Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пламени температура, методы

    Пламенная фотометрия — один из методов атомно-эмиссионного спектрального анализа. Этот метод состоит в том, что анализируемый образец переводят в раствор, который затем с помощью распылителя превращается в аэрозоль и подается в пламя горелки. Растворитель испаряется, а элементы, возбуждаясь, излучают спектр. Анализируемая спектральная линия выделяется с помощью прибора — монохроматора или светофильтра, а интенсивность ее свечения измеряется фотоэлементом. Пламя выгодно отличается от электрических источников света тем, что поступающие из баллона газ-топливо и газ-окислитель дают очень стабильное, равномерно горящее пламя. Из-за невысокой температуры в пламени возбуждаются элементы с низкими потенциалами возбуждения в первую очередь щелочные элементы, для определения которых практически нет экспрессных химических методов, а также щелочно-земельные и другие элементы. Всего этим методом определяют более 70 элементов. Использование индукционного высокочастотного разряда и дуговой плазменной горелки плазмотрона позволяет определять элементы с высоким потенциалом ионизации, а также элементы, образующие термостойкие оксиды, для возбуждения которых пламя малопригодно. [c.647]


    Интенсивность спектральной линии при постоянных условиях пропорциональна количеству введенных в пламя атомов элемента или концентрации соли металла в анализируемом растворе. Однако в реальных случаях эта зависимость может нарушаться вследствие протекания в пламени процессов самопоглощения, ионизации и образования термически устойчивых соединений. На рис. 1.13 представлена зависимость интенсивности спектральной линии от концентрации элемента в растворе. При средних содержаниях определяемого элемента в растворе эта зависимость линейна. Для больших содержаний сказывается влияние самопоглощения эмиссии атомов в плазме и в этом случае интенсивность излучения спектральной линии пропорциональна корню квадратному, из концентрации элемента в растворе. При очень низких концентрациях элемента и высокой температуре плазмы проявляется процесс ионизации его атомов и интенсивность излучения спектральной линии пропорциональна квадрату концентрации. В обоих случаях градуировочный график искривляется. Кроме процессов, указанных выше, на ход графика влияет ряд других факторов, поэтому определение элементов в методе фотометрии пламени проводят с использованием серии растворов сравнения. Они должны содержать все вещества, входящие в состав исследуемого раствора, и фотометрироваться в одинаковых с ним условиях. [c.37]

    Монокристаллические материалы составляют основу современной полупроводниковой и вычислительной техники, оптических квантовых генераторов, методов голографии. Искусственные монокристаллы получают различными способами из расплавов, рас-,1 . парообразной или твердой фазы. В первом твердотельном х /ооре, построенном в 1960 г., в качестве рабочего элемента использован монокристалл рубина. Рубин — это кристалл корунда (а-АЬОз), содержащий примеси ионов хрома, Сг+ . Присутствие ионов хрома придает кристаллам корунда красную окраску. В оптических квантовых генераторах (ОКГ) чаще всего применяют бледно-розовый рубин с содержанием хрома около 0,05%. При повышении количества хрома окраска становится уже ярко-красной, а в дальнейшем переходит в зеленую. Кристаллы рубина по своим физико-химическим свойствам в определенной степени уникальны и отвечают всем требованиям, предъявляемым к материалам для ОКГ. Они обладают высокой теплопроводностью, что позволяет избежать их саморазогрева во время работы, имеют высокую оптическую и механическую однородность, исключающую паразитное поглощение и рассеяние энергии, обладают высокой термической, механической и химической стойкостью. Монокристалл рубина для ОКГ должен быть длиной от 50 до 300 мм и диаметром 5—25 мм. Кристаллы такого размера получают синтетическим путем. Одним из наиболее распространенных методов синтеза монокристаллов рубина остается способ, предложенный в 1891 г. Вернейлем. Ультрадисперсный порошкообразный оксид алюминия, легированный оксидом хрома (1П), попадает в пламя кислородно-водородной горелки, где температура достигает 2000 °С, плавится и опускаете) на расплавленную верхнюю часть [c.158]


