Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулярная масса и катализатор

    М — молекулярная масса катализатора, г. [c.207]

    Повышение температуры ускоряет процесс и приводит к уменьшению молекулярной массы. Катализаторами являются кислород-воздуха и органические перекиси (стр. 167), механизм реакции радикальный. [c.70]

    По мере увеличения молекулярной массы используемого для осер-нения агента активность катализатора уменьшается. Отрицательное влияние оказывает присутствие во время сульфидирования углеводородов, даже относительно низкомолекулярных. Например, в работе [c.99]


    На бифункциональных платиновых катализаторах, в отличие от хлорида алюминия, имеет место увеличение скорости изомеризации с увеличением молекулярной массы исходного парафинового углеводорода [11]. [c.28]

    Несмотря на различный механизм превращения парафиновых углеводородов на всех рассмотренных катализаторах, для них наблюдается общность кинетических закономерностей и торможение реакции изомеризации парафиновых углеводородов избытком водорода. Для всех катализаторов зависимость скорости реакции от парциального давления водорода носит экстремальный характер после достижения определенной концентрации водорода на поверхности катализатора. Величина и положение максимума зависят от типа катализатора, температуры и молекулярной массы парафинового углеводорода. [c.35]

    Для остаточных фракций (350"С — к.к ), полученных на различных катализаторах, содержащих оксиды металлов, были определены молекулярная масса, групповой химический и элементный составы (табл. 2,1), а также рассчитаны структурные параметры средней молекулы (табл. 2.2). Для сопоставления приведены аналогичные характеристики исходного мазута и остаточной фракции каталитического крекинга. [c.45]

    Ферментация—химическое превращение под каталитическим влиянием энзимов, которые представляют собой азотистые органические вещества, вырабатываемые живыми организмами (бактерии, плесневые грибки и дрожжи). Энзимы имеют коллоидную структуру и их молекулярная масса достигает 300 ООО. Каталитическое действие энзимов очень специфично, сильно зависит от pH и температуры и чувствительно к промотирующему или тормозящему действию многих веществ. Оптимальная температура для большинства энзимов лежит между 18 и 38 С. Энзимы называют по -их функции с прибавлением окончания аза . Катализатор гидролиза имеет название гидролаза, окислительно-восстановительные энзимы называют оксидазами. [c.329]

    Специфические сшитые структуры образуются в условиях, когда критическая плотность разветвлений достигается в объеме, по тем или иным причинам ограниченном коллоидными размерами. Например, при эмульсионной полимеризации образуются структуры, сшитые в пределах одной латексной частицы — микрогель. Такие образования могут иметь молекулярные массы порядка 10 —10 и значительную плотность сшивки (р 10 ). Микрогель особого строения образуется в некоторых случаях при полимеризации в растворах под действием гетерогенных катализаторов. Образование такого микрогеля связано, по-видимому, с сорбцией растущих или мертвых полимерных цепей на поверхности частиц катализатора с последующим химическим связыванием цепей вследствие катионной активности каталитической системы [18, 19]. [c.26]


    При литиевой полимеризации (в стерильных условиях и при умеренных температурах) почти отсутствуют реакции передачи и ограничения полимерных цепей, и рост макромолекул протекает по механизму живых цепей. Средняя молекулярная масса полимеров увеличивается с увеличением глубины превращения мономера и уменьшается с увеличением концентрации катализатора. Литиевые полиизопрен и полибутадиен характеризуются линейным строением макромолекул и узким ММР [5]. В табл. 1 [c.56]

    Циклы с числом звеньев меньше пяти сильно напряжены вследствие высокого углового напряжения, а именно, больших искажений их валентных углов по сравнению с тетраэдрическим, поэтому циклизация трех- и четырехчленных колец маловероятна. Наименьшую напряженность имеют шестичленные циклы. Возможно также образование пяти- и семичленных циклов. Наличие циклов с большим, числом звеньев (более 12) ранее считалось практически маловероятным, ввиду того, что их напряженность примерно равна напряженности линейных полимеров [9, с. 75]. Однако в последнее время было показано, что в зависимости от условий проведения равновесной поликонденсации диэтиленгликоля и адипиновой кислоты в отсутствие катализатора наблюдается образование макроциклов, характеризующихся распределением по молекулярным массам, величина которых изменяется от 200 до 1000 [18]. [c.161]

    Для образцов СКИ, полученного с титановым катализатором, отсутствует корреляция между показателями пластичности и вязкости по Муни н средневязкостной молекулярной массой для золь-фракции указанные зависимости имеют обычный вид вязкость по Муни возрастает, а пластичность уменьшается при увеличении значения характеристической вязкости. Наличие в каучуке плотного геля ухудшает его технологические свойства [24]. [c.208]

