Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бериллий электроотрицательность

    Электроотрицательность элементов (в порядке ее убывания) устанавливается следующим условным рядом фтор — кислород — хлор— бром — азот — сера — селен — йод — астатин — водород — углерод — фосфор — мышьяк — теллур — полонии — бор — кремний — германий — сурьма — висмут — бериллий — алюминий — галлий — олово — свинец. [c.26]

    Наиболее электроотрицательный характер атома бериллия и его малый радиус приводят к тому, что бериллий не образует соединений с ионным типом связи. Для магния соединения с ковалентной связью становятся нетипичными, а у соединений кальция, стронция и бария преобладает ионная связь. [c.260]


    Электронное строение атома бериллия в газообразном состоянии — 15 25% Увеличение заряда ядра атома бериллия по сравнению с зарядом ядра атома лития наряду с тем, что 25-электроны только частично экранируют друг друга, приводит к двум эффектам 1) атом Ве имеет металлический радиус только 0,89 А, значительно меньше, чем в случае лития (1,22 А) 2) потенциалы ионизации Ве, 9,32 и 18,21 эв, гораздо большие, чем у Ы (5,39 эе), делают Ве значительно менее электроположительным, если рассматривать его хилшческие свойства в сравнении со свойствами Действительно, не существует никаких кристаллических соединений или растворов, в которых ионы Ве + существовали бы как таковые. Все соединения, строение которых было определено, даже соединения с наиболее электроотрицательными элементами, такие, как ВеО и ВеР.,, по крайней мере частично обладают ковалентным характером связи. Электронное строение атомов других элементов II группы (Mg, Са, 5г, Ва и Ка) подобно строению атома Ве. Однако больший размер этих ато.мов уменьшает влияние заряда ядра на валентные электроны. Так, их потенциалы ионизации ниже, чем у Ве они в основном более электроположительны, а ионная природа их соединений законо-.мерно возрастает в группе сверху вниз. [c.67]

    Этот путь выравнивания основан на том, что электроотрицательность атома должна уменьшаться, по мере того как им приобретается электрон, или, наоборот, увеличиваться, если атом теряет электрон. Например, атом бериллия имеет малую способность притягивать электрон, но его ион притягивает электрон сильно. Аналогично атом кислорода имеет большую электроотрицательность, а его ион очень незначительную. Таким образом, обмен зарядом при образовании связи, по-видимому, приводит к состоянию с неравномерным распределением электронов, но с равномерным распределением притяжения между ними. Некоторые из практических применений, а также ограничения принципа выравнивания электроотрицательностей были обсуждены Сандерсоном в работе [2]. [c.142]

    Энергетическая диаграмма уровней молекулы ВеН 2 приведена на рис. 52. В соответствии с большей электроотрицательностью водорода его орбитали в схеме расположены ниже орбиталей бериллия. [c.96]

    Карбидами называют соединения элементов с углеродом, в которых последний играет роль электроотрицательного элемента. Степень окисления углерода в карбидах может быть различной. В нормальных карбидах, в которых атомы углерода непосредственно связаны с атомами электроположительного элемента (т. е. в большинстве случаев металла) и не связаны друг с другом, окислительное число углерода должно быть —4. Однако такие карбиды известны лишь у немногих сравнительно активных легких металлов, а именно у бериллия и алюминия. Они представляют собой кристаллические вещества, по виду напоминающие обычные соли. Эти карбиды отличаются тем, что легко разлагаются водой и кислотами с выделением метана  [c.194]


    Подобным же путем можно отделить железо и хром от урана, бериллия, циркония и тория молибден от ванадия кадмий от магния медь от алюминия и т. д. При электролизе нейтральных растворов их солей на ртутном катоде могут быть выделены щелочные и щелочноземельные металлы. При этом образуются амальгамы, которые легко разлагаются водой с образованием гидроокисей этих металлов. Выделение этих наиболее электроотрицательных металлов было бы невозможно, если бы перенапряжение выделения водорода на ртути не было бы столь велико. Легкость, с которой эти металлы образуют амальгаму, используется при электроаналитических определениях для отделения их от других катионов. [c.280]

