Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбционные слои кристаллы

    С повышением температуры равновесная толщина пленки Лр и время достижения этой толщины уменьшаются. Однако уменьшаются и отложения парафина в связи с уменьшением размеров кристаллов и их количества в адсорбционном слое. Кристаллы парафина диффундируют к границе раздела керосин — пленка электролита и образуют своеобразный адсорбционный слой, ЬО t. Хорошо наблюдаемый под микроскопом. С уменьшением температуры плотность этого слоя возрастает. Было замечено, что при значительном утончении пленки некоторая часть кристаллов парафина прорывается через границу раздела керосин — пленка электролита, диффундирует через нее к стенке капилляра и осаждается на ней. [c.136]


    При этом ингибиторы подавляют дальнейший рост зародышевых кристаллов гипса, кальцита или другой малорастворимой соли. Образовавшиеся адсорбционные слои препятствуют не только соединению кристаллов, ио и прилипанию к внутренней поверхности оборудования и труб. Это обеспечивает унос частиц потоком жидкости. [c.239]

    Кривые для суммарных смол, выделенных из остаточного рафината, имеют больший тангенс угла наклона, чем для суммарных смол из депарафинированного масла и петролатума. Следовательно, при наличии в растворе полярных молекул ПАВ (присадок и смол) следует учитывать увеличение адсорбционной активности вследствие дополнительных электростатических сил взаимодействия ПАВ между собой и с поверхностью кристалла (адсорбента). При охлаждении такой системы с момента образования зародышей твердой фазы начинается процесс адсорбции смол и присадки на поверхности кристаллов. Наиболее вероятен в данном случае усложненный механизм построения адсорбционного слоя поверхностно-активных веществ на неоднородной поверхности твердой фазы. Насыщенный адсорбционный слой ПАВ для неоднородной в энергетическом отношении поверхности кристаллов, какой следует считать большинство реально существующих поверхностей твердых сорбентов в природе, может быть различной толщины на разных участках поверхности. При добавлении малых количеств присадки происходит адсорбция их молекул на наиболее активных участках гидрофобной поверхности кристаллов твердых углеводородов, при этом дифильные молекулы ПАВ ориентируются полярной частью в раствор, а углеводородным радикалом — на поверхности частиц твердых углеводородов. Это приводит к совместной кристаллизации молекул присадки и твердых углеводородов, которая способствует образованию крупных агрегированных структур, что, в свою очередь, увеличивает скорость фильтрования суспензии остаточного рафината. С увеличением содержания ПАВ в растворе одновременно с адсорбцией молекул на менее активных участках поверхности кристаллов происходит образование второго слоя молекул с обратной их ориентацией, т. е. полярной частью на поверхность твердой фазы. При этом присадка и смолы адсорбируются по всей поверхности кристаллов, не внося существенных изменений в их форму, но препятствуя росту кристаллов, а это снижает скорость фильтрования суспензии. [c.173]

    Определим кинетические коэффициенты 3 %.. На поверхности кристалла имеются адсорбированные частицы. Из-за обмена частиц между ступенью и адсорбционным слоем на поверхности частицы присоединяются к кристаллу в изломах и около ступени устанавливается значение химического потенциала адсорбированных частиц, близкое к цгл [70—71]. Адсорбционные частицы совершают тепловые колебания в трех направлениях перпендикулярном к поверхности кристалла и двух параллельных ей. Флюктуации первого колебания ведут к отрыву частицы от поверхности кристалла и в дальнейшем к переходу в несущую фазу, колебания второго типа обеспечивают диффузионную миграцию частиц вдоль поверхности кристалла к ступеням [70, 71]. Пусть перемещение элементарной ступени происходит вследствие плоской диффузии в одном направлении. Тогда поток вещества к излому на ступени мож- [c.79]