    Молекулярная масса полиизопрена практически не зависит от конверсии, возрастает с понижением температуры полимеризации и при повышении концентрации мономера, мало изменяется с изменением концентрации катализатора (рис. 7) [42] В определенных условиях [63] в полимеризационной системе практически сразу устанавливается стационарное ММР, характеризующееся симметрией, малой относительной дисперсией и максимумом в высокомолекулярной области. [c.212]

    Зависимость средней молекулярной массы полиизопрена от температуры полимеризации (а), концентрации мономера [М] (б) и концентрации катализатора Яо (в)  [c.212]

    На кинетику полимеризации изопрена, микроструктуру и физико-механические свойства полимера вредное влияние оказывают примеси соединений различных классов. Наиболее сильным каталитическим ядом является циклопентадиен при его содержании в реакционной смеси 0,014-10 моль/л наблюдается значительный индукционный период и замедление всего процесса полимеризации, а при содержании 1,5-10 моль/л катализатор разрушается полностью [47]. При низких концентрациях циклопентадиена не происходит снижения молекулярной массы полимера, при высоких концентрациях молекулярная масса может снижаться в 3—4 раза. [c.213]

    Представляет интерес тот факт, что одна и та же примесь, введенная в полимеризационную систему не с катализатором, а с мономером, может оказать совершенно иное действие на ход полимеризации изопрена. Так, показано [51], что введение сероуглерода непосредственно в шихту позволяет значительно расширить диапазон отношений Al/Ti, при которых получается активный катализатор. Наряду с этим повышается стереоспецифическое действие катализатора, так как подавляются процессы, приводящие к образованию олигомерных продуктов. В то же время незначительные количества сероуглерода в катализаторе уменьшают активность и приводят к снижению молекулярной массы полимеров [48]. [c.214]

    Полимеризацию в присутствии литиевых катализаторов проводят в изопентане или циклогексане при концентрации мономера 15—20% и температуре 50—60°С. Продолжительность полимеризации до конверсии более 90% составляет 3—5 ч. Концентрация катализатора и температура полимеризации оказывают влияние на скорость реакции, микроструктуру и молекулярную массу полн-изопрена, поэтому очень важны.м моментом является выбор оптимальных условий проведения процесса [44]. [c.220]

    Практическое решение задачи повышения когезионной прочности применением стереорегулярного полиизопрена с высокой молекулярной массой и узким ММР весьма проблематично, несмотря на то, что синтез такого полимера вследствие успехов в области полимеризации под влиянием комплексных катализаторов принципиально возможен. Переработка высокомолекулярного полимера чрезвычайно затруднительна и связана с сильной деструкцией полиизопрена, что приводит к резкому снижению молекулярной массы, расширению ММР и, следовательно, к понижению когезионной прочности. [c.227]

    При наличии в системе ГХЦ катализатор оставался активным длительное время. Активирующий эффект ГХЦ проявляется как при введении его в начале процесса, так и при добавлении к практически неактивному катализатору, который после введения ГХЦ вновь становится активным. Между алюминийорганическим соединением и активатором необходимо сохранять такое соотношение, чтобы скорость восстановления до преобладала над скоростью окисления в Реактивированный катализатор полностью теряет свою активность, если весь ванадий переходит в трехвалентное состояние, но после введения новой порции алюминийорганического соединения вновь становится активным в процессе сополимеризации. В присутствии активаторов образуются сополимеры с меньшей молекулярной массой, что, вероятно, связано с увеличением концентрации активных центров. [c.301]


    Влияние примесей. Каталитические системы Циглера — Натта весьма чувствительны к ряду примесей, содержащихся в мономерах и растворителе. Наличие их приводит к уменьшению эффективности катализатора и к снижению молекулярной массы сополимера. Влияние некоторых из них показано в табл. 1 [30]. Значительное количество воды, аллена и метилацетилена в мономерах и воды в растворителе не только снижают эффективность катализатора, но и способствуют образованию низкомолекулярных сополимеров, растворимых в ацетоне [31, 32]. Образование низкомолекулярных сополимеров в присутствии воды, по-видимому, связано с одновременным протеканием двух процессов по координационному механизму —с образованием высокомолекулярных сополимеров и катионному — с образованием низкомолекулярных продуктов. Так как в мономерах и растворителе содержится ряд [c.302]

