Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Источник возбуждения в спектральном анализе

    Интенсивность спектральной линии зависит от многих условий источника возбуждения спектральных линий, скорости испарения пробы, освещения щели спектрального прибора и др. При случайных изменениях этих условий меняется интенсивность спектральных линий, поэтому количественный анализ, основанный на измерении абсолютной интенсивности спектральных линий, недостаточно точен. [c.226]


    В практике атомно-эмиссионного спектрального анализа в качестве источников возбуждения спектров применяют пламя, электрические дуги постоянного и переменного тока, низко- и высоковольтную конденсированную искру, низковольтный импульсный разряд, различные формы тлеющего газового разряда я др. В последние годы начинают широко использовать также различные виды высокочастотных разрядов — источник индуктивно-связанной высокочастотной плазмы (ИСП), микроволновой разряд и др. [c.58]

    В последние годы, наряду с усовершенствованием и модернизацией традиционных для спектрального анализа источников света, достигнуты существенные успехи и в разработке новых способов возбуждения спектров — с помощью высокочастотных плазмотронов и некоторых форм тлеющего разряда. [c.64]

    Помимо величины длины волны спектральная линия имеет еще одну очень важную для спектрального анализа характеристику — интенсивность. Интенсивность спектра испускания связана с энергией, испускаемой возбужденными атомами (молекулами) в источниках излучения, а спектров поглощения — с энергией, поглощаемой атомами (молекулами) вещества. Интенсивности спектров зависят от вероятностей переходов и от заселенностей уровней, начальных для этих переходов. [c.7]

    В основе эмиссионного спектрального анализа лежит изучение строения света, разложенного по длинам волн в виде спектра, который излучается или поглощается возбужденными атомами и молекулами анализируемого вещества. Атомы и молекулы могут возбуждаться пламенем горелки, электрической дугой или искрой. Высокая температура (1000°С) в источниках света приводит к распаду молекул большинства веществ на атомы. Поэтому эмиссионный метод, как правило, является атомным анализом. [c.43]

    Эмиссионный спектральный анализ — физический метод, основанный на изучении эмиссионных спектров паров анализируемого вещества (спектров испускания или излучения), возникающих под влиянием сильных источников возбуждений (электрической дуги, высоковольтной искры) этот метод дает возможность определять элементный состав вещества, т. е. судить о том, какие химические элементы входят в состав данного вещества. [c.27]

    Пламенная спектрофотометрия, или фотометрия пламени, являющаяся разновидностью эмиссионного спектрального анализа, основана на изучении эмиссионных спектров элементов анализируемого вещества, возникающих под влиянием мягких источников возбуждения. В этом методе анализируемый раствор распыляют в пламени. Этот метод дает возможность судить о содержании в анализируемом образце главным [c.27]


    Источник возбуждения спектра — пламя имеет сравнительно невысокую температуру, поэтому получаемые спектры сравнительно простые и не содержат много линий. Простота спектров дает возможность выделять искомые спектральные линии при помощи светофильтров или монохроматоров малой дисперсии. Метод фотометрии пламени является разновидностью эмиссионного спектрального анализа, поэтому приведенные выше теоретические основы эмиссионного метода анализа в известной мере относятся и к рассматриваемому методу. [c.242]

    По описываемой ниже методике для спектрального анализа растворов применяется стандартная аппаратура — стилометр СТ-7, и в качестве источника света — дуга переменного тока силой 2—3 ампера, питаемая генератором ДГ-2. На концы спектрально чистых угольных электродов диаметром 6 мм, расположенных горизонтально, наносят 1—2 капли исследуемого раствора, после чего зажигается дуга и производится визуальное наблюдение спектра. Исследуемый раствор, испаряясь, поступает в пространство между электродами, где под влиянием высокой температуры происходит возбуждение свечения атомов исследуемого вещества. [c.182]