    Закономерности, найденные Ф. М. Шемякиным, были подтверждены М. А. Блох (1934), А. Е. Ферсманом (1937), Д. Купером (1964), А. Барнардом (1965). Как указывает Д. Купер, литий действительно близок к магнию, бериллий к алюминию, бор к кремнию — по свойствам их соединений. А. Е. Ферсман объяснял диагональное направление сходством ионных радиусов (табл. 3). Можно это объяснять и сходством электроотрицательностей (Л. Полинг). Вероятней всего это за- [c.21]

    Значение электролиза расплавленных сред. Электролизом водных растворов могут быть получены либо электроположительные металлы, либо такие электроотрицательные металлы, на которых перенапряжение для выделения водорода в условиях электролиза очень велико, например цинк и марганец. Такие же электроотрицательные металлы, потенциалы которых значительно отрицательнее потенциала выделения водорода, как щелочные и щелочноземельные, алюминий и магний, не могут быть получены электролизом водных растворов. Их готовят электролизом расплавленных сред, а также этим методом получают, как правило, и тугоплавкие металлы, такие, как бериллий, цирконий, торий, ниобий, тантал, и редкоземельные металлы. Разрабатываются методы электролитического получения титана и других металлов. Этим же способом получают фтор. [c.211]

    Углерод имеет большую электроотрицательность, чем металлы (см. рис. 1.2.28), однако он образует ионные соединения лишь с наиболее электроположительными элементами первой и второй групп Периодической системы. Этот-процесс облегчается особенно в тех случаях, когда анион оказывается стабилизованным за счет мезомерии. а-Связи М—С принадлежат к группе, полярных связей. Чем больше различие в электроотрицательности, тем более реакционноспособны металлоорганические соединения. С сильно электроположительными элементами, такими как литий, бериллий, магний и алюминий, образующими сильно поляризующие катионы, углерод может образовывать также и электронодефицитные связи (трехцентровые связи с парой электронов и т. п.). [c.536]

    В английском патенте перечисляются борогидриды лития, магния, бериллия, алюминия, тория, гафния, циркония и урана. Необходимо отметить, что борогидриды натрия и калия в этом списке отсутствуют. Действительно, в одном из примеров, лежащем в основе патента, показано, что при полимеризации этилена в присутствий 1 г окисномолибденового катализатора и 0,2 з борогидрида лития в среде ксилола образуется 9,3 г твердого полимера. При замене борогидрида лития равным по весу количеством борогидрида натрия твердый полимер не образовывался. В патенте утверждается, что натрий обладает электроотрицательностью, равной [c.327]

    Общей характеристикой борогидридов, используемых при полимеризации на окислах металлов VA группы, может служить то, что эффективными промоторами являются два класса борогидридов. К первому классу относятся борогидриды щелочных металлов, в том числе борогидриды лития, натрия, калия, рубидия и цезия. Во второй класс входят борогидриды магния, бериллия, алюминия, тория, гафния, циркония и урана, которые характеризуются своей способностью восстанавливать соли многовалентных металлов и присутствием металла, электроотрицательность которого не менее единицы по шкале Полинга. В этом случае эффективные вещества не могут быть все определены и охарактеризованы одинаковым образом. [c.328]

    Материалы для конструирования аппаратуры. Электролиз расплавленных солей применяют в промышленности почти исключительно для производства наиболее электроотрицательных металлов, которые не могут быть получены из водных растворов. Важнейшие из них — натрий, литий, кальций, бериллий, магний, алюминий. Все эти металлы обладают очень высокой химической активностью. [c.599]

    Для бериллия первая и особенно вторая энтальпии ионизации (899 кДж-моль и 1757 кДж-моль ) настолько высоки, что полной потери обоих электронов с образованием Ве + не происходит даже при взаимодействии с наиболее электроотрицательными элементами. Даже в молекуле ВеРг связи Ве — Р имеют в заметной степени ковалентный характер. В водных растворах ион [Ве(Н20)4]2+ очень сильно гидратирован и достаточно легко гидролизуется с образованием частиц со связями Ве(ОН). [c.230]

