Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Генерирование химическое

    Указанные факторы позволяют при помощи метода ЭХГ получить удовлетворительные спектры ЭПР свободных радикал-анионов более удобно, чем спектры ЭПР тех же радикал-анионов, генерированных химическим методом. [c.29]

    До сих пор мы игнорировали пространственные координаты в системе, где происходит горение, предполагая, что состав и физические характеристики реагирующего газа однородны по пространству. Такие гомогенные системы могут быть получены в некоторых лабораторных ситуациях, но для многих экспериментов по горению и практически во всех возможных случаях состав газа и физические характеристики изменяются в пространстве, а газ обычно движется. Это означает, что процессы переноса, включая теплопроводность и диффузию, сказываются на эволюции системы и что силы, генерированные химической реакцией, будут приводить к тому, что гидродинамика реагирующей системы становится существенной. [c.16]


    Удовлетворительное совпадение двух рядов значений э.д.с. подтверждает справедливость представлений о природе происхождения электрической энергии в гравитационных цепях. Э.д.с. гравитационных цепей можно увеличить до нескольких милливольт, например при помощи центрифугирования. Э.д.с. и в этом случае очень мала, и лишь небольшая доля механической энергии, расходуемой на работу центрифуги, переходит в электрическую. Такие цепи не имеют практического значения, но они интересны тем, что говорят о возможности генерирования электрической энергии в системах с химически одинаковыми электродами. [c.194]

    Как отмечалось выше, непосредственная связь между адсорбционной способностью присадок и эффективностью их противоизносного действия наиболее отчетливо проявляется в тех случаях,. когда механизм действия присадки имеет преимущественно физический характер, либо когда в процессе трения не происходит генерирования такого количества тепла, которое могло быть достаточным для заметного проявления химической активности присадок. Вместе с тем температурные условия работы современных смазочных масел зачастую оказываются довольно жесткими. Поэтому при подборе присадок наряду с их поверхностной активностью (адсорбируемостью) необходимо учитывать и реакционную способность присадок. Более того, в зависимости от режима трения последняя может явиться определяющим фактором в механизме действия той или иной присадки. [c.258]

    Реакционная способность присадок и ее роль в механизме противоизносного действия. При значительных скоростях скольжения и больших удельных давлениях, характерных для большинства современных узлов трения, на площадях контакта происходит значительное генерирование тепла, интенсифицирующее развитие различных химических процессов на трущихся поверхностях. В этих условиях большое значение наряду с адсорбционной способностью присадок приобретает их химическая активность. С ней связана способность присадок предотвращать задир трущихся поверхностей, между которыми по разным причинам нарушается масляная пленка [276.  [c.258]

    Виброобработка — процесс увеличения сети трещин в ПЗП и изменения физико-химических свойств пласта и насыщающих флюидов генерированием виброударных волн на вибраторе, опускаемом к обрабатываемому интервалу. Высокоамплитудные волны давления генерируются при периодическом перекрытии потока рабочей жидкости. Чередующиеся перепады давления (иногда с частотой до 500 Гц) ведут к развитию трещин в ПЗП. [c.7]


    Ударные воздействия в технологии могут реализовываться следующими путями. При определенных режимах в ряде аппаратов движение твердых частиц, капель, пузырьков, струй, подвижных конструктивных элементов (шары и т.д.) могут носить ударный характер, например в осциллирующих режимах, сопровождающихся гидравлическими ударами. Целенаправленное использование этих режимов может служить одним из методов создания интенсифицирующих воздействий. Другим способом является генерирование ударных (импульсных) воздействий специальными устройствами, в качестве которых могут служить механические и другие вибровозбудители, работающие в соответствующем диапазоне амплитудно-частотных или временных характеристик. Разнообразные виброударные устройства нашли широкое применение в строительстве, машиностроении, геофизике [31]. В химической технологии подобные устройства почти не используются за исключением механических процессов (дробление), тогда как целесообразным является их применение и для интенсификации процессов других классов. [c.70]