    Пламена представляют собой исторически наиболее старые источники получения спектров индивидуальных атомов и молекул. Можно напомнить, что именно пламя было первым источником возбуждения в спектральном анализе (работы Кирхгофа и Бунзена в 1860 г.). До настоящего времени пламена находят широкое применение в различных методах спектрального анализа. Это можно объяснить многими причинами, главными из которых следует считать простоту обращения, доступность и низкую стоимость исходных веществ, используемых в качестве топлив и окислителей. Кроме того, пламена имеют определенные преимущества по сравнению с другими атомизаторами с точки зрения получения хороших метрологических характеристик анализа (см. ниже). [c.54]

    Влияние основы. Еще более сильное влияние на поступление и возбуждение анализируемого элемента оказывает изменение основы пробы. Этот случай встречается на практике реже, так как обычно удается строить отдельные градуировочные графики для объектов с разной основой. В тех же случаях, когда такие объекты приходится анализировать по одному графику, редко удается получить хорошую точность анализа. Так основа пробы и третьи элементы оказывают очень сильное влияние на температуру источников света. Например, при спектральном анализе руд и минералов в дуге постоянного тока ее температура колеблется от 4700 до 6500 в зависимости от состава руды или минерала, а при анализе природных вод наблюдалось снижение температуры дуги до 3700°. Относительная интенсивность спектральных линий даже с близкими потенциалами возбуждения может изменяться при этом в десятки и сотни раз. [c.240]

    В основе метода лежит исследование света, излучаемого веществом (чаще всего — атомами) при его энергетическом возбуждении (например, в плазме электрического разряда). Разновидностью эмиссионного спектрального анализа является пламенная фотометрия, основанная на использовании газового пламени в качестве источника возбуждения излучения. [c.518]

    Пламенная фотометрия — один из методов атомно-эмиссионного спектрального анализа. Этот метод состоит в том, что анализируемый образец переводят в раствор, который затем с помощью распылителя превращается в аэрозоль и подается в пламя горелки. Растворитель испаряется, а элементы, возбуждаясь, излучают спектр. Анализируемая спектральная линия выделяется с помощью прибора — монохроматора или светофильтра, а интенсивность ее свечения измеряется фотоэлементом. Пламя выгодно отличается от электрических источников света тем, что поступающие из баллона газ-топливо и газ-окислитель дают очень стабильное, равномерно горящее пламя. Из-за невысокой температуры в пламени возбуждаются элементы с низкими потенциалами возбуждения в первую очередь щелочные элементы, для определения которых практически нет экспрессных химических методов, а также щелочно-земельные и другие элементы. Всего этим методом определяют более 70 элементов. Использование индукционного высокочастотного разряда и дуговой плазменной горелки плазмотрона позволяет определять элементы с высоким потенциалом ионизации, а также элементы, образующие термостойкие оксиды, для возбуждения которых пламя малопригодно. [c.647]

    Источниками возбуждения спектра в эмиссионном спектральном анализе являются дуга или искра, горящие между двумя электродами, одним из которых служит анализируемая проба, а также пламя и плаз-матроны, в которые подается аэрозоль анализируемого раствора либо порошкообразная проба. [c.658]

    Плазматроны. Плазматрон, или плазменная горелка, является сравнительно новым источником возбуждения в спектральном анализе. Интерес к нему обусловлен его универсальностью, высокой чувствительностью определения элементов (10 —10 7о), исключительной стабильностью работы, малым влиянием основы анализируемого материала и третьих компонентов, возможностью непрерывного анализа как жидких, так и порошкообразных проб. [c.663]


    Фотометрия пламенная — один из видов спектрального анализа. Применяется для определения щелочных, щелочноземельных и некоторых других элементов по атомным спектрам или молекулярным полосам. Источником возбуждения служит пламя водорода, ацетилена, светильного газа. Метод обладает высокой чувствительностью, быстротой, точностью, позволяет определять элементы в солях, смесях, растворах, минералах, биологических объектах. [c.145]