    Известны соединения, в которых органические радикалы присоединены к бериллию, магнию, кальцию, стронцию, барию, кадмию и ртути, т. е. ко всем элементам П группы, за исключением радия. По физическим константам среди этих соединений имеются вещества от нелетучих, неплавких солеобразных соединений до летучих, по существу ковалентно построенных веществ. В химическом отношении к соединениям этого типа относятся как чрезвычайно реакционноспособные, так и инертные вещества. Широкий диапазон свойств можно сопоставить с ионностью связи С—М, которая колеблется от 35% для бария, наиболее электроположительного элемента группы, до 11 % для наиболее электроотрицательного — ртути. Значения электроотрицательностей и процент ионности связи приведены в табл. 1 .  [c.93]


    Увеличение атомного радиуса, снижение потенциала ионизации и электроотрицательности определяют повышение химической активности щелочноземельных металлов с увеличением Z или главного квантового числа п. Увеличение заряда иона до 4-2 и уменьшение радиуса по сравнению с ионами щелочных металлов увеличивает эффективный потенциал иона и создает возможности для возникновения донорно-акцепторной связи и образования комплексных соединений, а у оксида бериллия появляются амфотерные свойства. [c.296]

    Энергетическая диаграмма уровней молекулы ВеНз приведена на рис. 38. В соответствии с большей электроотрицательностью водорода его орбитали в схеме расположены ниже бериллия. Четыре валентных электрона невозбужденной молекулы ВеНз (два электрона от атома бериллия и два от двух атомов водорода) располагаются на а - и оГ-орбиталях, что описывается электронной конфигурацией [c.60]

    В силу высокой электроотрицательности карбоксилатной группы и низкой электроотрицательности атома бериллия обе связи Ве—О носят в значительной степени ионный характер. Поэтому при титровании щелочью эти связи легко разрываются с присоединением к атому бериллия второго гидроксила, а так как константа устойчивости и произведение растворимости Ве(0Н)2 выше, чем у исследуемого комплекса, то, естественно, комплекс разрушается щелочью. [c.312]

    Аналогично метиллитий СНзЫ представляет собой нелетучее твердое вещество, тогда как некоторые высшие н-алкильные производные лития при повышенных температурах обладают измеримой летучестью. Эти различия, по крайней мере частично, являются следствием того, что метильная группа по сравнению с высшими алкильными группами более электроотрицательна по-видимому, это должно наиболее отчетливо проявляться в соединениях лития и бериллия, в которых связи металла с углеродом по своей полярности занимают промежуточное положение. Однако объяснять данный эффект только на этом основании было бы, пожалуй, слишком упрощенно. Известно, что некоторые производные этих элементов в значительной степени ассоциированы или полимеризованы. [c.21]

    Атомы А1 и его аналогов Оа, 1п, и Т1 значительно больше атома В (атомные радиусы Л1 и В 1,26 и 0,88 А соответственно), поэтому они в большей степени проявляют металлические свойства. Алюминий в свободном состоянии типичный металл, но в соединениях (подобно соединениям бериллия) нельзя провести четкую грань между ионным и ковалентным характером образуемых им химических связей. То же можно сказать и об аналогах алюминия —Оа, 1п, Т1. Несмотря на то что величины электроотрицательности не особенно полезны при объяснении химических свойств этих скорее металлических элементов, все же здесь приведены их числовые выражения [c.281]

    Щелочноземельные металлы более электроотрицательны по сравнению со щелочными металлами, тем не менее все их соединения, за исключением некоторых соединений Ве, являются ионными. Бериллий представляет собой первый пример общей закономерности, согласно которой в пределах любой группы элементы с валентными электронами, характеризуемыми меньщим главным квантовым числом, обладают менее ярко выраженными металлическими свойствами, потому что их валентные электроны расположены ближе к ядру и связаны с ним более прочно. Эта закономерность проявляется в повышении электроотрицательности при переходе к элементам с меньшими атомами в пределах одной группы (табл. 10-4). Бериллий имеет меньщий окислительный потенциал, т. е. более [c.435]