    Двигатели внутреннего сгорания. Для преобразования химической энергии топлива в механическую широко используют двигатели внутреннего сгорания, которые могут работать по двум основным термодинамическим циклам Отто и Дизеля, базирующимся на получении механической энергии за счет сжатия, нагрева и вывода отработанного газа. В первом цикле топливо распыляется или испаряется и засасывается в рабочую камеру вместе с воздухом. Смесь топлива и воздуха сжимается, а затем воспламеняется от внешнего источника (чаще всего им является электроискровой разряд), что и является началом генерирования энергии за счет тепла горящей смеси. Во втором цикле рабочее тело, т. е. воздух, сжимается самостоятельно, а топливо впрыскивается в жидком виде в конце периода сжатия. Воспламенение осуществляется после того, как топливо перемещается с горячим сжатым воздухом. Требования, предъявляемые к топливу, зависят от типа двигателя. В карбюраторном двигателе, работающем по циклу Отто, следует применять топливо, не вызывающее детонации в момент сжатия топливовоздушной смеси. Необходимо, чтобы оно сгорало равномерно, без преждевременного воспламенения и не имело несгоревшего остатка. В дизельном двигателе [c.331]

    Ориентированное состояние, в принципе, может быть достигнуто одним из трех способов [31, дополнение И] перестройка, сборка и прямое генерирование из бесструктурного раствора или расплава. До сих пор в технологии химических волокон и пленок доминирует принцип перестройки, связанный с термическими и [c.216]

    Растворение щелочных металлов и электрохимическое генерирование позволяют получить сольватированные электроны в равновесии с окружающей средой. Сольватированные электроны в неравновесном состоянии образуются при отрыве электронов от молекул, ионов или атомов под действием высокоэнергетического рентгеновского или у-из-лучения или потока быстрых электронов (радиационно-химический метод) или под действием света (фотохимический метод). Этими методами можно генерировать сольватированные электроны в самых разнообразных растворителях, в том числе и в воде. Сольватированные электроны — чрезвычайно реакционноспособные частицы и реагируют с молекулами растворителя со значительными скоростями. Поэтому, например, в воде время жизни сольватированного электрона менее [c.79]

    Очень часто химическая реакция протекает с участием активных частиц свободных радикалов, карбкатионов, карбенов и т. д. В ряде случаев эти частицы удается обнаружить спектральными методами (УФ, ИК, ЭПР, ЯМР). Однако довольно часто промежуточный продукт реакции настолько активен и его концентрация в системе так мала, что его не удается обнаружить каким-либо физическим методом. В таких случаях используют метод химических ловушек или фиксаторов активных частиц. Принцип метода заключается в следующем. В систему, где протекает химическая реакция, вводится вещество — специфический реагент по отношению к частицам, которые предполагаются как промежуточный продукт совокупного процесса. Это вещество, быстро вступая в реакцию с активными частицами, превращается в стабильный продукт, образование которого фиксируют тем или иным методом, что и является доказательством участия промежуточного продукта в реакции. Если специфический реагент не вступает в реакцию, то это служит доказательством того, что подозреваемый тип частиц не принимает участия в изучаемой реакции. К реагенту-ловушке предъявляются следующие требования этот реагент должен избирательно реагировать с данным типом активных частиц и вместе с тем быть пассивным с исходными веществами. Продукты его превращения должны быть устойчивы. Метод химической ловушки не применим к цепной реакции, если скорость генерирования активных частиц очень мала. [c.317]


    Электрохимия изучает химические реакции, протекающие под влиянием электрического тока, и процессы генерирования электрической энергии, происходящие в результате протекания химических реакций. Оба типа этих процессов сопровождаются взаимопревращениями электрической и химической энергии. [c.312]

    Все электрохимические процессы можно подразделить на две группы процессы электролиза, при которых под воздействием внешнего источника электрической энергии происходят химические реакции, и процессы генерирования электрической энергии в результате протекания химических реакций. [c.313]