    Пламя используют в качестве источника света в так называемом методе фотометрии пламени, а также как один из основных способов атомизации веществ в методе атомно-абсорбционного анализа (см. разд. 3.2). В зависимости от состава горючей смеси температура пламени может поддерживаться в интервале 2000—3000 К, что обеспечивает достаточно низкий предел обнаружения элементов, энергии возбуждения резонансных линий которых не превышают 5 эВ и соединения которых атомизируются в пламени в достаточной мере. Особое значение метод фотометрии пламени имеет для определения микроколичеств соединений щелочных и щелочноземельных металлов, для которых предел обнаружения этим методом находится в диапазоне 0,001 — 1 нг/мл. Предел обнаружения порядка 0,1—1 нг/мл достигается также для таких элементов, как европий, иттербий, свинец, медь, серебро, индий, таллий, хром, марганец, алюминий и галлий, причем в некоторых случаях в качестве аналитического сигнала используют молекулярную эмиссию пламени. Освоение высокотемпературных пламен (водородно-кислородного, ацетилен-кислородного) позволило значительно увеличить число определяемых элементов. [c.58]

    В большинстве исследований турбулентных пламен рассматривались пламена, развивающиеся вдоль вертикальных или наклонных поверхностей, и осесимметричные пламена, причем всегда в условиях неподвижной среды. Проведено много экспериментальных исследований, в ходе которых измерялись скорости горения, средние скорости и температуры. В качестве примеров можно привести работы [8, 23, 91]. Результаты расчетов, проведенных в этих работах интегральным методом, удовлетворительно согласовались с данными измерения скорости горения и плотности теплового потока на стенке в области факела. В работах [49, 90] применялась (й — е — g-)-модель турбулентности (см. гл. 11). Решение, полученное в первой из них, позволяет довольно точно определить структуру пламени и скорости горения. Однако остаются неопределенности при расчете как характеристик турбулентности, так и теплового излучения. [c.414]

    При определении температуры вспышки в открытом тигле нефтепродукт сначала обезвоживают с помощью поваренной соли, сернокислого или хлористого кальция, затем заливают в тигель до определенного уровня, в зависимости от вида нефтепродукта. Нагрев тигля ведут с определенной скоростью, и при температуре на 10° С ниже ожидаемой температуры вспышки медленно проводят по краю тигля над поверхностью нефтепродукта пламенем горелки или другого зажигательного приспособления. Эту операцию повторяют через каждые 2° С. За температуру вспышки принимают ту температуру, при которой появляется первое синее пламя над поверхностью нефтепродукта. При определении температуры вспышки в закрытом тигле нефтепродукт заливают до определенной метки и в отличие от описанного выше метода нагревание его ведут при непрерывном перемешивании. При открывании крышки тигля в этом приборе автоматически подносится пламя к поверхности нефтепродукта. [c.80]

    Важная характеристика пламени — его температура. Температура является параметром, характеризующим систему, находящуюся в термодинамическом равновесии. Пламена не относятся к такого рода системам. Экспериментальные методы измерения температуры (методы зондовой и радиационной пирометрии) позволяют получить усредненное значение температуры, характеризующей главным образом энергию поступательного движения частиц в пламени. Методом обращения линии натрия в окрашенных пламенах были получены значения температур для смесей воздуха с топливами прр 0,1 МПа (влажные смеси, комнатная температура) [147]. Отмечается следующая закономерность в понижении расчетной температу- [c.116]

    Пиролиз с погружным горением. В этом случае осуществляют непосредственный контакт жидкого углеводородного сырья (нефть) с продуктами его сгорания, образующимися в пламени кислородной горелки. Сжатый кислород предварительно подогревают до 600 °С и смешивают в горелке с углеводородным сырьем. Полученную смесь через сопло выпускают в реактор со скоростью выше 1000 м/с. В нижней части реактора мгновенно возникает пламя, температура которого равна 1500°С. При этой температуре происходит пиролиз нефти с образованием ацетилена. Этот метод опробован па опытных установках. [c.75]