    Предположение, что смолы адсорбируются поверхностью кристаллов парафинов, в результате чего происходит стабилизация дисперсной фазы адсорбционными слоями, не может считаться приемлемым. Хотя адсорбционная теория действия поверхностноактивных веществ может объяснять основные явления, наблюдающиеся в парафинистых нефтепродуктах, тем не менее предполагать, что адсорбция смол происходит на гранях кристаллов парафина, не приходится это может быть только на ребрах кристаллов, где поле молекулярного притяжения имеет максимальную интенсивность. Все это в достаточной мере подтверждается описанными выше опытами кристаллизации парафинов из раствора масла в пропане в присутствии асфальтенов несмотря на то, что масла содержали, помимо асфальтенов, также и смолы, последние при охлаждении раствора не препятствовали росту кристаллов и собиранию их в друзы. Однако, изложенные выше на- [c.101]

    Окклюзия. При быстром росте частиц, покрытых адсорбционным слоем, как это происходит при образовании зародышей осадка с высоким поверхностным натяжением или при большой скорости осаждения, адсорбированные посторонние ионы или молекулы окружают ионную решетку осадка и затем внедряются в нее. Вследствие этого образуются сильно поврежденные кристаллы с большим запасом энергии. Наиболее известна окклюзия больших количеств маточного раствора пустотами больших кристаллов. Этот вид включений с аналитической точки зрения имеет меньшее значение. Более важна окклюзия посторонних ионов. [c.204]

    Электронографический метод исследования подобен рентгенографическому. Он основан на дифракции электронов кристаллами. Важная особенность электронографии по сравнению с рентгенографией заключается в более сильном (на несколько порядков) взаимодействии электрона с веществом и малостью длины электронной волны, что позволяет исследовать на просвет структуру частиц размером 1 ч- 100 нм, т. е. коллоидной степени дисперсности. Электронографический метод был успешно использован при исследовании структуры многих коллоидных частиц, изучении поверхностных пленок, тонких адсорбционных слоев. [c.396]

    П. А. Ребиндер установил явление понижения сопротивления твердых тел упругим и пластическим деформациям, а также механическому разрушению под влиянием адсорбции поверхностноактивных веществ окружающей среды. Явления адсорбционного облегчения деформаций или адсорбционного понижения твердости твердых поверхностей обусловлены облегчением развития микрощелей в поверхностных слоях деформируемого или разрушаемого тела. Адсорбционные слои из поверхностно-активных молекул, возникающие на поверхности микрощелей, отличаются способностью к миграции по поверхности в глубь микрощелей, способствуя, таким образом, их развитию и нарастанию деформации, а вблизи предела прочности — и разрушению твердого тела (эффект расклинивающего давления). К адсорбции чувствительны только те микрощели, устья которых выходят на поверхность кристалла, а тупиковые части остаются внутри тела. В процессах измельчения твердых тел адсорбционные слои облегчают диспергирование и способствуют значительному повышению степени дисперсности. [c.295]

    К катодной пассивности близко примыкает явление адсорбционной поляризации, приводящее к снижению тока в присутствии некоторых поверхностно активных веществ, обнаруженное М. А. Лошкаревым. При этом поверхностно активные вещества образуют на катоде сплошной слой, почти не проницаемый для разряжающихся ионов, что ведет к резкому торможению или полному прекращению роста кристаллов. Возникающая при этом химическая поляризация может достигнуть необычайно больших значений, далеко превосходя все известные ее величины для катодного выделения металлов из чистых растворов их простых солей. Как показали исследования, явление адсорбционной поляризации охватывает многие электродные процессы. Образование адсорбционных слоев вблизи точки нулевого заряда обычно сопровождается явлением низкого адсорбционного-тока, который определяется скоростью проникновения реагирующих частиц из объема раствора в двойной электрический слой. М. А. Лошкарев с сотрудниками описал многочисленные случаи,, когда предельно низкие значения тока в очень широкой области потенциалов не зависят от потенциала. [c.350]

    Согласно молекулярно-кинетической адсорбционной) теории частицы, образующие кристаллическую решетку, сначала адсорбируются на поверхности растущего кристалла, причем они сохраняют часть своей энергии и поэтому способны перемещаться по поверхности. Сталкиваясь друг с другом, они превращаются в двухмерные зародыши, которые, присоединяясь к кристаллической решетке, создают новый слой на поверхности кристалла. Для образования двухмерных зародышей необходимо достаточное пересыщение раствора, контактирующего с адсорбционным слоем. Имеется в виду, что адсорбционный слой образуется очень быстро и внешняя диффузия не лимитирует процесса роста. [c.245]