    Электрохимическими преобразователями, или хемотронами, называют приборы и отдельные элементы устройств, принцип действия которых основан на законах электрохимии. Электрохимические системы такого рода выполняют роль диодов, датчиков, интеграторов, запоминающих устройств и соответственно выполняют функции выпрямления, усиления и генерирования электрических сигналов, измерения неэлектрических величин и др. В хемотронах происходят процессы преобразования электрической энергии в химическую, а также механической энергии в электрическую и др. В отличие от электронных устройств (ламповых и полупроводниковых), в которых перенос электричества осуществляется электронами, в электрохимических преобразователях заряды переносятся ионами. Согласно закону Фарадея, количество вещества, претерпевшего изменение на электроде, пропорционально количеству прошедшего электричества. Поэтому измеряя тем или иным способом количественное изменение вещества, можно определить количество электричества, т. е. интегрировать электрические сигналы. Для этого электрохимическая реакция должна быть а) обратимой, т. е. реакция на аноде должна быть обратной реакции на катоде. Например, на аноде Си — 2е Си на катоде Си + + Че" Си б) реакция должна быть единственной, иначе точное интегрирование тока затруднено в) электролиты и электроды должны быть устойчивыми во времени г) реакции на электродах должны протекать с достаточно высокими скоростями. Таким требованиям могут удовлетворять некоторые электрохимические реакции, характеризующиеся потенциалами, лежащими между потенциалами водородного и кислородного электродов (рис. 66). При отсутствии в системе газообразных водородов и кислорода и при малой электрохимической поляризации электродов на них будут протекать лишь основные реакции. Системой, удовлетворяющей указанным требованиям, может быть 12+ + 2е ч 21" Е = 0,53 В. Потенциал ее положительнее потенциала водородного электрода и при рН< 11 отрицательнее потенциала кислородного электрода, поэтому в водных растворах в присутствии иода и ионов I" кислород и водород выделяться не будут. Эта реакция в прямом и обратном направлениях протекаете небольшой электрохимической поляризацией, следовательно, на электродах можно получить [c.367]

    Бромирование анилина протекает медленно, поэтому предварительно электрогенерируют избыток Вгг из бромида калия и после завершения химической реакции образования триброманилина, реверсируя ток электролиза, титруют избыток Вгг катодно генерированными Си+-ионами. Этот процесс протекает с большой скоростью, так как Вгг восстанавливается как непосредственно на Pt-электроде, так и химически электрогенерированными Си+-ионами. [c.221]

    В то время как при потенциостатической кулонометрии определяемое вещество само вступает в электрохимическую реакцию на рабочем электроде, при кулонометрическом титровании при контролируемой силе тока в процессе химической реакции генерируется продукт, который затем вступает в реакцию с определяемым веществом. Таким образом, данный метод аналогичен классическому титрованию, за исключением того, ЧТО ТИТрант генерируют в процессе электролиза. При генерировании титранта отпадает необходимость применения установочных веществ и установки титра. При этом исключается также ошибка, связанная с разбавлением раствора в про- [c.151]

    В топливных элементах ток вырабатывается при непрерывной подаче восстанавливающих (топливо) и окисляющих веществ и при непрерывном отводе продуктов реакции, так что состав элемента в процессе генерирования тока практически не меняется. В принципе работа ТЭ может быть основана на любом процессе окисления — восстановления. Поэтому теоретически возможно проводить окисление обычных горячих веществ таким образом, чтобы освобождающаяся химическая энергия полностью превращалась в электрическую, а не в тепловую как при обычном сжигании. Тем не менее, применение топливных элементов пока ограничено. Это связано с их весьма значительной стоимостью, ограниченным сроком службы. Кроме того, к. п. д. разработанных ТЭ еще недостаточно высок. [c.284]

    Прямой материальной продукцией топочного устройства являются покидающие его топочные газы, получающиеся в результате протекания химической реакции между окислителем и топливом. Однако было бы необоснованным считать топку прибором для генерирования топочного газа, так как она выдает этот газ в количестве, практически почти равном тому количеству воздуха, которое вводится в процесс. Это происходит потому, что удельный расход воздуха на единицу производимой энергии весьма значителен и в несколько раз превышает удельный расход топлива (на каждую выделяемую тысячу калорий необходимый теоретический расход воздуха составляет примерно 1,5 кг). [c.115]