    ПИРОХИМИЧЕСКИЙ АНАЛИЗ — методы определения некоторых химических элементов в минералах по окрашиванию пламени, перлов буры или фосфорных солей. П. а. проводят с помощью паяльной трубки, через которую вдувают воздух в пламя горелки для создания высокой температуры, необходимой для сплавления минералов, [c.192]

    Для получения свободных атомов анализируемое вещество наг -вают до высокой температуры в пламенах. Способы введения вещества в пламена и происходящие при этом процессы описаны в Методах эмиссионной фотометрии пламени . Помимо пламен для атомизации веществ в атомно-абсорбционном методе используют специальные печи-кюветы, в которые вводят небольшое количество пробы (чаще всего в виде капли раствора). При повышении температуры печи вещество испаряется и атомизируется. Происходящие при этом процессы аналогичны процессам в пламенах. В качестве источников излучения, ослабление интенсивности которого определяется, могут быть использованы, например, лампы накаливания или различного рода газоразрядные лампы, испускающие непрерывные (сплошные) спектры в широких спектральных областях. [c.35]


    Наиболее простым и давно применяемым источником возбуждения эмиссии является пламя, его использовали еще в ручном спектроскопе при проведении качественного анализа. В настоящее время пламя применяют для точных количественных определений содержания щелочных и щелочноземельных металлов в растворе в методе фотометрии пламени. Поскольку температура в зонах пламени неодинакова, возбуждающая способность этих зон также различна. Количественная оценка интенсивности излучения возможна только при работе с очень равномерным пламенем, при исключительно равномерном распределении анализируемого раствора в пламени и использовании для возбуждения одной и той же зоны пламени. [c.370]

    В методе устраняются помехи от присутствия посторонних элементов, поскольку они оказывают одинаковое влияние на оба элемента. То же относится и к влиянию различных температур пламени и способа распыления раствора в пламя. [c.377]

    Источник возбуждения спектра — пламя имеет сравнительно невысокую температуру, поэтому получаемые спектры сравнительно простые и не содержат много линий. Простота спектров дает возможность выделять искомые спектральные линии при помощи светофильтров или монохроматоров малой дисперсии. Метод фотометрии пламени является разновидностью эмиссионного спектрального анализа, поэтому приведенные выше теоретические основы эмиссионного метода анализа в известной мере относятся и к рассматриваемому методу. [c.242]

    Пламена, применяемые в спектральных методах, имеют температуры горения порядка несколько тысяч градусов. Энергии, необходимые для получения таких температур, выделяются в ходе экзотермических реакций взаимодействия молекул топлива с молекулами окислителя. Очевидно, что значение температуры пламени определяется главным образом составами топлива и окислителя, а также их соотношениями. [c.54]

    Предполагая, что в пламени существует локальное термодинамическое равновесие (ЛТР), зная состав топлива и окислителя, а также их соотношения, можно рассчитать температуру пламени. Существуют различные экспериментальные методы определения температуры пламени. Например, хорошо известным методом является метод обращения спектральных линий атома натрия, в котором пламя, содержащее следы натрия, просвечивается источником излучения с известной температурой. Линии натрия в спектре пламени будут видны на фоне спектра источника излучения как линии испускания, если температура источника ниже температуры пламени, -и как линии поглощения, если температура источника выше температуры пламени. При равенстве температур интенсивность линий натрия не будет отличаться от интенсивности источника излучения с известной температурой. [c.56]

    Для повышения чувствительности пламенно-спектрофотометрических определений иногда применяют дополнительное искровое возбуждение аэрозоли. Для этого искровой разряд между двумя электродами пересекает пламя над внутренним восстановительным конусом. Число элементов, определяемых методом пламенной фотометрии, зависит главным образом от температуры пламени, способов выделения аналитической линии и регистрации ее интенсивности. Применение пламенных спектрофотометров дает возможность. определять более семидесяти элементов. Обычно этим методом определяют щелочные и щелочно-земельные элементы, имеющие потенциал возбуждения не более 5 эВ. Практически невозможно определить этим методом неметаллы. [c.697]