    Изучение строения макромолекул методом ИК-спект-роскопии показывает, что количество ненасыщенных концевых связей 2С=С/1000С определяется как природой АОС, так и его мольной долей в каталитическом комплексе (рис. 1.4) [19], причем тип концевых двойных связей (винильных или винилиденовых) зависит от природы АЦ [20]. Влияние мольного отношения АОС ТЮЦ на содержание ненасыщенных концевых связей в полимере и его молекулярную массу [катализатор А1(С2Н5)2С1—ТЮЦ] показано ниже  [c.22]

    Схема полимеризации при получении СКТВ приведена на рис. 88. В смеситель шихты 1 в заданном соотношении загружаются деполимеризат, регулятор молекулярной массы, катализатор и винильная шихта. Смешение осуществляется при подогреве глухим паром, подаваемым в рубашку аппарата 1, и циркуляции шихты с помощью насоса 2. Готовая шихта насосом 3 через промежуточную емкость 4 подается в подогреватель 5, откуда подогретая до 140 °С стекает в шнековый полимеризатор 5, обогреваемый через рубашки паром. Циклосилоксаны, испаряющиеся при полимеризации, пройдя через осушитель [c.103]

    Схема полимеризации при получении СКТВ приведена на рис. 96. В смеситель шихты 1 в заданном соотношении загружаются деполимеризат, регулятор молекулярной массы, катализатор и винильная шихта. Смешение осуществляется при подогреве глухим паром, подаваемым в рубашку аппарата 1, и циркуляции шихты с помощью насоса 2. Готовая шихта насосом 3 через промежуточную емкость 4 подается в подогреватель 5, откуда подогретая до 140 °С стекает в шнековый полимеризатор 6, обогреваемый через рубашки паром. Циклосилоксаны, испаряющиеся при полимеризации, пройдя через осушитель 11, собираются в охлаждаемый водой сборник 12, откуда выводятся на приготовление шихты. Образующийся в полимеризаторе 6 каучук шнеком выводится в валковый дегазатор 7, обогреваемый через рубашку горячей водой и работающий под вакуумом. Высушенный и освобожденный от летучих примесей каучук в поддоне 8 направляется на дозревание, которое происходит при 30— 25 °С в течение 1—1,5 сут, отмывку от катализатора на рифленых вальцах, переработку и упаковку. [c.209]

    Обратимыми ядами для алюмосиликатных катализаторов являются азотистые основания они прочно адсорбируются на кислотны х активных центрах и блокируют их. При одинаковых основных свойствах большее дезактивирующее воздействие на катали — затор оказывают азотистые соединения большей молекулярной массы. После выжига кокса активность отравленного азотистыми основаниями катализатора полностью восстанавливается. Цеолит — содер ясащие катализаторы, благодаря молекулярно — ситовым свой— ствам, отравляются азотом в значительно меньшей степени, чем аморфные алюмосиликатные. [c.105]

    Внутри поры ядро ССЕ, имеющее наибольшую молекулярную массу, осаждается на активной поверхности, на которой протекают реакции каталитического разложения надмолекулярных структур отдельных частиц асфальтенов. Каталитическое разложение асфальтенов ведет к зарождению отдельных составляющих частиц или осколков, имеющих меньшую молекулярную массу. Осколки, десорбируясь с поверхности, диффундируют в дисперсионной среде и адсорбируются на других активных центрах катализатора, на которых претерпевают химические превращения. В частности, на центрах де металлизации из металлсодержащих комплексов удаляются металлы вслед за гидрированием слабых химических связей. Деметаллизованные осколки в дальнейшем не участвуют в формировании новых надмолекулярных структур, хотя вероятность этого не исключена. Некоторые осколки асфальтенов адсорбируются на центрах гидрообессеривания, где происходят реакции гидрогенолиза серы до сероводорода и гидрирование слабых химических связей. Обессеренные осколки асфальтенов могут ассоциировать друг с другом, зарождая новые ассоциаты с низкой молекулярной массой (обессеренные асфальтены). Параллельно могут протекать реакции деазотирования с вьщелением аммиака, реакции термодеструкции и гидрокрекинга алканов и деалкилирования аренов, реакции гидрирования ненасьпценных осколков молекул и аренов. [c.69]

    Изучение поведения циклопентанов над такими благородными металлами УП1 группы, как Rh, Ir, Os и Ru, проведенное авторами книги, показало [195, 227—230], что эти катализаторы вызывают гидрогенолиз пентаме-тиленового цикла. При этом наряду с соответствующими алканами образуется некоторое количество алканов с меньшей молекулярной массой. Так, при изучении превращений цис- и гране-1,2-диметилциклопентанов над 1г/С, Os/ и Rh/ показано [227], что в интервале 150— 280 °С наиболее активным для гидрогенолиза оказался [c.161]