    Образующие кристалл молекулы поступают к твердой поверхности, на которой появляется подвижный адсорбционный слой. Из этого слоя некоторые молекулы возвращаются в газовую фазу, другие присоединяются к кристаллической решетке. Скорость образования кристалла J пропорциональна разности парциального давления Р кристаллизующегося вещества в газовой фазе и равновесного давления Яр, т. е. У Р—Яр). Равновесное давление над кристаллом зависит от его размеров — над очень малыми кристаллами давление больше. [c.263]

    Мы убедились в том, что молекулы адсорбата могут находиться на поверхности адсорбента в течение длительного времени. Интересно поставить вопрос — как проводит это время молекула в адсорбционном слое В результате колебаний атомов адсорбента, между ними и молекулой адсорбата происходит непрерывный обмен энергией. Если молекула получит импульс, нормальная составляющая которого превысит Qa, молекула покинет поверхностный слой. Если же этот импульс будет направлен, в основном, тангенциально к поверхности, молекула будет скользить по ней, сталкиваясь с другими молекулами. Такая поверхностная подвижность молекул составляет физическую основу явлений растекания и смачивания. Жидкость растекается по жидкой поверхности на 2—3 порядка быстрее, чем по твердой, поскольку микрошероховатость отсутствует и все точки жидкой поверхности энергетически равноценны. Но и на твердых поверхностях существование двухмерной подвижности установлено экспериментально. Хорошо известный пример с растеканием насыщенного раствора КС по стеклу в солевых мостиках, с последующим высыханием, и образованием ползущей твердой корки, иллюстрирует это явление. В работах Фольмера было установлено, что молекулы бензофенона уходят из кристалла по стеклу на расстояния порядка 0,1 мм, значительно превышающие молекулярные дистанции. [c.134]

    Адсорбционные слои и органические ПАВ могут влиять на рост осадков двумя путями 1) изменяют степень необратимости электродного процесса и 2) прямо меняют скорость роста кристаллов. [c.522]

    В практике добычи нефти активные компоненты адсорбируются и на металле. Экспериментальные и теоретические исследования были посвящены изучению строения и свойств адсорбционных слоев на границах раздела металл — масло с различными присадками. Наиболее подробно структура и свойства этих слоев описаны в монографии А. С. Ахматова [3]. Им отмечается, что структурно-механические свойства цепных молекул и кристаллов углеводородов, составляющих граничные слои, изучены еще очень мало. Граничные слои по своему строению подобны монокристаллу, образованному цепными полярными молекулами углеводорода в объеме. Однако на строение и свойства этого граничного кристалла существенно влияет силовое поле твердой фазы. Действие этого поля распространяется на расстояние в сотни и тысячи ангстрем от твердой поверхности [3, 29, 44]. Впервые эти силы были измерены Б. В. Дерягиным и И. И. Абрикосовой [44, 41, 49, 61]. Расстояние, на которое распространяется их действие, оценено ими в 0,04 мк [42, 43]. [c.45]

    Помимо того, поверхность глобул воды может бронироваться твердыми частицами, находящимися в нефти. К ним относятся кристаллы парафина, минеральные и углистые частицы, хорошо смачиваемые нефтью. Попадая в поверхностный слой, они удерживаются на нем, так как в определенной мере смачиваются водой. При большом содержании их на границе раздела они связываются между собой коллоидно-адсорбционным слоем асфальтенов, образованным на поверхности, не занятой твердыми частицами. Асфальтены хорошо адсорбируются на поверхности этих частиц, сильно препятствуют смачиванию их водой и способствуют образованию на поверхности глобул воды прочной брони из этих частиц. При образовании ее время коалесценции может быть чрезвычайно длительным. [c.92]

    Дифенилкарбазид — почти бесцветные или розоватые кристаллы л=172—173 °С. Мало растворим в воде даже при нагревании. Растворим в этаноле, метаноле, ацетоне, ледяной уксусной кислоте. Нерастворим в эфире и хлороформе, ксилоле. При хранении верхний слой кристаллов дает окрашенные растворы растворы окисляются на воздухе, их хранят в темноте. Применяют для фотометрических определений хрома (VI), ртути (II), свинца в качестве адсорбционного индикатора при меркуриметрических определениях хлоридов и цианидов и как редокс-индикатор при титровании дихроматом. [c.149]