    Другие источники возбуждения. В многоэлементном анализе в качестве источников возбуждения при определении натрия в природных водах применяли плазмотрон постоянного тока, работающий в атмосфере аргона [850]. Изучены спектральные характеристики факела плазменной горелки и влияние различных факторов (ток разряда, скорость вдувания образца в разряд и тангенциального потока газа) на интенсивность спектральных линий [707, 777, 878]. Для натрия предел обнаружения равен 0,5 мкг/мл. [c.112]

    Для проведения спектрального анализа концентрата р.з.э. последний наносят на торец графитового электрода, пропитанного 2%-ным раствором полистирола в бензоле. Источником спектра служит дуга переменного тока или искра. При искровом возбуждении спектра используется генератор ИГ-2 с параметрами контура 1=0,15 мгн, С=0,01 мкф. При дуговом возбуждении спектра используется генератор ПС-39, при силе тока 8—9 а. Дуговой промежуток — 2 мм. Лантан служит внутренним стандартом. Аналитические линии приведены в табл. 51. [c.370]

    Интенсивность линий зависит также от режима работы источника возбуждения, скорости испарения пробы, освещения щели спектрального прибора и других причин. При случайных изменениях этих условий меняется интенсивность линий, в связи с чем количественный анализ, основанный на измерении абсолютной интенсивности, недостаточно точен. Для получения количественных определений с меньшей ошибкой пользуются отношением интенсивности линий определяемого элемента и элемента сравнения (внутреннего стандарта), вводимого специально в анализируемую пробу в определенном количестве. Пару линий, используемую в количественном спектральном анализе, — линию определяемого элемента и линию элемента сравнения — называют гомологической или аналитической парой. Для измерения относительной интенсивности линий аналитической пары спектр исследуемой пробы фотографируют на пластинку. При этом получают ряд линий, степень почернения которых на фотопластинке зависит от их интенсивности. Количественно почернение фотопластинки принято измерять величиной плотности почернения (5), которую вычисляют по, формуле [c.324]

    Разработан [280—282] сцинтилляционный способ спектрального анализа, основанный на счете вспышек линий при попадании частиц золота в источник возбуждения. Для счета использованы линии 2675,95 и 2427,95 А. Метод применен для определения 1-10 —1-10 % Аи в рудах [282]. [c.184]

    В качестве источника возбуждения при анализе металлов используют преимущественно искру, а при анализе иеэлектропроводных материалов — дуговой разряд постоянного тока. Часто в начальный момент горения дуги из графитового электрода улетучивается особенно большое количество вещества. Поэтому для обеспечения высокой чувствительности следует регистрировать начальный момент. Воспроизводимые условия возбуждения связаны с установлением равновесия испарения, о достижении которого можно судить по постоянству интенсивности наблюдаемых линий во времени. Установление такого равновесия (время обжига или обыскривания) следует определять в предварительном опыте. В количественном анализе спектр регистрируют сразу же после проведения этой предварительной операции. Как правило, время экспонирования фотопластинки не должно превышать 30 с в этом случае получаются достаточно хорошие результаты. Для проведения оптического спектрального анализа требуется очень небольшое количество вещества. Поэтому имеется возможность угокальиого анализа отдельных участков пробы. Используя особые условия проведения разряда и особые приемы подготовки, на металлах можно анализировать участки поверхности диаметром 0,5 мм и меньше [13, 14]. [c.194]

    Первоначально польп" катод использовался исключительно для анализа газов и в изотопном спектральном анализе. В дальнейшем большое значение полый катод приобрел как высокочувствительный источник возбуждения для анализа особо чистых веществ, так как в полом катоде пределы обнаружения для элементов со средне летучестью достигают 10 —10 г. Это связа о, по-в1 Д 1мому, с большим времс ем иребыва1 ня частиц в малой полости катода и с высоко/ энергие электронов. [c.68]