    Эта тенденция также ослш евагт при увеличении номера периода. Электроотрицательности у лития и у бериллия (второй период) отличаются сильнее, чем у натрия и магния (третий период). Электроотрицательности у фтора и у хлора (второй и третий периоды) отличаются сильнее, чем у хлора и у брома (третий и четвертый периоды). Следует отметить, чю атомы инертных газов имеют полностью заполненный валентный з ровень, поэтому они не проявляют тенденции оттягивать на себя электроны. Таким образом, сказанное вьипе относится к элементам групп с 1 по 7, но не относится к элементам восьмой группы. Если теперь посмотреть внимательно на расположение элементов в Периодической системе, то станет ясно, почему именно фтор и еет самую высокую электроотрицательность. Огносительная электроотрицатсльиость некоторых химических элементов представлена в ряду на форзаце. [c.52]

    Второй период образует атомы от до Ne. В направлении — Ке растет эффективный заряд ядра, в связи с чем уменьшаются размеры атомов (см. Гшах), возрастает потенциал ионизации и осуществляется, начиная с В, переход к неметаллам. Потенциал ионизации отражает не только рост в ряду —Ке, но и особенности электронных конфигураций потенциал ионизации у бора ниже, чем у бериллия. Это указывает на упрочнение заполненных нодоболочек ( у бериллия). Более высокий потенциал ионизации азота по сравнению с кислородом указывает на повышенную прочность конфигурации р , в которой каждая орбиталь занята одним / -электроном. Аналогичные соотношения наблюдаются и в следующем периоде у соседей Mg—А1 и Р—5. У атомов второго периода отрыв электрона с внутреннего Ь -слоя требует такого высокого ПИ (75,62 эВ уже у лития), что в химических и оптических процес--сах участвуют только внешни электроны. Сродство к электрону в ряду Ы—Р имеет тенденцию к возрастанию. Но у берилжя оболочка заполнена, и сродство к электрону эндотермично так же, как и у гелия (1л ). Обладая самым высоким потенциалом ионизации ю всех неметаллов и высоким сродством к электрону, фтор является наиболее электроотрицательным элементом в периодической системе. Для атома неона СЭ (Ке)=—0,22 эВ. Оболочка з р атома Ке, электронный октет, характеризуется суммарным нулевым спином и нулевым орбитальным моментом (терм 5о). Все это, вместе с высоким потенциалом ионизации и отрицательным сродством к электрону, обусловливает инертность неона. Такая же з р конфигурация внешнего слоя характерна для вСех элементов нулевой группы. Исследования последних лет показывают, что 1 п, Хе,Кг и Аг дают химические соединения со фтором и кислородом. Очевидно, что з р конфигурация не влечет как непременное следствие химической инертности. Все атомы со спаренными электронами (терм о) — диамагниты (Не, Ве, Ке и т. д.). Конфигурации внешнего электронного слоя у атомов 2-го и 3-го периодов, стоящих в одних и тех же группах, одинаковы, чем объясняется близость химических свойств элементов, стоящих в одних и тех же группах (сравните Ка иЬ1 в табл. 5). Но наблюдается и различие элементы второго периода обладают постоянной валентностью, а третьего — переменной. Это связано с тем, что у атомов третьего периода есть вакантные -состояния в третьем квантовом слое, а во втором слое таких соединений нет. [c.62]

    Пероксосоединения. Соединения, содержащие в своем составе пер оксогруппу (О—О) и называемые пероксосоединения-ми, рассматривают как производные пероксида водорода и делят на два больших вида простые и комплексные. К простым пероксосоединениям относятся соединения, называемые пероксидами, в которых пероксогруппа соединена с ионом или атомом металла ионной или атомной связью. Эти со< аинения могут быть образованы всеми металлами 1А- ПА- (за исключением бериллия) и 1В-группы периодической системы Д. И. Менделеева. По мере увеличения электроотрицательности металла (от щелочных и щелочно-земельных металлов к таким -металлам, как ртуть) ионный характер связи в пероксидах изменяется на ковалентный. [c.237]

    Если в состав молекулы входит несколько атомов, то их пространственное расположение определяется направленностью химических связей, которая зависит от ориентации атомных орбиталей в стабильном или возбужденном атоме (гибридизация), вступающем в реакцию. В результате взаимодействия атомов могут образоваться Молекулы не только линейные, но и плоские или пространственные. Простейшие случаи образования молекул различной конфигурации рассмотрим на примере образования соединения с водородом элементов II периода системы Д. И. Менделеева, допуская для упрощения, что различие в электроотрицательности не влияет на форму и симметрию орбиталей, а также не учитывая частных свойств гидридов бора (димер В2Н6) и бериллия [(BeH2)Jt]. В табл. 3.3 приведены структуры молекул водородных соединений элементов 2-го периода и их геометрическая характеристика. [c.78]