    Этот принцип может быть использован для генерирования электрического тока. Например, если в раствор сульфата меди поместить полоски цинка и меди и соединить их внешним проводником, как показано на рис. 9.44, цинк начнет переходить в раствор, образуя сульфат цинка, а медь будет осаждаться на полоске меди. Переходя в раствор, цинк отдает два электрона, которые движутся по внешнему проводнику к полоске меди, где они акцептируются ионами меди, в результате чего образуется молекулярная медь. Благодаря этому химическая энергия, выделяющаяся в ходе реакции [c.386]

    Ангармонизм колебаний и перераспределение энергии между разл. степенями свободы при соударениях молекул приводят к ограничению направленности действия источника возбуждения системы. Для достижения наиб, выхода продукта при минимуме затрат энергии нужно, как правило, возбуждать не одну, а неск. определенных колебат. степеней свободы, причем не обязательно оптически разрешенных. Это позволяет управлять хим. р-циями их скоростью, составом продукта и др. Подобные задачи решаются, в частности, в плазмохимии, фотохимии, радиационной химии, лазерной химии. Первичные продукты внеш. воздействия-сильно неравновесные по хим. составу и степени возбуждения частицы - могут, взаимодействуя, приводить к образованию больших концентраций др. возбужденных частиц, в т. ч. с инверсной заселенностью, что является необходимым условием для генерирования лазерного излучения (см. Лазеры химические). [c.219]

    Что касается механизма присоединения дигалогенкарбенов, генерированных химическими путями, то в результате многочисленных работ, выполненных в основном на непредельных углеводородах, было с очевидностью установлено два факта 1) присоединение дигалогенкарбена к олефинам проходит стереоспецифично как г ыс-присоединение и 2) дигалогенкарбены ведут себя в этой реакции как сильные электрофильные реагенты. Отсюда вытекает, что дигалогенкарбены находятся в синглетном состоянии. Это означает, что два свободных электрона карбена имеют спины с противоположным направлением (эти электроны могут располагаться на а-, р- или а э-орбиталях электронные конфигурации о , р или ар). [c.80]

    При неопровержимости того, что вирусные мутанты — отличные модели, желательно иметь данные об их интенсивно развивающейся истории и о характеристике. Особенно это необходимо для мутантов, выделенных при химическом мутагенезе, в частности для ts-мутантов. С помощью различных проб, взятых из определенного участка генома, может быть обнаружена локализация основного дефекта. В мутированной ДНК могут присутствовать другие дефекты, не определяемые с помощью проб. Такие дополнительные мутанты бывают минорными, или несущественными, однако влияющими на инфекционность и(или) трансформирующую способность вируса. Интересно, что у мутантов, генерированных химическими мутагенами, некоторые участки мутируются легко, в то время как другие — трудно, если когда-либо мутируются вообще. Способ действия мутагенов в общем выяснен, механизм концентрирования мутагенов в определенных участках — нет. Вирус SV40 соответствующий пример того. Хотя делеционные мутанты по t-антигену были изолированы, не были получены ts-мутанты по t-антигену с помощью химических мутагенов. И наоборот, ts-мутанты гена А (область Т-антигена) являются обычными. [c.189]

    Эффективность метода внутрипластового сульфирования, как и для других физико-химических методов (закачка ПАВ, полимеров), зависит от интенсивности адсорбции реагента на поверхности пористой среды. Величина адсорбции генерированных в пласте ПАВ на месторождениях ТатАССР незначительна [23], что предопределяет минимальные его потери. [c.141]

    Монокристаллы германия, кремния, арсенида галлия, сульфида свинца и т. п. используют для изготовления полупроводниковой аппаратуры диодов, триодов и т. д. (см. разд. У.14). Монокристаллы рубина, фторида лития и некоторые полупроводники применяются в лазерах. Монокристаллы кварца, каменной соли, кремния, германия, исландского шпата, фторида лития и др. применяют в оптических узлах многих приборов физико-химического анализа. Монокристаллы кварца и сегиетовой соли используют для стабилизации радиочастот, генерирования ультразвука, изготовления основных деталей микрофонов, телефонов, манометров, адаптеров и т. д. Монокристаллы алмаза широко используются при обработке особо твердых материалов и бурении горных пород. Отходы монокристаллов рубина нашли применение в часовой промышленности. Многие монокристаллы применяются так же в качестве украшений (бриллиант, топаз, сапфир, рубин и др.). [c.38]