    Рассмотрим две нормально распределенные выборочные совокупности результатов анализа объемами щ и п , полученные независимыми методами. Очевидно их выборочные дисперсии 5 и 51 не будут совпадать между собой. Однако различие между ними может носить только случайный характер, поскольку они являются приближенными оценками одной и той же общей для обеих выборок генеральной дисперсии а . В таком случае результаты обеих выборок можно считать равноточными. С другой стороны, различие дисперсий может быть обусловлено значимой причиной, например, снижением уровня шумов за счет стабилизации источника возбуждения (спектральный ана-iиз) или экранирования регистрирующей ячейки (потенциомет-рия) в одной серии определений в отличие от другой. Очевидно, выборочные совокупности результатов анализа в этом случае не будут равноточными. [c.104]

    Химическое пламя — это исторически первый эмргссионный источник в спектральном анализе, В связи с появлением пепла-менных систем атомизации и возбуждения интерес к изучению пламени упал, хотя для анализа на щелочные и щелочноземельные элементы, важные с точки зрения процессов первичной переработки нефти, фотометрия пламени используется. [c.48]

    Количественный спектральный анализ золы проводили в Ленинграде в лаборатории спектральных исследований Всесоюзного нефтяного научно-исследовательского геоло-го-разведочного института (ВНИГРИ). Зольные остатки нефти и нефтепродуктов анализировали на кварцевом спектрографе ИСП-22. Количественное содержание элементов в пробе определяли сравнением со специально приготовленными эталонами. Эталоны готовили на спектрально чистом кварцевом порошке с концентрацией от 3 до 0,003%. Источником возбуждения при анализе золы нефтей служила дуга постоянного тока 140 в с угольными электродами. Навеску золы нефти в количестве 10 мг помещали в углубление нижнего электрода и сжигали в течение 30 сек при силе тока. 5а и затем в течение 3 минут при силе тока 10а. Применяли фотопластинки тип-1. Параллельно сжигали и фотографировали эталоны в количестве 10 мг с концентрацией 3 1 0,3 0,1 0,03 0,01 0,003 и глина. [c.49]

    Для проведения спектрального анализа исследуемую пробу помещают в кратер угольного электрода и испаряют с помощью какого-либо источника возбуждения. При анализе монолитных элект р,о(1траводящих проб сам образец может выполнять роль одного из электродО(В. [c.93]

    Точность анализа зависит не только от точности приема фотометрирования, но и от того, насколько измеряемая интенсивность линий воспроизводится в различных опытах или же в одном опыте при данной концентрации элемента. Интенсивность линии определяемого элемента при данной концентрации зависит от условий испарения пробы и условий возбуждения в источнике света, которые не удается поддерживать в достаточной степени постоянными. Это и является одним из основных источников ошибок спектрального анализа. Для уменьшения ошибки применяют стандарты интенсивности, гомологичные линиям определяемого элемента. Линии называют гомологичными в том случае, если отношение их интенсивностей не изменяется в зависимости от температуры источника света, условий испарения прсбы. [c.215]

    Следующая группа работ посвящена описанию задач, наиболее часто встречающихся в технике фотографического спектрального анализа. Они включают получение навыков в построении харктеристической кривой фотоэмульсии, технику измерения почернений линий с помощью микрофотометров, освоение приемов монохромной и гетерохромной фотометрии, измерение основного параметра источника возбуждения спектров [c.93]

    С. Л. Мандельштам. Введение в спектральный анализ. Гостехиздат, 1946, (260 стр.). В книге рассмотрены физические принципы, лежащие в основе спектральных методов и аппаратуры. Рассмотрены также различные случаи применения спектральноаналитических методов. Много внимания уделено строению спектров, подробно рассмотрены различные источники возбуждения, описана аппаратура для наблюдения и регистрации спектров, свойства фотоматериалов и т. д. Техника спектрального анализа затронута лишь попутно. [c.488]

