Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диэлектрическая постоянная применение

    Поскольку уксусная кислота достаточно неудобна в работе, использование ее в качестве растворителя имеет смысл лишь тогда, когда это дает существенные преимущества по сравнению с другими, менее ядовитыми соединениями. В электрохимии ее применяли в трех различных областях кислотноосновном титровании, полярографии на КРЭ и как растворитель для реакции анодного ацето ксил про вания. К важнейшим свойствам растворителя, используемого при титровании, особенно при кулонометрической генерации титрованного раствора и потенциометрическом определении конца титрования, относятся диэлектрическая постоянная, кислотность и основность и константа ионного произведения. Уксусная кислота интересна в первую очередь своей кислотностью. По сравнению с другими кислотами, применение которых возможно для этих целей, например серной и муравьиной, уксусная кислота характеризуется лучшим сочетанием свойств. Ее диэлектрическая постоянная ниже, чем у этих двух кислот, но она не настолько мала, чтобы затруднить проведение электрохимических измерений. Хотя по кислотности уксусная кислота уступает указанным кислотам, все же она достаточно сильная кислота и способна титровать многие слабые основания. Уксусная кислота имеет намного меньшую константу автопротолиза (2,5 10 ) [2], благодаря чему она гораздо более удобная среда для титрования. [c.32]


    Такая модель говорит о том, что при наличии сил притяжения между ионом и диполем (0 > 90°) увеличение диэлектрической проницаемости будет замедлять реакцию, а уменьшение диэлектрической постоянной — ускорять ее. Реальная трудность, возникающая при применении этой модели к реак- [c.458]

    Значения диэлектрической постоянной примененных нами растворителей и константы скорости реакции ПБ—ТЭА при 40° С приведены в таб.т. 1. [c.272]

    В некоторых эмульсиях В/М капли имеют -потенциал, равный 100 мв, так что мог ожидаться первый электровязкостный эффект. Однако эмульсии (Ф == 0,03—0,33), содержащие различные эмульгаторы и имеющие -потенциалы от 15 до 100 мв, нри применении уравнения (IV.206) к данным вязкости (Альберс, 1957) дали примерно одно и то же значение а . Величина первого электровязкостного эффекта, полученная по уравнению (1У.250), равна — 1%. Таким образом, эффект был мал в системах с низкой диэлектрической постоянной. В эмульсиях В/М толщина двойного электрического слоя составляет несколько микрометров, так что в более концентрированных эмульсиях мог ожидаться второй электровязкостный эффект. Но так как двойной слой является очень диффузным, увеличение вязкости, вызванное последним эффектом, должно было бы быть также малым. [c.297]

    Электрофоретическое нанесение лакокрасочных материалов, растворимых в воде, представляет собой усовершенствованный способ погружения, недостатки которого устранены действием электростатического поля. Электрофорез основан на ориентированном перемещении коллоидных частиц в диэлектрической среде. При наложении электрического тока возникают два процесса. Первый — это электролиз, характеризующийся перемещением ионов, образовавшихся при диссоциации электролита. Второй — собственно электрофорез, т. е. движение коллоидных частиц под действием электрического поля в среде с высокой диэлектрической постоянной. Частицы в соответствии со своей полярностью движутся к одному из электродов. Отрицательно заряженные частицы движутся к аноду, т. е. к изделию. На аноде или в непосредственной близости от него происходит потеря электрического заряда и коагуляция частиц. Одновременно с электрофорезом происходит и электроосмос, т. е. процесс, при котором под действием разности потенциалов из лакокрасочного материала вытесняется диспергирующий агент, например вода, и слой загустевает. Технологическим достоинством этого способа является возможность обеспечения высокой степени автоматизации, при которой потери лакокрасочного материала не превышают 5%. Достигается равномерная толщина слоя, которую можно регулировать в пределах 8—45 мкм. Слой не имеет пор и видимых дефектов. Коррозионная стойкость его примерно в 2 раза выше, чем у лакокрасочных покрытий, полученных способом погружения. Линия, в которой использована такая технология, -в основном состоит из оборудования для предварительной подготовки поверхности, оборудования для непосредственно электрофоретического нанесения, включая соответствующую промывку, и оборудования для предварительной и окончательной сушки лакокрасочного покрытия при температуре 150—220° С в течение 5—30 мин. Способ нашел применение в автомобильной промышленности, на предприятиях по производству мебели, металлических конструкций для строительства и в других областях. [c.87]