    При описании картины образования и уплотнения адсорбционных слоев, пассивирующих поверхность катода, полагают, что первоначально образуются отдельные островки цепочки золя, которые экранируют наиболее активные участки катода, что, с одной стороны, мешает росту кристаллов, а с другой - приводит к повышению плотности тока на открытых местах. Поляризация при этом растет. По мере увеличения концентрации золя начинается его усиленная коагуляция. Образующаяся Неподвижная коллоидная пленка становится своеобразным регулятором роста кристаллов, так как требует дополнительной энергии активации для осуществления акта разряда. [c.79]

    В настоящее время более признанной является молекулярнокинетическая теория послойного роста кристаллов, предложенная М. Фольмером и развитая И. Странским и Р. Каишевым. По мнению М. Фольмера, частица кристаллизующегося вещества вначале располагается на поверхности растущих кристаллов в виде адсорбционного слоя, при переходе в который они теряют только часть своей энергии, сохраняя значительную свободу передвижения по поверхности кристалла. Между отдельными частицами в адсорбированном слое возможны неупругие соударения, в результате которых образуются двухмерные кристаллы, присоединяющиеся к кристаллической решетке в виде нового слоя. Равновесие между адсорбированным слоем и раствором устанавливается очень быстро, вследствие чего при переходе частиц в кристаллическую решетку адсорбционный слой тотчас же восстанавливается за счет поступления в него частиц из окружающего раствора. [c.365]

    Растворитель на поверхности кристалла фактически является его сольватной оболочкой с некоторыми особенностями, обязанными упорядоченности частиц в кристалле, О большой прочности связи адсорбционных слоев с поверхностью свидетельствует, в частности, то, что энергия адсорбции воды из газовой фазы на поверхности кристаллов хлористого калия при температуре около 0° С составляет 50 кДж/моль. Это существенно больше обычных значений энергии водородной связи. [c.18]

    Слой раствора, в котором проявляется взаимодействие поверхности кристалла со средой, называется адсорбционным. Он состоит из ближайшего к грани мономолекулярного по толщине химического адсорбционного подслоя, в котором проявляется химическое взаимодействие частиц с поверхностью, и более удаленного физического адсорбционного подслоя, включающего остальную часть поверхностного слоя раствора. В последнем подслое взаимодействие кристалла со средой проявляется более слабо и постепенно затухает по мере удаления от поверхности кристалла. Таким образом, здесь имеется полная аналогия с описанными выше ближней и дальней гидратацией отдельных ионов и молекул. При наличии эпитаксиальных соотношений между гранью кристалла-подложки и гранью кристалла-растворителя адсорбционный слой будет сравнительно более прочным, упорядоченность в растворе будет распространяться на большую глубину в объеме жидкости. [c.18]

    Немаловажное значение имеет правильное промывание осадка. Если он имеет достаточно низкую растворимость, для промывания применяют дистиллированную воду. Исключения составляют легко пептизирующиеся осадки (сульфиды и гидроксиды металлов, бромид и иодид серебра и др.), которые промывают раствором электролита, например нитрата или хлорида аммония. Ионы электролита предотвращают пептизацию и, кроме того, в адсорбционном слое кристаллов замещают ионы других нелетучих электролитов. Сами аммонийные соли при прокаливании осадка улетучиваются. [c.142]