    Мембраны играют также важную роль в механизме освобождения и потребления энергии в живых организмах. Различные виды живых клеток получают энергию из окружающей среды в разных формах, однако накопление и использование ее происходит в виде аденозинтри-фосфата (АТФ). При передаче энергии АТФ переходит в аденозин-дифоефат (АДФ), который в свою очередь за счет разных видов энергии присоединяет фосфатную группу и превращается в АТФ. Процесс образования АТФ называется фосфорилированием. Этот процесс в организмах животных и человека сопряжен с процессом дыхания. Аистом генерирования АТФ в животных клетках являются особые компоненты клеток — митохондрии, которые служат своеобразными силовыми станциями , поставляющими энергию, необходимую для функционирования клеток. Митохондрия окружена двумя мембранами внешней и внутренней. На внутренней мембране, содержащей ферментные комплексы, происходит превращение энергии химических связей в мембранный потенциал. При этом важную роль играют проницаемость и электронная проводимость мембран. [c.140]

    Неравновесными химическими реакциями принято называть реакции, протекающие в условиях нарушения максвелл-больцмановского распределения реагирующих молекул по степеням свободы. Нарушения равновесного распределения в химических реакциях могут быть обусловлены двумя причинами. Первая состоит в том, что в химической реакции расходуются наиболее богатые энергией частицы, что сильнее всего проявляется в эндотермических реакциях, например в реакциях диссоциации. В тех случаях, когда скорость распада превышает ско-рх5сть генерирования активных молекул, распределение колебательной энергии будет отличаться от равновесного и скорость распада становится меньше равновесной. Вторая причина — выделение энергии в элементарных экзотермических актах, которая, как правило, распределяется неравновесным образом по различным степеням свободы реагентов. [c.106]

    Хорошо известным является то положение, что развитие науки происходит не путем монотонного наращивания запаса знаний, т. е. не кумулятивно, а посредством смены двух фаз, резко отличных друг от друга как по темпам, так и по способам генерирования новой научной информации. В соответствии с марксистской концепцией развити.ч науки эти фазы обычно называют революционной и эволюцио1шо11 илн интенсивной и экстенсивной. Если говорить конкретно только о химии, то одной из отличительных черт эволюционной фазы ее развития является решение различных тактических задач приемущественно экспериментального характера в рамках готовой гипотезы или теории, К тактическим задачам относятся, например, исследования кинетических параметров реакций, поиск оптимальных термодинамических условий осуществления процессов, органический синтез новых соединений в русле теории химического строения и т. д. [c.7]

    Теория цепных процессов послужила главной внутринаучной предпосылкой также и для взаимосвязанных процессов развития химии и химической технологии синтетических полимеров. Были выяснены многочисленные закономерности, относящиеся к процессам полимеризации, начиная с количественного определения реакционной способности данного мономера и образовавшегося из него радикала и кончая рекомендациями по регулированию молекулярной массы получаемых полимеров. Установлен механизм инициирования реакций при различных способах генерирования радикалов, взаимодействия радикалов с молекулами мономера, растворителя, ингибиторов. Развита теория сополимеризации. Технологическим следствием работ в области цепной теории полимеризации явилась детальная разработка в 1938—1940-х годах процессов синтеза полиэтилена высокого давления, полистирола, поливинилового спирта, поливинилхлорида, полиакрнлатов, полиизобутилена, коренное [c.149]

    На стадии инициирования реакции необходимо, чтобы в системе осуществилось получение (генерирование) свободных радикалов в результате теплового воздействия (термическое инициирование), светового (фотонницнирование), радиоактивного облучения (радиационное инициирование), химическими инициаторами (хн-м№1еское ра.цикальное инициирование) н др. [c.20]