    Исследуется несколько различных форм ламинарного гомогенного пламени. Чаще всего используют горелки различных конструкций. На рис. 1 показано пламя на бунзеновской горелке, а на рис. 2 плоское пламя на пористой горелке. В этих случаях пламя неподвижно в лабораторной системе координат, благодаря чему удобно измерять не только скорость горения, но также профили температуры и концентрации (при помощи оптических методов, термопар, отбора газа и т. д.). [c.9]

    Исследуемое вещество атомизируют, распыляя его раствор в пламя газовой горелки. Через полученный пар обычно пропускают излучение, соответствующее атомному спектру определяемого элемента. В качестве источника излучения используют радиочастотные лампы. Световой поток, прошедший через поглощающий слой и монохроматор, выделяющий резонансную линию, регистрируют фотоэлектрически. В соответствии с законом Бугера мерой концентрации элемента служит поглощающая способность, которая зависит от строения атомов, агрегатного состояния вещества, его концентрации и температуры, толщины слоя, длины волны, поляризации падающего света и других факторов. По положению линий в спектре можно сделать вывод о строении атомов или идентифицировать их. Достоинствами метода являются высокая избирательность, низкие пределы обнаружения (10 —10 мкг/мл) и высокая воспроизводимость. [c.241]

    Использование метода двух распылителей [397] показало, что соляная, серная и фосфорная кислоты снижают эмиссию натрия как при введении их в пламя в одном растворе, так и при раздельном способе — через второй распылитель, однако степень влияния различна — больше в первом случае, и тем больше, чем ниже температура пламени. Причиной влияния кислот на сигнал эмиссии является, видимо, влияние на стадии испарения частиц аэрозоля. [c.123]

    Обычно используют интегральный метод регистрации (измеряют площадь под кривой, построенной в координатах поглощение света—время полного испарения пробы). Этот сигнал мало зависит от колебаний температуры кюветы, режима нагрева и ряда других факторов. В качестве аналитического сигнала возможно также использование пика поглощения при работе с приборами, имеющими приспособление для экстремальной настройки на сигнал. В этом случае для получения удовлетворительных результатов требуется тщательное соблюдение постоянства условий проведения анализа. Точность определения Sb с применением графитовой кюветы ниже, чем при использовании растворов, вводимых с постоянной скоростью в пламя. В оптимальных условиях коэффициент вариации составляет 4—12%, [1322], но абсолютная чувствительность этого метода исключительно велика (10 — IO- г Sb). [c.92]

    Число возбужденных атомов увеличивается с ростом температуры, которая зависит в основном от теплотворной способности создающего пламя газа. В используемых фотометрических методах применяется в основном пламя следующих газовых смесей. [c.43]

    Данный метод (рис. 14) служит прежде всего для производства ацетилена и синтез-газа из сырой нефти [1171. Обогащенное кислородом пламя горит подслоем нефти в реакторе. Образующиеся при 1500 С в результате частичного сгорания и крекинга горячие газы тут же резко охлаждаются тяжелым маслом, температура которого 250 С. O Ht)BHoe количество образующейся сажи улавливается тяжелым маслом и вместе с жидкими продуктами подается в погружную горелку. [c.40]

    Наряду с возбужденными частицами — ОН (пламя Н2) и СО2 (пламя СО) и т. д., присутствующими в светящейся зоне пламени (зоне горения) в концентрациях, намного превосходящих их равновесные концентрации при температуре пламен, в этих и многих других пламенах при помош и различных методов были обнаружены невозбужденные активные частицы — атомы и радикалы — такн е в концентрациях, на несколько порядков превышающих равновесные. Таковы, например, концентрации атомов водорода и кислорода и радикалов ОН, измеренные методом ЭПР [91 в разреженном водородном пламени при различных содержаниях На и О2 (рис. 62). Заметим, что максимальная концентрация атомов водорода в данном случае (доставляет величину порядка 10 см , т. е. более 30% от общего числа чясгиц. [c.232]