    Анализируя данные по Сз-дегидроциклизации углеводородов на Pt/ , можно констатировать отсутствие каких-либо признаков того, что реакция протекает по схемам ионного или радикального механизмов. Действительно, ионы, например карбениевые ионы, образуются в реакциях с участием кислотно-основных катализаторов, к которым в первую очередь относятся катализаторы реакции Фриделя — Крафтса, цеолиты, оксид алюминия и пр. По-видимому, ни платина, ни ее носитель — березовый активированный уголь — не являются подобными катализаторами кислотного типа, хотя следует учитывать, что природа древесного угля изучена еще недостаточно подробно. Необходимо подчеркнуть, что ка-талиэаты, получаемые в результате Сз-дегидроциклизации на Pt/ , в основном состоят из исходного углеводорода (алкан или алкилбензол) и соответствующего ему циклана. Продукты с более низкой и более высокой молекулярной массой, образование которых, как правило, наблюдается в реакциях, протекающих как по ионному, так и по радикальному механизмам, практически отсутствуют. Следует добавить, что сравнительно мягкие условия реакции Сз-дегидроциклизации (270— 300 °С, атмосферное давление) исключают, по-видимому, возможность возбуждения молекулы исходного углеводорода до состояния свободного радикала или разрыва ее на осколки — радикалы. Таким образом, протекание в присутствии Pt/ Сз-дегидроциклизации по радикальной или по ионной схеме маловероятно. [c.207]

    При протекании реакции диспропорционирования парафиновых углеводородов на морденитсодержащих цеолитных катализаторах в продуктах реакции не обнаруживаются углеводороды с молекулярной массой выше исходного, так как имеет место реакция их гидрокрекинга [c.30]

    Увеличение скорости реакций гидрокрекинга углеводородов приводит к росту газообразования, снижению выхода жидкого риформата и содержания водорода в циркулирющем водородсодержащем газе, уменьшению общей молекулярной массы жидкого продукта, росту коксообразования на поверхности катализатора. Обогащение катализата углеводородами меньшей молекулярной массы также приводит к улучшению его октановой характеристики [c.6]

    Было показано, что при полимеризации бутадиена с использованием гомогенной каталитической системы Т112С12 + А1 (изо-С4Нэ)з образуются линейные полимеры с преимущественным содержанием (- 90%) цис-1,4-звеньев. В условиях полимеризации при низких температурах (<15°С) этот процесс обладает многими чертами полимеризации по механизму живых цепей уменьшение средней молекулярной массы при увеличении концентрации катализатора, увеличение средней молекулярной массы с возрастанием глубины конверсии, узкое ММР и др. Для получения с помощью этой каталитической системы каучуков с приемлемыми технологическими свойствами применяют различные приемы, приводящие к расширению ММР и (или) образованию разветвленных макромолекул. В табл. 4 приведены молекулярные [c.59]

    Катализаторы на основе соединений кобальта и никеля образуют 1,4-полибутадиен, а комплексы титана и ванадия — транс-1,4-полибутадиен. Стереоселективность катализатора, молекулярная масса и непредельность полимеров, образующихся под влиянием систем, содержащих А1С1з, в большинстве случаев повышаются в присутствии электронодонорных соединений, способных в той или иной мере подавлять катионную активность кислоты Льюиса, входящей в состав катализатора. [c.100]

    Помимо rt-аллилникельгалогенидов в качестве катализаторов полимеризации 1,3-диеновых углеводородов могут быть использованы я-аллильные комплексы и других переходных металлов. Чистые я-аллильные комплексы родия образуют гране-1,4-полибутадиен, а комплексы ниобия, титана и хрома — полибутадиен с высоким содержанием 1,2-звеньев [32, 49, 50]. Бис(я-аллил)ко-бальтгалогениды и трис(я-аллил)урангалогениды дают цис-, 4-полибутадиены [49, 51]. Бис(я-аллил)никель в присутствии бис(я-аллилникельхлорида) превращает бутадиен в циклические олигомеры с молекулярной массой 500—600 [52]. [c.104]

    К описанным выще инициаторам полимеризации бутадиена на основе щелочных металлов генетически примыкают алфиновые катализаторы, открытые Мортоном в конце 1940-х гг. и представляющие собой комплекс аллилнатрия, изопропилата натрия и хлорида натрия [26]. Образующиеся при действии этих катализаторов полибутадиены содержат 70—75% транс-1,4-звеньев и обладают молекулярной массой до нескольких миллионов. Сравнительно недавно были разработаны условия регулирования молекулярной массы таких полимеров введением 1,4-дигидробензола или 1,4-дигидронафталина [28]. [c.180]