    Независимо от способа получения RN2+ слишком неустойчив, чтобы его можно было выделить [307], и реагирует, вероятно, по механизму SnI или Sn2 [308]. На самом деле механизм точно не установлен, так как данные, полученные при изучении кинетики, стереохимии и продуктов, трудно интерпретировать [309]. Если образуются свободные карбокатионы, они должны давать то же соотношение продуктов замещения, элиминирования и перегруппировки и т. д., что и карбокатионы, генерированные в других реакциях SnI, но часто это не так. Постулировано [310], что горячие карбокатионы [несольватированные и (или) химически активированные], которые могут сохранять свою конфигурацию, образуют ионные пары, в которых противоионом является ОН- (или OA и т. д. в зависимости от метода генерирования диазониевого иона) [311]. [c.83]

    Электрохимическими преобразователями, или хемотронами, называют приборы и отдельные элементы устройств, принцип действия которых основан на законах электрохимии. Электрохимические системы такого рода выполняют роль диодов, датчиков, интеграторов, запоминающих устройств и соответственно выполняют функции выпрямления, усиления и генерирования электрических сигналов, измерения неэлектрических величин и др. В хемотронах происходят процессы преобразования электрической энергии в химическую, а также механической энергии в электрическую и др. В отличие от электронных устройств (ламповых и полупроводниковых), в которых перенос электричества осуществляется электронами, в электрохимических преобразователях заряды переносятся ионами. Согласно закону Фарадея, количество вещества, претерпевщего изменение на электроде, пропорционально количеству прошедшего электричества. Поэтому измеряя тем или иным способом количественное изменение вещества, можно определить количество электричества, т. е. интегрировать электрические сигналы. Для этого электрохимическая реакция должна быть а) обратимой, т. е. реакция на аноде должна быть обратной реакции на катоде. Например, на аноде Си — 2е на катоде Си + + 2е Си б) ре- [c.417]

    Разработка эффективных методов генерирования МГ приобретает особое значение в связи с проблемами компьютерного синтеза и молекулярного дизайна [19—25], автоматизации обработки данных спектральных исследований молекул, идентификации химических соединений ио набору спектральных данных, полученных методами ПК-, ЯМР-, ЯКР-спектросконии и масс-спектрометрии [26— 29]. Во всех этих направлениях возникает проблема описания изомеров с данной брутто-формулой или нахождения всех возмоншых продуктов реакций, удовлетворяющих определенным критериям отбора. Наиболее общие способы генерации химических структур ориентированы на современные ЭВМ, с помощью которых ио определенным алгоритмам можно находить структурные формулы всех возможных изомеров с заданной брутто-формулой. Эти методы основаны на онисаиип структуры молекулы в виде топологической матрицы. [c.22]

    Канонический способ нумерации вершин используется во многих работах по перечислению МГ, так как устраняет необходи-дюсть решать сложную проблему проверки графов на изоморфизм. Можно показать, что двум различным каноническим топологическим матрицам соответствуют неизоморфные графы. Алгоритмы генерирования используемых в химических исследованиях графов, основанные на канонической нумерации, начали разрабатываться около 15 лет назад [31, 32]. Анализ некоторых из таких алгоритмов проведен в работе [29], в которой содержится также обширная библиография по методам генерирования графов на ЭВМ, полезным при автоматизации молекулярного спектрального анализа. Опубликован ряд работ, непосредственно относящихся к разработке конструктивных алгоритмов перечисления графов и анализу их свойств симметрии [33—36, 163]. Различные способы кодирования химических соединений обсуждаются также в [37, 168]. [c.23]

    В этом месте можно упомянуть, что указанный выше метод, способный предсказывать получение новых типов динамического поведения путем преврашения параметра в зависимую медленную переменную, никоим образом не является новым, как показывает пример осциллятора Рэлея — Льенарда (см. [14]). Этот метод, например, использован для генерирования произвольно больших химических систем с заданным поведением ( химические автоматы [14]). [c.411]

    Значение термина стратегическая связь (SB), равно как и критерии выбора такой связи в составе целевой структуры мы уже обсуждали в разд. 3.2.5. Между прочим, и само содержание этого понятия, и критерии выбора были сформулированы именно для нужд компьютерного планирования синтеза. Система LHASA гораздо лучше, чем живой химик, приспособлена дчя исчерпывающего анализа полициклических молекул и генерации полного набора SB, отвечающего определенным, заранее заданным критериям. После генерирования набора стратегических спязей система анализирует приемлемые способы разборки (а следовательно, и сборки) каждой из этих SB. Попробуем объяснить химическую. тогику и основные стадии такого поиска. [c.352]