    Бориды, карбиды, нитриды и другие соединения этой группы оказываются ковалентными, если образующие их элементы близки по размеру атомов и величине электроотрицательности. К таким ковалентным соединениям относятся нитриды бора и бериллия — ВМ и ВедЫз, карбид кремния 51 С и др. Все они отличаются большой твердостью. Нитрид бора имеет структуру графита, но при высоких температурах и давлении превращается в алмазоподобную модификацию, кристаллы которой царапают алмаз. [c.63]

    Устойчивость ионов в водном растворе является результатом такого распределения электрического заряда между определенным числом. атомов, при котором ни один атом не проявляет значительного отклонения от злектронейтральности (разд. 6.13). Рассмотрим гидратированные катионы Ве(0Н2)Г и АЦОНг) " , представленные на рис. 9.9. Как бериллий, так и алюминий имеют электроотрйцательность 1,5,"а электроотрицательность кислорода равна 3,5, Разность электроотрицательностей соответствует ионности, немного превышающей 50%, достаточной [c.256]

    Химические свойства бериллия напоминают свойства алюминия (диагональная периодичность свойств). Так, оба эти металла образуют ковалентные галогениды с мостиковыми атомами галогена, им свойственно комплексообразование (в частности, с га-логенид-ионами, например [ВеРд] и [А1Ре] ). Наконец, бериллий амфотерен, как и алюминий (электроотрицательность обоих элементов 1,47). [c.116]

    Только в редких случаях (невозможность восстановления таких металлов, как алюминий, магний, бериллий, и других электроотрицательных металлов) применяют формальдегидные, спиртовоэфирные и другие электролиты, обеспечивающие получение качественных покрытий в среде водорода или аргона по особой технологии. [c.69]

    Диизопропилбериллий хорошо растворим в бензоле, где он димерен, причем степень ассоциации не изменяется от концентрации. Структура димера аналогична структуре диметилбериллия в парах [26]. Связь Ве—С—Ве образована 5р орбитами бериллия и кр орбитами углерода, так что каждая мостиковая связь Ве—С может рассматриваться как полу-связь. Уменьшение степени ассоциации при переходе от метильного к изо-пропильному производному бериллия связано, по-видимому, не только со стерическим эффектом, но главным образом с уменьшением электроотрицательного характера алкильной группы. [c.474]

    Интересно отношение бериллия к воде несмотря на то что бериллий является металлом электроотрицательным, находящимся в ряду напряжений между магнием и кальцием, он не вытесняет водорода из воды ни в холодном, ни в нагретом состоянии. Это объясняется образованием на поверхности металла пленкц окиси, препятствующей дальнейшему взаимодействию его с водой. Однако металлический бериллий вытесняет воду из различных твердых кристаллогидратов [1156]. Подобное же явление было установлено ранее для магния, алюминия и цинка. Растертый в порошок металлический бериллий реагирует с растертыми же в порошок различными солями с различной скоростью. [c.431]

    Как известно, электроотрицательность химических элементов при перемещении слева направо и снизу вверх по таблице Менделеева увеличивается, т.е. фтор, занимающий верхний правый угол этой таблицы, обладает наибольшей электроотрицательностью. Это означает, что при связывании с любым химическим элементом фтор притягивает к себе общую пару электронов и образует фториды даже такие соединения, какОр2 и С1Рз, являются фторидами кислорода и хлора, а не оксидом и хлоридом фтора Фтор способен образовывать химичео кие связи почти со всеми элементами, причем во многих случаях эти связи характеризуются очень высокими энергиями. Как показано в табл. 1.1,особенно высокие значения энергии связи, свыше 500 кДж/ моль, наб.шодаются при образовании связей с водородом, литием, бором, бериллием, углеродом, алюминием, кремнием, фториды которых отличаются высокой термодинамической стабильностью. [c.8]