    Результаты расчета распределений тепловых потоков приведены на рис. 2. Общее количество поглощенной теплоты приведено для каждой кривой, рассчитанной соответствующим методом. Видно, что топки, рассчитанные при условии, что течеиие стержневое, имеют более высокую эффективность, чем топки, рассчитанные при условии, что поток перемешан и течение газа струйное. Топки со струйным течением имеют самую низкую эффективность вследствие того, что высокотемпературная зона пламени имеет малый объем и, следовательно, представляет собой не очень эффективный излучатель, и эта зона окружена продуктами сгорания со значительно более низкой температурой. Следует отметить, что в расчетах предполагалось, что газ имеет постоянный средний коэффицие1гг поглощения, выбранный таким образом, чтобы учесть излучение газов и сажи. Обычно на практике в пламени содержится в основном сажа, и коэффициент поглощения выше, чем сред 1ий, а значение коэффициента поглощения газов, окружающих пламя, пиже среднего. Это существенно снижает эффективность печей со струйным течением газа. Конечно, локальное излучение от сажи в пламени может быть учтено в зональном методе при условии, что распределение концентрации сажи и ее радиационные свойства известны [14, 15]. [c.120]

    Эмиссионная пламенная фотометрия (спектрометрия). Как уже упоминалось, метод представляет собой разновидность эмиссионного спектрального анализа. Анализируемый раствор, содержащий открываемый или определяемый химический элемент в виде его соединения, вносят в пламя горелки, распыляя его в ([)орме аэрозоля с помощью простого устройства. При температуре пламени анализируемое вещество разлагается и атомизируется. Образующиеся атомы термически возбуждак>тся, а затем (по истечении очень короткого времени жизни возбужденного состояния) излучают энергию возбуждения в виде фотона, что регисприру-ется в форме соответствующей спектральной линии пламенным фотометром. [c.520]

    Точный контроль за темпёратурой асфальта способствует более экономичной укладке его. При предварительной тепловой обработке материалов значительно облегчается использование битумных технологических смесей (горячих смесей), которые широко применяют в современном дорожном строительстве. Дорожные танки для хранения асфальта очень часто оборудуют работающими на СНГ газогорелочными устройствами для подогрева битумов перед загрузкой асфальтной массы в смеситель или перед укладкой ее на дорогу. Отметим, что смесители нередко оснащают горелками, работающими на СНГ, позволяющими доводить температуру асфальта до требуемой конечной температуры укладки. Портативные инфракрасные нагреватели, которые обычно снабжают козырьками-отражателями, направляющими пламя вниз, можно применять для подогрева участков дорожного полотна непосредственно перед их трамбованием катками, т.е. перед операцией, иногда называемой разглаживанием дороги , которая особо важна при ремонтах дорожного полотна. Методом, противоположным плавлению и латанию разрушенного участка дорожного полотна дороги, является вырубка такого участка пневмодолотами и укладка на нем свежего горячего асфальта. Еще более экономичным является метод, при котором поверхность разрушенного участка дороги нагревается портативными инфракрасными нагревателями, размягчается и заплавляется значительно меньшим количеством свежей битумно-асфальтовой массы. Этот связующий метод ремонта не только дешевле, но часто и надежнее метода вырубки участка дороги и заполнения ее новой смесью. [c.299]

    Методы теплового расчета трубчатых печей, в том числе и реализованный в программе расчета печи метод И.И.Белокоия основаны на допущении, что газы, сгораемые в объеме топки, включая пламена, имеют среднюю температуру излучения, равную температуре продуктов сгорания на выходе из топки с поправкой или без поправки на отклонение ее от фактической температуры теплопередачи. [c.113]

    В еще большей степени это характерно для атомов, обладающих высокой энергией возбужденного состояния. Таким образом, можно считать, что Ыа с изменением температуры изменяется по экспоненциальному закону, а Мо остается практически постоянным (из-за небольшого значения Ма). При пропускании через пламя излучения определенной интенсивности и с характеристической для определяемого элемента резонансной частотой излучение поглощается невозбужденными атомами определяемого элемента пропорционально их концентрации и независимо от температуры пламени. Условием этого является совпадение частоты падающего излучения с частотой характеристического резонансного излучения поглощающих атомов или незначительное расхождение между ними. Чем больше диапазон частот позбуждающего излучения, тем ниже чувствительность метода. [c.379]

