядка л-молъ -сек или даже 10 , если в них участвуют ионы водорода. Скорость такой реакции приближается к скорости молекулярных столкновений, определяемой скоростями, с которыми движутся в растворе молекулы реагирующих веществ, и вычисляемой при помощи теории диффузии (см. далее). Очевидно, такая реакция происходит практически при каждом столкновении и не имеет какого-либо заметного энергетического барьера, если только молекулы пришли в соприкосновение. Процесс диффузии, однако, требует небольшой энергии активации, и действительно найдено, что скорость немного растет с температурой, давая значение для Ер, в несколько килокалорий на 1 моль. Кроме того, скорость чувствительна к вязкости растворителя, как и следовало бы ожидать, если она лимитируется диффузией. Реакции, лимитируемые диффузией, более детально будут рассмотрены в дальнейшем (гл. 12, стр. 279), но так как в этой книге довольно часто будут встречаться константы скоростей реакций, лимитируемых диффузией, здесь будет дано предварительное объяснение. [c.20]

    Другие физические методы. Молекулярные веса белков в растворе могут быть точно установлены методом, основанным на теории диффузии света Релея (Путцеис, 1935 г. Дебай, 1944 г.). При помощи рентгеновских спектров кристаллических корпускулярных белков можно определить вес элементарной ячейки кристалла. Эта ячейка состоит из целого и небольшого числа молекул белка, поэтому этот метод служит для проверки результатов, полученных при помощи других методов. Наконец, в случае белков с очень большими молекулами полезно также использовать электронный микроскоп. [c.429]

    В этом уравнении В — молекулярный коэффициент диффузии в газовой фазе, иг — скорость движения газовой фазы. Для скоросте движения газовой фазы, реально встречаюхцпхся в практике, вторым членом уравнения справа можно пренебречь. Изложенная выше теория была обстоятельно подтверждена экспериментальными данными, полученными Розе [11]. [c.29]

    Арнольд [50], используя классическую кинетическую теорию диффузии г азов, применил ее к определению коэффициента молекулярной диффузии газов в жидкостях. Рассматривая (в системе газ— газ) взаимодействие молекул диффундирзтощего вещества и растворителя в ограниченном пространстве, Арнольд сделал три основных допущения  [c.788]

    В отличие от гидродинамической теории диффузии, кинетическая теория стремится объяснить молекулярный механизм этого процесса, а представление о коэффициенте молекулярной диффузии складывается на основе относительно простой модели жидкого состояния, исходя из теории абсолютных скоростей реакций [9]. Согласно этой теории предполагается, что механизм активации в процессе диффузии аналогичен механизму активадаи в процессе внутреннего трения, при этом устанавливается связь между энергией активации молекул и внутренней энергией испарения. [c.791]

    Другие молекулярные теории. Бланкенхаген [38ж] вычислил коэффициент диффузии на основе измерений рассеяния нейтронов в растворах обычной и тяжелой воды в интервале температур от —5 до 95 °С. При этом было учтено частотное распределение межмолекулярных колебаний. Результаты экспериментального измерения квазиупругого рассеяния нейтронов указывают, что вблизи точки плавления молекулы становятся активными сами по себе и диффузию можно описать моделью перескоков. Однако вблизи точки кипения именно глобулярная диффузия дает действительное объяснение явления. В соответствии с этим молекулярные группы (глобулы), имеющие сравнительно большое время жизни, мигрируют в среде, состоящей из отдельно движущихся ( мономерных ) молекул. Однако исследование молеку- [c.205]

    Теории диффузии обычно предполагают, что в процессе миграции диффузионных единиц должен преодолеваться некоторый барьер, что требует энергии активации. Согласно этой концепции экспериментально получена зависимость между О и 1/Т, которая в некоторых случаях близка к линейной и которая была интерпретирована по аналогии с уравнением Аррениуса для химических реакций. Из наклона зависимости была вычислена энергия активации. Однако Хильде-брандтом с сотр. [56в] было отмечено, что в простых жидкостях, состоящих из сферических молекул, и в газах, плотность которых выше критической, явление диффузии можно объяснить без предположения о энергетическом барьере, создаваемом квазикристаллической структурой. Согласно теории Хильдебрандта, в таких жидкостях все молекулы участвуют в тепловом движении. Это приводит к максимальному беспорядку. Среднее смещение молекул в таких жидкостях частично зависит от температуры, частично от отношения межмолекулярного объема V к объему сжатой жидкости Уо, в которой молекулы упакованы плотно и диффузия становится невозможной. Даймонд [56г] на основе молекулярно-динамических представлений показал, что отношение можно точно вычислить из коэффициентов самодиффузии систем, состоящих из жестких сфер. [c.219]