    Фотометрия пламени — вид эмиссионного спектрального анализа, в котором источниками возбуждения спектров являются пламена различных видов ацетилен — воздух, ацетилен — кислород, пропан — воздух, пропан — кислород, водород — воздух и др. Вследствие невысокой температуры в пламенах излучают легко и среднеион изующиеся элементы щелочные и щелочноземельные металлы, галлий, индий, магний, марганец, кобальт, медь, серебро и ряд других, причем их число растет с увеличением температуры пламени. В наиболее холодных пламенах, таких как, например, пропан — воздух, светильный газ — воздух излучают только атомы щелочных и щелочноземельных металлов. Вследствие невысокой температуры спектры, излучаемые пламенами, состоят из небольшого числа спектральных линий, главным образом резонансных, что позволяет выделять характеристическое излучение элементов при помощи светофильтров и использовать простые и имеющие невысокую стоимость спектральные приборы — пламенные фотометры. Кроме атомных спектральных линий в спектрах пламен присутствуют полосы ряда в основном двухатомных молекул и радикалов Сг, СиС1, СаОН и др. Некоторые из них используют в аналитических целях. Так, в случае элементов, образующих термически устойчивые оксиды, которые практически не диссоциируют в пламенах с образованием свободных атомов, молекулярные спектры являются единственным источником аналитического сигнала. Практически не атомизируются в низкотемпературных пламенах оксиды скандия, титана, лантана и других элементов, имеющих относительно невысокие потенциалы ионизации. Наиболее часто фотометрию пламени применяют для определения щелочных и щелочноземельных металлов. [c.35]

    Атомы анализируемого вещества, находящиеся в плазме спект- рального источника, испытывают соударения с электронами, приходят в возбужденное состояние и излучают свет. Следует подчеркнуть, что вследствие разрушения химических связей и разложения соединений на отдельные атомы спектральный анализ, в отличие от химического, не позволяет установить степени окисления и валентные состояния элементов в исходном веществе. Например, спектральным методом легко обнаружить в исследуемом растворе присутствие марганца, но выяснить с помощью эмиссионного спектрального анализа, находится ли он там в виде Мп - или Мп04-ионов, не представляется возможным. [c.182]

    Различные физические методы анализа по существу представляют собой микроаналитические методы. К ним относятся особенно эмиссионный спектральный анализ (спектрография) и рентгеноспектроскопия. Эти методы играют ведущую роль в современном микроанализе. В табл. 8.19 приведены важнейшие микрохимические методы анализа. Элементный анализ можно проводить как химическими, так и физическими методами. Особое место среди методов микроанализа занимает спектрография, так как этим методом можно проводить анализ жидких и твердых веществ. При правильном выборе источника возбуждения можно провести анализ чрезвычайно малых участков поверхности [68, 72]. Из полученных данных можно сделать вывод о степени гомогенности данного материала и о распределении отдельных элементов ( локальный анализ ). Структурный анализ микропроб проводят методами ИК-, УФ- и масс-спектрометрии. При анализе смесей веществ необходимо их предварительно разделить. При этом широко применяют сочетание методов газовой хроматографии с ИК- или масс-спектроско-пией [61]. Микроанализ газохроматографических фракций можно проводит [c.422]

    Возбуждение. Раньше мы рассмотрели процесс возбуждения атомов и ионов и нашли связь между интенсивностью спектральных линий и концентрацией свободных атомов в плазме. Но целью спектрального анализа является определение концентрации в анализируемом образце, а не в источнике света. Очевидно, что из-за сложности и многообразия процессов, протекающих при введении веществ, концентрации отдельных компонентов пробы по отношению друг к другу в плазме и в исходном образце могут сильно различаться. Эта разница еще больше увеличивается из-за различного поведения атомов в самом источнике света. Пары одних элементов равномерно заполняют все светящееся облако источника, а пары других — лишь попадают в его определенную часть (рис. 137). Вследствие конвекционных потоков в плазме и отличной скорости диффузии различных атомов (нз горячей зоны источника в окружающее пространство) времяпребывания паров в светящемся облаке для каждого элемента оказывается различным. [c.237]