    Еще Фладе заметил [6], что пассивная пленка на железе тем дольше остается устойчивой в серной кислоте, чем длительнее была предварительная пассивация железа в концентрированной азотной кислоте. Другими словами, пленка стабилизируется продолжительной выдержкой в пассивирующей среде. Франкенталь [17] заметил также, что хотя для пассивации 24 % Сг—Ее в 1 н. НаЗО достаточно менее монослоя Оа (измерено кулонометрически), пленка становится толще и устойчивее к катодному восстановлению, если сплав некоторое время выдержать при потенциалах положительнее потенциала пассивации (см. рис. 5.1). Возможно,. наблюдаемое стабилизирующее действие является результатом того, что положительно заряженные ионы металла проникают в адсорбированные слои отрицательно заряженных ионов и молекул кислорода благодаря сосуществованию противоположных зарядов поддерживается тенденция адсорбционной пленки к стабилизации. Данные метода дифракции медленных электронов для одиночных кристаллов никеля [28], например, свидетельствуют о том, что предварительно сформированная адсорбционная пленка состоит из упорядоченно расположенных ионов, кислорода и никеля, находящихся на поверхности металла приблизительно в одной плоскости. Этот первоначальный адсорбционный слой более термоустойчив, чем оксид N10. При повышенном давлении кислорода на первом слое образуется несколько адсорбционных слоев, состоящих, возможно, из Оа. В результате образуется аморфная пленка. С течением времени в такую пленку могут проникать дополнительные ионы металла, особенно при повышенных потенциалах, становясь подвижными в пределах адсорбированного кислородного слоя. Окамото и Шибата [29] показали, что пассивная пленка на нержавеющей стали 18-8 содержит НаО аналогичные результаты получены для пассивного железа [30]. [c.83]

    Давно известно, что смолистые вещества препятствуют кристаллизации парафинов, так как в присутствии смол при рассмотрении в микроскоп обнаруживается значительно меньшее количество кристаллов парафина, чем при охлаждении в аналогичных условиях раствора парафина в масле, не содержащем смол. До сего времени это объяснялось двояко во-первых, в присутствии смол парафины (церезины) образуют пересыщенные растворы. Однако по исследованиям ГрозНИИ парафины не дают пересыщенных растворов, что ставит под сомнение указанное объяснение. Во-вторых, как показали опыты, кристаллы парафина (церезина) явно извлекали из раствора асфальтово-смолистые вещества. При этом, чем выше был молекулярный вес парафинов, тем интенсивнее шло это извлечение. На основе этого считалось, что асфальтово-смолистые вещества, адсорбируясь на поверхности кристаллов парафина, препятствуют их росту и удерживают таким образом кристаллы в зародышевом состоянии. Асфальтовосмолистые вещества как полярные способны ориентироваться в адсорбционном слое на границе раздела твердой и жидкой фаз. Однако то объяснение, что эти вещества могут адсорбироваться поверхностью кристаллов неполярного вещества — парафина, вряд ли теоретически обосновано. Повидимому более правильно принять, что асфальтово-смолистые вещества, находящиеся в диспергированном состоянии, представляют собой центры кристаллизации, вокруг которых образуются скопления кристаллов церезинов и парафинов в виде друз. Это явление выражается тем ярче, чем меньше скорость охлаждения раствора. [c.58]

    При замерзании водной фазы эмульсии типа М/В появляются кристаллы льда, которые выталкивают шарики масла в сужающиеся каналы незамерзшей жидкости (Янг, 1934). При этом концентрация электролитов в еще незамерзшей воде увеличивается, вода все более переохлаждается, электрический заряд эмульсии уменьшается (Боросихинои др., 1961). В результате роста кристаллов льда шарики масла сжимаются, вытягиваются в нити и соединяются. Согласно Лебедеву и др. (1962), последующие процессы зависят от условия контакта поверхности шарика и адсорбционного слоя эмульгатора. Когда вязкость поверхности шарика достигает вязкости твердого вещества, гидрофобная часть адсорбированных молекул эмульгатора теряет свою подвижность. Это предотвращает деформированные шарики масла, находящиеся под давлением кристаллов льда, от восстановления. В той части поверхности шарика, которая не защищена эмульгатором, начинается коалесценция, зависящая от природы эмульгатора (Поспелова и др., 1962), его концентрации, степени покрытия эмульгатором поверхности шарика и от природы дисперсной фазы (Кист-лер, 1936). Длина гидрофобной [c.125]

    Перреновские черные пленки в некоторых случаях, в первую очередь в случае олеата натрия, оказываются исключительно прочными и живут очень долго. Дьюару (1917—1923 гг.), например, удалось сохранить черную пленку в закрытом сосуде в течение трех лет. В 1962 г. Дерягин и Гутоп провели теоретическое исследование механизма разрушения таких сдвоенных адсорбционных слоев. Рассматривая перренов-скую пленку как двумерный кристалл, они в рамках представлений Де Фриза [3] (см. гл. 6) сумели дать количественную картину кавитационного , или дырочного , механизма их разрушения. Так как в данном случае исключается возможность разрушения тонкого слоя путем прогибания (энергетически наиболее выгодного процесса), то здесь действует дырочный механизм, при котором очень тонкие пленки обладают большой устойчивостью.  [c.229]