    В промышленном производстве используются, как правило, более простые и эффективные катализаторы на основе тетраиоди-да или смешанных иодидхлоридов титана и триизобутилалюминия. При использовании в качестве растворителя ароматических углеводородов эти системы обеспечивают высокую скорость полимеризации и почти количественный выход полибутадиена. Практическое использование таких катализаторов облегчается тем, что зависимость скорости процесса от мольного отношения алюминий титан имеет плато в области отношений 4—6 [38]. Молекулярная масса образующегося полимера определяется температурой процесса, [c.181]

    В промышленных масштабах производятся два типа синтетических г с-1,4-полиизопренов, полученных на литнйалкильных циглеровских (на основе четыреххлористого титана и алюминийалкилов) катализаторах. Эти полиизопрены различаются по степени стереорегулярности, молекулярным массам и молекулярномассовому распределению. [c.205]

    Диизобутилалюминийхлорид не оказывает влияний на микроструктуру и молекулярную массу полимера. При высокой концентрации изобутилалюминийдихлорида в катализаторе образуются полимеры с пониженной растворимостью. [c.217]

    В настоящее время имеется уже достаточно материала для обсуждения этих вопросов. Исследования, проведенные во ВНИИСК [14, с. 33—71 15], позволили оценить влияние молекулярной массы и молекулярно-массового распределения каучука СКИ-3 на когезионную прочность его сажевых смесей. Было показано, что когезионная прочность невулканизованных сажевых смесей типа брекерной изменяется от 0,05—0,06 до 0,3 МПа при изменении вязкости по Муни каучука СКИ-3 от 40 до ПО. Аналогичную закономерность повышения когезионной прочности (до 0,5 МПа) с увеличением молекулярной массы наблюдали и у каучука СКИЛ (полиизопрен, полученный с литиевым катализатором) [16]. В то же время смеси на основе глубоко деструктирован-ного вальцеванием НК [вязкость по Муни (Б-1-4-100) меньше 40] обладают достаточно высокой когезионной прочностью — около 1,0 МПа. [c.226]

    Молекулярная масса полимера легко регулируется количеством катализатора, введенного в реакционную среду. Молекулярномассовое распределение может регулироваться как путем изменения числа реакторов для проведения процесса (чем меньше число реакторов в непрерывном процессе, тем шире ММР), так и применением специальных веществ и приемов, способствующих расширению ММР. Одни из них, такие, как дивинилбензол, эфиры сернистой кислоты [41], ЗпСЦ [42], являются сшивающими агентами и при добавлении в раствор живого полимера удваивают молекулярную массу части цепей. Другие, например толуол, 1-бутин(эти-лацетилен), 1-бутен-З-ин (венилацетилен), в процессе полимеризации способствуют переносу цепи и тем самым расширяют ММР. [c.276]

    Состав сополимера при старении катализатора либо остается постоянным [6], либо изменяется [8] в зависимости от того, содержит ли катализатор центры, активность которых по отношению к этилену и пропилену не изменяется во времени, или несколько типов активных центров, различающихся между собой как по стабильности, так и по константам сополимеризации [10]. Активность катализатора, молекулярная масса образующегося сополимера, а в некоторых случаях и состав последнего зависят от соотношения между компонентами каталитической системы. Оптимальное отношение А1 У не одинаково для разных систем. При сополимеризации этилена и пропилена на системе V(С5Н702)з + (С2Н5)2А1С1 с изменением отношения А1 V от 4 до 30 [г ] сополимера уменьшилась от 2,9 до 0,77 дл/г, что объясняют передачей цепи через алкилалюминий [6]. При использовании других катализаторов столь резкого изменения [т]] не происходит [9]. [c.296]


Смотреть страницы где упоминается термин Молекулярная масса и катализатор: [c.138]    [c.330]    [c.232]    [c.117]    [c.226]    [c.59]    [c.12]    [c.27]    [c.55]    [c.213]    [c.214]    [c.301]   
Основы синтеза полимеров методом поликонденсации (1979) -- [ c.94 ]




ПОИСК





Смотрите так же термины и статьи:

Молекулярная масса

Молекулярный вес (молекулярная масса))

Регулирование молекулярной массы полимеров при полимеризации а-олефинов на гетерогенных катализаторах



© 2025 chem21.info Реклама на сайте