    Колебательная спектроскопия применяется в современной физике, химии, фармации, в технике. Во вторе гюловине XX столетия сложился целый раздел науки — спектрохимия, включающий разнообразные аспекты использования спектральных методов исследования и анализа для решения химических задач. В химии особенно широко распространены методы ИК-спектроскопии, что обусловлено двумя причинами. Во-первых, применение методов ИК-спектроскопии (часто — в сочетании с методами спектроскопии КР) помогает решать многочисленные задачи структурного или аналитического характера. Во-вторых, в последние десятилетия стали доступными ИЬ -спектрофотометры, выпускаемые промышленностью различных стран, относительно несложные в обраше-нии и удобные для проведения спект зальных измерений. С начала семидесятых годов XX столетия увеличивается и число промышленных спектрометров для получения спектров КР с использованием лазерных источников возбуждения спектров. [c.529]

    Лля регистрации спектров используют спектрофотометры разл. типов. Обычно в этих приборах излучение от источника проходит через кювету с в-вом и разлагается в монохроматоре (призма, дифракц. решетка) по длинам волн или частота.м. Для возбуждения спектров излучения и рассеяния широко применяют лазеры. Спец. техника (многоходовые кюветы, фурье-спектрометры и др.) позволяет регистрировать следовые кол-ва в-ва в диапазоне т-р от 4 до 1000 К, исследовать короткоживущие объекты (в течение 10" с) и кинетику хим. р-ций. М. о. с. лежит в основе мол. спектрального анализа, позволяет изучать строение в-в в разл. агрегатных состояниях, а также пов-сти твердых тел. [c.114]

    При качественном АЭСА спектры проб сравнивают со спектрами известных элементов, приведенных в соответствующих атласах и таблицах спектральных линий, и таким образом устанавливают элементный состав анализируемого в-ва. При количеств, анализе определяют кол-во (концентрацию) искомого элемента в анализируемом в-ве по зависимости величины аналит. сигнала (плотность почернения или оптич. плотность аналит. линии на фотопластинке световой поток на фотоэлектрич. приемник) искомого элемента от его содержания в пробе. Эта зависимость сложным образом определяется многими трудно контролируемыми факторами (валовый состав проб, их структура, дисперсность, параметры источника возбуждения спектров, нестабильность регистрирующих устройств, св-ва фотопластинок и т.д.). Поэтому, как правило, для ее установления используют набор образцов для градуировки, к-рые по валовому составу и структуре возможно более близки к анализируемому в-ву н содержат известные кол-ва определяемых элементов. Такими образцами могут служить специально приготовленные металлич. сплавы, смсси в-в, р-ры, в т. ч. и стандартные образцы, выпускаемые пром-стью. Для устранения влияния на результаты анализа неизбежного различия св-в анализируемого и стандартных образцов используют разные приемы напр., сравнивают спектральные линии определяемого элемента и т. наз. элемента сравнения, близкого по хим. и физ. св-вам к определяемому. При анализе однотишплх материалов можно применять одни и те же градуировочные зависимости, к-рые периодически корректируют по поверочньпк образцам. [c.392]

    Спектральный анализ (эмиссионный) — физический метод качественного и количественного анализа состава вещества на основе изучения спектров. Оптический С. а. характеризуется относительной простотой выполнения, экспрессностью, отсутствием сложной подготовки проб к анализу, незначительным количеством вещества (10—30 мг), необходимого для анализа на большое число элементов. Спектры эмиссии получают переведением вещества в парообразное состояние и возбуждением атомов элементов нагреванием вещества до 1000—10 000°С. В качестве источников возбуждения спектров прп анализе материалов, проводящих ток, применяют искру, дугу переменного тока. Пробу помещают в кратер одного из угольных электродов. Для анализа растворов широко используют пламя различных газов. Качественный н полуколичественныйС. а. сводятся к установлению наличия или отсутствия в спектре характерных линий и оценки по их интенсивностям содержания искомых элементов. Количественное определение содержания элемента основано на Эмпирической зависимости (при малых содержаниях) интенсивности спектральных линий от концентрации элемента в пробе. С. а.— чувствительный метод и широко применяется в химии, астрофизике, металлургии, машиностроении, геологической разведке и др- МетодС. а. был предложен в 1859 г. Г. Кирхгофом и Р. Бунзеном. С его помощью гелий был открыт на Солнце ранее, чем на Земле. Спектроскопия инфракрасная — см. Ифракрасная спектроскопия. Спектрофотометрия (абсорбционная)—физико-химический метод исследования растворов и твердых веществ, основанный на изучении спектров поглощения в ультрафиолетовой (200—iOO нм), видимой (400—760 нм) и инфракрасной (>760 нм) областях спектра. Основная зависимость, изучаемая в С.,— зависимость интенсивности поглощения падающего света от длины волны. С. широко применяется при изучении строения и состава различных соединений (комплексов, красителей, аналитических реагентов и др.), для качественного и количественного определения веществ (определения следов элементов в металлах, сплавах, технических объектах). Приборы С.—спектрофотометры. [c.125]