    Однако прочно к поверхности ионы К+ не присоединяются (они образуют с поверхностью растворимые соединения), а так как их концентрация около поверхности больше, чем в растворе, то они диффундируют в сторону меньшей концентрации, т. е. от поверхности в раствор. На поверхности кристалла Ag l возник двойной электрический слой (рис. 36), состоящий из внутренней обладки, или адсорбционного слоя (ионы 1 ), и наружной обкладки, или слоя противоионов (ионы К+). Часть противоионов связана с поверхностью относительно прочно и входит в плотный слой остальные противоионы, со-вершаюшие тепловое движение около поверхности, составляют диффузную часть ДЭС (диффузный слой). Распределение противоионов между плотной и диффузной частями ДЭС определяется соотношением между электростатически.м притяжением ионов к поверхности и их диффузией в раствор последняя определяется тепловым движением ионов и зависит от разности концентраций в ДЭС и объеме раствора. [c.65]

    Большое влияние на процесс кристаллообразования в расплаве оказывают различные примеси. Особенно важную роль в этом отношении играют механические примеси, находящиеся в расплаве в виде взвешенных частиц микронного и субмикронного размера и играющие роль затравки при образовании зародышей. Последнее объясняется тем, что работа образования зародышей на готовой поверхности (гетерогенное зародышеоб-разование) меньше, чем работа флуктуативного образования зародышей (гомогенное зародышеобразование) в объеме расплава. Такое гетерогенное зародышеобразование возможно лишь, когда расплав является лиофильным по отношению к поверхности частицы. Возникающий на ней в этом случае адсорбционный слой вызывает соответствующее структурирование прилегающего расплава, что приводит к облегчению образования зародышей на данной поверхности по отношению к зародыше-образованию в объеме расплава. Вследствие этого начало кристаллообразования обычно смещается в сторону меньших переохлаждений по сравнению с тем, что было бы, если бы исходный расплав был тщательно очищен от взвешенных частиц. Аналогичное явление имеет место и в случае кристаллизации на специально вводимых в расплав затравочных кристаллах, что широко применяется в различных способах выращивания монокристаллов. [c.109]

    Твердая частица — ядро коллоидной частицы — кристалл иодида серебра (AgI), (рис. 103). Поверхность ядра адсорбирует преимущественно ионы Ag", входящие в состав кристалла ядра, приобретая положительный заряд. Положим, количество ионов Ag , адсорбированных ядром, равно и. Это количество ионов п входит в состгв ядра. К заряженному ядру притягиваются противоионы КОГ, формируя двойной электрический слой. Часть противоионов (п — х) находится в адсорбционном слое, которые вместе с ядром составляют частицу, или, иначе, гранулу. Остальная часть противоионов (х) находится за поверхностью скольжения в свободном объеме раствора. Пунктиром изображена линия, замыкающая весь объем электролита, в котором находятся противоионы. Ядро вместе с адсорбционным слоем и слоем свободной жидкости, в котором находятся противоионы, называется мицеллой. [c.414]

    В этойформуле записано, что ядро коллоидной частицы представляет собой кристалл [Fe (ОН)з], , на поверхности ядра находится п адсорбированных ионов Fe- s которые придают ядру положительный заряд. Противоионы СГ частично в количестве 3 (л — л ) расположены в адсорбционном слое, ко- [c.414]

    Кристаллический агрегат (Ag I),, вместе с потенциалопределяющими ионами Ag+ составляет ядро. К заряженному ядру притягиваются ионы противоположного заряда — противоионы.. Для рассматриваемой системы водный раствор AgNOa — кристалл Ag l противоионами будут нитрат-ионы NO3 . Противоионы, непосредственно примыкающие к ядру, образуют адсорбционный слой противоионов. За этим слоем следует диффузный слой тех же противоионов. Концентрация противоионов диффузного слоя постепенно понижается по мере удаления от ядра. Между противоионами адсорбционного и диффузионного слоев устанавливается подвижное равновесие. [c.145]