    Основой современных представлений о молекулярном механизме диффузионных процессов являются фундаментальные работы Френкеля [159], Бэррера [160] и др. Большой вклад в теорию диффузии в полимерных системах внесен работами Васенина и Чалых [161 —166]. [c.94]

    Формулу Эйнштейна (98) проверил Бриллуен лаборатории Перрена на крупных зернах гуммигута в 5200А, причем диффузия последних шла из глицериновых эмульсий в воду. Для N0 было получено 7,0 10 . Вся совокупность работ Перрена блестяще доказала применимость к коллоидальным частицам законов кинетической теории и теории растворов Вант-Г оффа и, что особенно важно, дала первые методы непосредственного наблюдения поведения отдельных молекул и непосредственное доказательство существования последних. Абстрактная теория, созданная в начале XIX в., когда еще не было никаких сколько-нибудь убедительных доводов в пользу молекулярной теории материи, когда еще не существовало даже понятия о химических элементах в современном смысле, — эта теория сейчас подтверждается до мельчайших подробностей. [c.394]

    Развитая Гирером и Виртцем [5] молекулярная теория микротрения также позволяет модифицировать уравнение Стокса-Эйнштейна на случай диффузии сферических частиц молекулярного размера путем введения коэффициента микротрения ф [c.310]

    Для построения точной молекулярной теории релаксационных свойств цепной макромолекулы необходимо составлять и уметь находить решение обобщенного диффузионного уравнения в конфигурационном (или, точнее, в конформационном) пространстве обобщенных внутренних координат полимерной цепи. В трудах Кирквуда, Фуосса, Хаммерле [12, 33, 34] разработаны методы, сводящие решение обобщенного диффузионного уравнения к нахождению собственных значений и собственных функций некоторых операторов, зависящих от обобщенного тензора диффузии, потенциала внутримолекулярного взаимодействия и тензора гидродинамического взаимодействия. Однако точные методы не удается применить даже к свободно-сочлененным цепям при отсутствии гидродинамического взаимодействия. [c.265]

    Из соотношения (5.8) следует, что коэффициент разделения при термодиффузии без конвекции нетрудно оценить, если известна постоянная термо диффузии ат (термо диффузионный фактор), зависящая от природы компонентов смеси. С некоторым приближением величина ат может быть найдена расчетным путем исходя из положений молекулярной теории смеси газов с налон ен-ным на эту смесь температурным градиентом. Для проведения со- [c.288]

    Дальнейшее развитие теория проницания Хигби получила в работе Данквертса, который ставит под сомнение существование ламинарной пленки на границе раздела фаз. По его мнению, турбулентные вихри достигают границы раздела фаз и элементы жидкости находятся в контакте с газовой фазой в течение какого-то времени, по истечении которого заменяются новыми. При этом предполагается чисто молекулярный механизм диффузии и вводится понятие вероятности смены каждого элемента жидкости новьш элементом или спектра времен пребывания жидких элементов на поверхности раздела. Турбулентные вихри жидкости и газа непрерывно подходят к границе раздела фаз, имея при этом концентрации диффундирующего компонента, равные концентрациям его в ядре жидкого потока и пузырька газа. На границе раздела фаз мгновенно устанавливается равновесие, и дальнейшее насыщение свежего элемента жидкости происходит за счет молекулярной диффузии до тех пор, пока новый турбулентный вихрь не передаст этот частично насыщенный элемент в ядро потока. Величина элемента жидкости принимается достаточно большой, так что фронт диффузии не успевает дойти до границы элемента за время контакта. Вероятность смены данного элемента жидкости новым не зависит от возраста элемента, а средняя скорость обновления поверхности жидкости, контактирующей с газовой фазой, зависит от гидродинамических условий и является величиной, постоянной при установившемся режиме. Для характеристики этой скорости вводится понятие фа ктора обновления поверхности 5, равного доле поверхности, которая обновляется в единицу времени. Коэффициент массопередачи определяется как [c.71]


Смотреть страницы где упоминается термин Молекулярные теории диффузи: [c.208]    [c.82]    [c.7]    [c.201]    [c.206]    [c.252]    [c.8]    [c.69]    [c.3]   
Явления переноса в водных растворах (1976) -- [ c.205 ]




ПОИСК





Смотрите так же термины и статьи:

Диффузия молекулярная

Диффузия теория



© 2025 chem21.info Реклама на сайте