    Чувствительность определения методом испарения зависит лишь от абсолютной чувствительности спектроскопического определения-при возбуждении спектра примесей в источнике света. При максимальной степени извлечения примесей концентрационная чувствительность метода испарения определяется величиной навески пробы, которая может быть увеличена. Этим 1метод испарения существенно отличается от обычных методов спектрального анализа, основанных на непосредственном сжигании анализируемого вещества в источнике света. Однако беспредельно увеличивать вес пробы нельзя, так как степень извлечения примесей начинает уменьшаться вследствие увеличения слоя пробы, через который диффундируют определяемые примеси. Поэтому в целях увеличения чувствительности целесообразно фотографировать на одно и то же место фотопластинки спектр нескольких электродов с конденсатом. Этим самым достигается и значительное усреднение пробы. Неполная конденсация примесей на электрод приводит к значительному уменьшению чувствительности определения. Кроме того, при определении легколетучих элементов следует учитывать возможность их обратного ис- [c.362]

    Определение примесей химических элементов в радиофар-мацевтических препаратах осуществляют методом эмиссионного спектрального анализа по спектрам испускания. Анализ предполагает сжигание пробы испытуемого вещества в газовом пламени, электрической дуге или электрической высоковольтной искре. При этом происходят испарение исследуемого вещества и его диссоциация на атомы и ионы, которые возбуждаются и испускают свет. Излучение источника света складывается из излучения возбужденных атомов всех элементов, присутствующих в пробе. Атомы каждого элемента испускают кванты света только определенных длин волн (так называемое характеристическое излучение), выделяемых посредством спектральных приборов, в которых происходит разложение света, испускаемого источником, в линейчатый спектр. [c.322]

    В эмиссионном спектральном анализе в качесгве источника излучения использулт электрическую д угу (t до 4000 0), высоковольтную кoндeн иpoвEннJ a искру ( Ь до 12000°С) или газовое пламя (ом. с. 16). Источник доУшея давать яркий спектр со слабым фоном и обеспечивать стабильность возбуждения. [c.13]

    Особенности пламенной аютометрии. Возникновение сигналов в пламенной фотометрии объясняется тет же причинами, что и в эмиссионном спектральном анализе (см. с. 3-9). Особенности определяются, в основном, используемым источником возбуждения - пламенем. Г а з о в о е пламя- разновидность низкотешературной плазмы. Оно позволяет возбуждать эмиссионные спектры элементов с малыми пoтeнциэлavн возбуждения. В разных пламенах в зависимости от их температуры возбуждаются различные элементы  [c.16]


Смотреть страницы где упоминается термин Источник возбуждения в спектральном анализе: [c.215]    [c.139]    [c.37]    [c.532]    [c.36]    [c.88]    [c.7]    [c.14]   
Физико-химические методы анализа Издание 2 (1971) -- [ c.144 ]

Физико-химические методы анализа (1971) -- [ c.144 ]




ПОИСК





Смотрите так же термины и статьи:

Спектральный анализ



© 2025 chem21.info Реклама на сайте