    Испытания сухим путем могут быть проведены при высокой температуре — пирохнмический метод (окрашивание пламени, получение стекла или перла, получение металлических корольков), а также при нормальных условиях (метод растирания порошков). Исследуемое вещество на конце платиновой проволоки, один конец которой запаян в стеклянную палочку, вносят в бесцветное пламя горелки. По окрашиванию пламени судят о наличии в пробе (твердое вещество или раствор) определенных ионов (табл. 26.1). [c.537]

    Регулировка температуры. Для контроля за температурой в баню всегда вводят термометр (из металличс- ски.х и парафиновых бань его необ.ходимо удалять до. затвердевания расплава). Температуру можно поддерживать около некоторого значения, если ограничить подвод тепла к бане во времени, например регулируя пламя газовой горелки или подключив электронагреватель через трансформатор ил1г реостат. Однако таким методом трудно долгое время поддерживать постоянную температуру, так как необходимо контролировать постоянно количество подводимого тепла. [c.32]

    Как было выяснено выще, при нанравленном косвенном теплообмене светимость пламени играет существенную роль, если сжигание топлива не осуществляется по методу поверхностного горения. Поэтому и при рассматриваемом в настоящем разделе режиме теплообмена рекомендуется применять топлива, дающие светящееся пламя, степень черноты которого была бы порядка 0,5—0,6. Однако требования к светимости пламени при направленном К оовенном теплообмене значительно меньще, чем при других режимах радиационного теплообмена, и тем меньше, чем выше теплотворность топлива. Это объясняется тем, что в верхней части рабочего пространства печи может быть развита очень высокая температура пламени, недопустимая в нагревательных печах (из-за опасности перегрева металла) при других режимах теплообмена в силу указанного обстоятельства в печах с направленным косвенным теплообменом, естественно, уменьшаются требования к светимости пламени. В связи с этим в данном случае могут с успехом использоваться различного вида жидкие и газообразные горючие. При работе печей на твердом топливе обычно сам собой создается рассматриваемый режим теплообмена, поскольку пламя из топки направляется в верхнюю часть рабочего пространства, где и создается наиболее высокая температура. Кладка в теплообмене в печах данного типа игра- [c.342]

    Для твердого топлива растительного происхождения— дров, соломы, лузги и т. п.—стандартных методов определения зольности не установлено и оно производится по нормальному методу, установленному для твердого минерального топлива со следующими изменениями температуру в муфеле при озоше-еии и прокаливании поднимают лишь до 500° С. Величину иа-вески (не менее 1 г) соразмеряют с емкостью тигля, запойняя его не более чем на /-j объема. Ввиду легкой воспламеняемости топлива подъем температуры е муфеле ведут более осторожно, тотчас ликвидируя прикрытием тиглей йоявляю-щееся пламя. Применение ускоренных методов при определении золы в топливе растительного происхождения не рекомендуется вследствие легкой воспламеня1мости и бурного и обильного выделения летучих. [c.92]

    Стандартного метода для определения содержания золы в мазутах также не существует (есть лишь стандартные методы для масел и керосина) и вести его рекомендуется следующим образом. Навеску мазута в 25,0—50,0 г, 3(анимающую не более V2 объема фарфоровой или платиновой чашки или тигля, постепенно выпаривают на электрической плитке или газовой горелке до твердого остатка — кокса. Если при этом мазут вспыхивает, пламя необходимо тотчас потушить прикрыванием на несколько секунд, чашки или тигля крышкой. Тигель с твердым остатком переносят в муфель, поднимают температуру в нем до 500 С и выдерживают при этой температуре в течение 2 часов. Затем тигель вынимают, охлаждают, как обы чно, и взвешивают. После этого производит контрольные получасовые прокаливания при 500° С. [c.92]

    Вычислите теплообмен. между различными поверхгюстями, окружающими камеру сгорания парового котла, изображенного на рис. 14-15. Определите размеры различных охлажденных и неохлажденных поверхностей на этом рисунке допустите, что ширина камеры сгорания, нормальная к плоскости рисунка, равна половине длины топки. Используйте данные, содержащиеся в примерах и 14-4 и 14-5, и допустите, что газы н пламя в камере сгорания не излучают и не поглощают тепла и что слой угля в топке имеет температуру 1 650° С. Считайте, что поверхность слоя угля является черной, и допустите, что излучательная способность огнеупорной футеровки равна 0,7. Для расчета используйте метод, описанный в 14-3. [c.533]