    Заслуживают внимания еще несколько способностей системы LHASA, помогающих созданию работоспособных планов синтеза. Прежде всего, операторы, используемые программой, организованы иерархически на основании относительной эффективности выполнения соответствующих химических трансформаций. Так, например, оператор FGI имеет более высокий приоритет, чем FGA, поскольку осуществить трансформацию имеющейся функциональной группы, как правило, легче, чем ее удалить. Далее, система оценивает все операторы FGI и FGA в соответствии с ожвдаемой эффективностью соответствующей прямой реакции в данном структурном контексте. Так, ретросинтетический анализ структуры 181 по ггути, представленному на схеме 3.46, предполагает использование оператора FGI для введения дополнительной карбонильной группы и генерирования 182, что требуется для разборки избранной SB с помощью оператора 2-GRP (трансформ реакции Михаэля), приводящей к предшественнику 183. В ходе такой [c.354]

    Что касается механизма присоединения дигалогенкарбенов, генерированных в условиях межфазного катализа, т. е. химическим путем, то в результате многочисленных исследований, выполненных в основном на непредельных углеводородах, было установлено два факта 1) присоединение дигалогенкарбенов к олефннам проходит стереоспецифично как ыс-присоединение и 2) дигалогенкарбены ведут себя в этой реакции как электро-фильные реагенты. Отсюда следует, что дигалогенкарбены на- [c.146]

    Кроме химического окисления и восстановления важными способами генерирования заряженных радикальных частиц являются электрохимические процессы. Катион-радикалы генерируются при одноэлек- тронном окислении на-аноде, в то время как на катоде-при одноэлек, . тройном восетановлевви генерируются анион-радикалы,.  [c.460]

    Методы электрохимии могз т быгь использованы для анализа и синтеза органических соединений, установления или подтверждения структуры, исследования природы каталитической активности, изучения промежуточных продуктов, генерирования хс-милюминесценции, исследования механизма процессов переноса электрона, изучения связи между структурой и электрохимической активностью, инициирования полимеризации, синтеза катализаторов и их компонентов, процессов деструкции, изучения биологических окислительно-восстановительных систем и т. д., а также для исследования кинетики, механизмов реакций, солевых эффектов, сольватации, влияния электрического поля на химические реакдии и в ряде других областей науки. Поэтому весьма отрадно, что нашелся целый ряд исследователей, которые решили направить свои усилия на развитие органической электрохимии [1] Объединение усилий больгиого числа специалистов сделало возможным достижение успеха одновременно на многих направлениях. Благодаря тому, что данная область химии находится иа стыке нескольких паук, большинство [c.21]

    Методы ЛВА н ЦВА исиользуют дчя исследования механиз MOB реакций интермедиатов, генерированных на электроде [1, 3—16, 20—22, 24]. На примере использования ЛВА и ЦВА для исследоваиия сопряженных реакций удобно классифицировать эти процессы в соответствии с природой их отклика В случае чисто кинетического контроля перенос заряда описывается иернстовскими соотношениями, а стационарное состояние устанавливается благодаря взаимной компенсации химической реакдии интермедиата и процесса диффузии [7]. Дчя процессов другого типа скорость химической реакции такова, что иа форму вольтамперограммы влияет v, ио перенос заряда все ен е нернстовский. В этом случае методом ЦВА можно наблюдать существование интермедиата при достаточно больших v К процессам третьего типа относятся процессы, у которых скорость гомогенной реакции близка к скорости в первых двух случаях, а перенос заряда квазиобратим [c.100]


Библиография для Генерирование химическое: [c.237]   
Смотреть страницы где упоминается термин Генерирование химическое: [c.120]    [c.6]    [c.202]    [c.79]    [c.88]    [c.347]    [c.134]    [c.452]    [c.169]    [c.144]   
Технология тонких пленок Часть 1 (1977) -- [ c.207 , c.210 ]




ПОИСК







© 2025 chem21.info Реклама на сайте