    В первую- очередь будут адсорбироваться те ионы, которые могут образовать прочное (следовательно, малорастворимое или слабодиссоциированное) соединение с ионами кристалла. Это не Na+, так как возможное соединение Na l — хорошо растворимый сильный электролит это по той же причине не NO3- (соединение AgNOs). Это только ионы С1-, так как соединение Ag l малорастворимо. Эти ионы и образуют адсорбционный слой но не только они, так как при этом на частице возник бы слишком большой электрический заряд, который компенсируется, но не полностью ионами противоположного знака (Na+). Частица (часто называемая гранулой), таким образом, оказывается заряженной, в данном случае отрицательно. При избытке нитрата серебра адсорбировались бы преимущественно ионы Ag+ и заряд частицы оказался бы положительным. Даже при эквивалентных количествах исходных веществ из-за разных свойств ионов [c.260]

    Любая коллоидная система, в то 1 числе и гидрозоль, состоит из дисперсной фазы и дисперсионной среды. 1В гидрозолях дисперсионной средой является вода, а дисперсной фазой — твердые частицы коллоидной яисперсности, "называемые мицеллами. Основную часть мицеллы составляет агрегат, состоящий из большого числа атомов, ионов или молекул нерастворимого в воде вещества и имеющий кристаллическое строение. На поверхности твердого кристалли- ческого агрегата фиксируются ионы стабилизатора, которые определяют знак и величину поверхностного потенциала (потенциалопределяющие ионы). Эта часть мицеллы, т. е. агрегат совместно с потенциал-определяющими ионами, называется ядром. Вокруг ядра располагается часть противоионов стабилиза-,тора, образующие адсорбционный слой. Ядро вместе [c.200]

    Гиббс, Кюри, а впоследствии русский ученый Г. В. Вульф при интерпретации явлений, связанных с ростом кристаллов, исходили из связи между формой кристалла и поверхностной энергией всех, его граней. Согласно диффузиониым теориям процесс образования кристаллической грани протекает с бесконечно большой скоростью и поэтому зависит только от скорости подвода вещества к кристаллу из раствора, т. е. от скорости диффузии. В двадцатых годах нынешнего столетия для объяснения роста кристаллов Фоль-м ер предложил адсорбционную теорию, согласно которой частицы кристаллизующегося вещества при достижении поверхности образуют своеобразный адсорбционный слой — двумерное кристаллическое образование, присоединяющееся затем к грани кристалла. Странский считает вероятным возможность образования на растущем кристалле ионных рядов или слоев, сходных с двумерными кристаллическими образованиями Фольмера. [c.226]

    При нарастании концентрационной поляриэации появляются дендри-ты поверхность катода при этом сильно увеличивается и резко уменьшается перенапряжение выделения водорода [4б]. В результате дополнительно образуются гидроксиды и основные соли железа, адсорбционный слой становится "рыхлым", происходит увеличение скорости роста кристаллов и появление дисперсных порошкообразных отложений железа. Качество осадков резко ухудшается. [c.79]

    Примеси, введенные в расплав, также активно влияют на габитус кристаллов циркона. Например, добавка 1 % меди в виде СиО способствует кристаллизации циркона в виде идеально ограненных короткопризматических кристаллов. Механизм действия примеси может быть объяснен наличием на растущих гранях адсорбционного слоя, который нивелирует анизотропию скоростей роста разных габитусных граней, что приводит к наблюдаемой огранке кристаллов. [c.242]

    В. В. Сипягин и др. [1976 г.] связывали упомянутые выше аномалии скоростей роста с перестройками жидкости не в объеме раствора, а в адсорбционном слое на грани кристалла. Окончательно этот вопрос не решен. [c.18]


Смотреть страницы где упоминается термин Адсорбционные слои кристаллы : [c.268]    [c.107]    [c.82]    [c.40]    [c.226]    [c.73]    [c.97]    [c.128]    [c.171]    [c.365]    [c.365]   
Электрохимия металлов и адсорбция (1966) -- [ c.153 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбционные слои

Адсорбционный слой



© 2025 chem21.info Реклама на сайте