    Бериллий — металл 2-й группы, серо-стального цвета. Его атомный вес — 9,013, удельный вес - 1,84, температура плавления 1284 , температура кипения 2970°. С водородом бериллий не реагирует, также с. хс.иодноп п го )ячей водой, хотя является электроотрицательным металлом. Этому способствует защитная пленка окиси бериллия. Бериллий реагирует с кислотами, за исключением горячей азотной. Со щелочами он образует берил-латы. Таким образом, в отличие от его аналогов 2-й группы, он амфотерен. [c.472]

    Элементы 2-го периода отличаются по свойствам от своих более тяжелых аналогов. Литий аномален среди щелочных элементов и похож на магний больше, чем на элементы своей группы. Во ПА группе бериллий также не похож на магний и щелочноземельные элементы, но имеет много общих свойств с элементом П1А группы алюминием. Фтор — это хотя и галоген, но с таким большим набором особенностей, что название сверхгалоген не является неожиданным. В целом, атомы всех элементов 2-го периода от Ы до Р характеризуются (в отличие от тяжелых аналогов в А-группах) большой силой притяжения электронов. Поэтому фтор намного более реакционноспособен, чем хлор, бром или иод, а литий менее реакционноспособен, чем его аналоги (На—Рг). Конечно, меньшая реакционная способность, присущая литию, компенсируется в водном растворе высокой экзотермической гидратацией его малых по размерам ионов Ы+. Таким образом, элементы второго периода — это наиболее электроотрицательные и наименьшие по атомным размерам элементы каждой А-группы. [c.555]

    Бериллию необходимы две поделенные электронные пары, чтобы нейтрализовать заряд остова. Однако его валентная оболочка легко может вместить 4 и даже 6 электронных пар, поэтому бериллий образует комплексные ионы ВеСГ и ВеР с электроотрицательными лигандами, от которых он приобретает 4 электронные пары. Бор требует [c.104]

    Интересно, что наиболее электроотрицательные металлы — бериллий, цинк и алюминий, — которые имеют большую склонность к координации, присоединяются в 1,4-положение. Ьсли количество продукта 1,4-присоединения может служить показателем, то, по-видимому, даже литий и натрий частично координи-- руются с карбонильным кислородом. [c.313]

    Следующим фактором, который необходимо учитывать при сопоставлении кислот но-основных свойств молекул, является электроотрицательность атома, связывающего протон. Такое сопоставление позволяет сделать выводы относительно свойств соединений различных элементов с водородом. В одном и том же периоде периодической системы электроотрицательность элементов значительно возрадтает по мере перемещения слева направо, что приводит к усилению кислотных свойств водородных соединений. Рассмотрим второй период системы. Электроотрицательность по определению Полинга увеличивается здесь от 1,0 у лития до 4,0 у фтора. Гидрид лития не имеет кислотного характера, а ион водорода Н- имеет сильные основные свойства. Следующий в ряду гидрид бериллия имеет подобный характер, но слабее выраженный. Мы пропускаем соединение ВН , которое не известно в мономерной форме, и переходим к метану СН . Не имея свободной пары электронов, он не проявляет основных свойств, но ион СН— имеет сильные основные свойства. Следующее соединение — аммиак NHз - имеет свободную электронную пару и может, следовательно, реагировать как основание. Хотя кислотные свойства аммиака и не наблюдаются в водных растворах, но их можно установить в других растворителях, например в жидком аммиаке, в котором ион КН является сильным основанием. Известно, что вода Н О является более сильной кислотой, чем ННд, а ион ОН- хотя и является сильным основанием, но все же более слабый, чем NH-. Последний в ряду фтористый водород НГ, безусловно, кислота, а сопряженное с ним основание является в водном растворе довольно слабым основанием  [c.209]


Смотреть страницы где упоминается термин Бериллий электроотрицательность: [c.452]    [c.317]    [c.17]    [c.382]    [c.201]    [c.378]    [c.94]    [c.95]    [c.269]   
Справочник по общей и неорганической химии (1997) -- [ c.40 ]




ПОИСК





Смотрите так же термины и статьи:

Электроотрицательность



© 2025 chem21.info Реклама на сайте