    Соединения натрия легко возбуждаются в низкотемпературном пламени светильный газ—воздух (температура равна 1870° С), окрашввая пламя в характерный желтый цвет. В аналогичных условиях пламя окрашивается в различные цвета от присутствия летучих соединений остальных щелочных и щелочноземельных элементов. В присутствии последних натрий удобнее обнаруживать с помощью спектроскопа прямого зрения, наблюдая линию натрия при 590 нм. Предел обнаружения натрия данным методом очень низок, поэтому натрий можно обнаруживать практически везде в воде, газе, реагентах. [c.35]

    Навеску пробы 2 г помещают в платиновый тигель и отгоняют Ge l4 при температуре 70° С в токе неона или аргона. Остаток растворяют в 6 М НС1, высушивают и растворяют в воде. Для определения натрия используют атомно-абсорб-ционный метод, спектрофотометр на основе монохроматора ЗМР-3, источник света — безэлектродные ВЧ-лампы ВСБ-2, пламя пропан—воздух. Предел обнаружения натриц 5-10 %. При содержании натрия 0,0002 мг/мл относительное стандартное отклонение 0,05. [c.170]

    Галоиды и серу можно определять, разложив вепцество по Кариусу — постепенным нагреванием навески до 300—350° С в толстостенной запаянной трубке с чистой азотной кислотой й = 1,52). Для микроопределения отвешивают 2 — 3 мг вещества и добавляют 1—2 капли азотной кислоты, для макроопределения берут 0,2—0,3 г вещества и приливают 2 мл азотной кислоты. Навеску, взятую в маленькой короткой пробирке, помещают в трубку так, чтобы она до запаивания трубки не соприкасалась с азотной кислотой. При определении галонда в трубку предварительно добавляют отвешенное количество (в небольшой пробирке) азотнокислого серебра. Запаивают трубку так, чтобы запаянный конец был оттянут в толстостенный капилляр. Постепенно нагревая трубку в специальной печи, доводят температуру до 300 С и поддерживают ее в течение 5— 8 ч, затем печь выключают. По охлаждении капилляр осторожно вставляют в пламя паяльной горелки — по размягчении газы прорывают его. Верхний конец трубки обрезают, смывают содержимое трубки в стаканчик и определяют галоидное серебро либо весовым способом, либо оттитровывая избыток азотнокислого серебра одним нз известных методов. Серу определяют обычными способами — в виде сульфата. [c.51]

    Перекись метилэтилкетона, [С2Н5С(СНз)ООЬ, представляет собой легковоспламеняющуюся и взрывоопасную жидкость. Вследствие высокой взрывоопасности в товарной форме встречается. обычно в виде 50—б0%-ного раствора в диметилфталате. Мол. вес 176,21 плотн. 1149 кг/ж теплота сгорания 4550 ккал/кг. Т. всп. около 45° С [26] т. самовоспл. 130° С (метод ГОСТ 2040—43) [4] чистая перекись чрезвычайно неустойчива чувствительна к удару и трению температура начала заметного экзотермического разложения около 50° С. Продукт бурно разлагается в присутствии концентрированной серной кислоты, причем в некоторых случаях происходит самовоспламенение. 507о-ный раствор перекиси в диметилфталате имеет т. самовоспл. 128° С (метод ГОСТ 2040—43) [4]. Небольшое количество перекиси горит в воздухе красным коптящим пламенем, причем пламя то затухает, то после короткого интервала бурно разгорается. См. также Перекиси органические. [c.199]


Смотреть страницы где упоминается термин Пламени температура, методы: [c.224]    [c.198]    [c.245]    [c.97]    [c.376]    [c.148]    [c.65]    [c.509]    [c.130]    [c.183]    [c.278]   
Химические основы работы двигателя Сборник 1 (1948) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Пламена температура



© 2024 chem21.info Реклама на сайте