    Важную роль играет также выбор растворителя и электролита фона. Применение растворителей с высокой диэлектрической постоянной (б>20) и прежде всего воды приводит к высоким диэлектрическим потерям энергии сверхвысокочастотного поля в резонаторе спектрометра ЭПР и ухудшает условия получения хорошо разрешенного спектра. С другой стороны, в растворителях с низким значением е возможно образование ионных пар, искажающее спектры. Этот эффект ослабляется при использовании в качестве электролита фона тетраалкиламмониевых солей. Влияние на спектр ЭПР природы растворителя и соли фона имеет и положительное значение, так как открывает пути для изучения процессов сольватации ион-радикалов и образования ионных ассоциатов. [c.226]

    Указанные закономерности изменения диэлектрической постоянной в зависимости от частоты (дисперсия диэлектрической постоянной) сильно идеализированы, так как не учитывается возможность взаимодействия между диполями. Если предположить, что внутреннее поле в системе может быть расположено по Лоренцу, то описанную картину можно объяснить на основе теории Дебая. Однако необходимо подчеркнуть, что отсутствие взаимодействия между диполями и расчет внутреннего поля по Лоренцу в коллоидных системах предполагать нельзя. Следовательно, применение теории Дебая к подобным системам принципиально может привести только к первому, грубому приближению. Количественные выводы, сделанные на основании такого применения теории Дебая, не могут быть достоверными. Более того, явление дисперсии может быть и для дисперсных систем, частички которых не обладают дипольным моментом. Таким образом, дисперсия осуществляется не только по механизму Дебая. Но выводы из применения теории Дебая довольно широко распространены и поэтому необходимо рассмотреть их подробней. [c.108]

    Применение принципов адсорбции для поглощения и разделения паров или газообразных веществ используется в лаборатории органической химии относительно редко. При этом сохраняют свое значение те же закономерности, которые были найдены для адсорбции из жидкой фазы, в частности зависимость между степенью адсорбции и диэлектрической постоянной. Так, вещества, поглощенные полярным адсорбентом, легко можнО вытеснить парами воды или спирта. Десорбцию поглощенного газа также можно осуществить термическим путем, поскольку повы- [c.236]

    Все более широкое применение физических методов измерения и лабораториях привело к дальнейшей разработке методов определения диэлектрической постоянной (ДП). Этот метод измерения обладает особыми преимуществами при ректификации смесей, содержащих воду (ДП = 80), а также смесей веществ с резко отличными значениями ДП. В качестве таких примеров можно назвать смеси уксусной кислоты (ДП = 6,13) и уксусного ангидрида (ДП = 22,2), а также смеси метилового спирта и толуола. Азеотропная смесь метилового спирта и толуола, образующаяся при ректификации, имеет значение ДП=26,8 по сравнению с величиной ДП для исходных компонентов, равной соответственно 33,8 и 2,37 [61]. На рис. 425 изображено устройство Эме [61 ], используемое для контроля процесса ректификации. Измерительная ячейка этого устрой- [c.518]

    При применении растворителя с низкой диэлектрической постоянной или избытка амина выход нитроамина был лишь 20—25 %. При нагревании 3-кратного избытка первичного амина с нитратом ацетонциангидрина в течение 6 час. в растворе ацетонитрила или тетрагидрофурана получался хороший выход нитроаминов. [c.426]

    Аналогичная зависимость между диэлектрической постоянной растворителя и степенью адсорбции наблюдается и при применении активированного угля. [c.224]

    Наиболее важное применение диэлектрическая постоянная находит при расчете молярных поляризаций, иа. основании которых МОГУТ быть в свою очередь вычислены дипольные моменты. Молярная поляризация Р определяется по уравнению КлаУзиуса — Мосотти [722]  [c.45]

    Дальнейшее развитие теории межионного взаимодействия дало возможность уточнить математические решения и расширить области ее применения. Для учета возможности образования ионных ассоциатов, влияния энергии теплового движения ионов, уменьшения диэлектрической постоянной с ростом концентрации раствора оказалось необходимым при вычислениях коэффициентов активности концентрированных растворов электролитов использовать полуэмпири-ческие ( юрмулы  [c.14]

    Сольватирующая способность растворителя необходима там, где участвует полярное переходное состояние. Оно наиболее полярно при мономолекулярных реакциях, поэтому доля Е1 больше при применении растворителей с большой диэлектрической постоянной (вода, муравьиная кислота и пр.). Наоборот, в диоксане, ацетоне будет преобладать бимолекулярный процесс. [c.235]


    Политетрафторэтилен — новый пластик, производимый в экспериментальном заводском масштабе. Он не растворяется во всех испытанных растворителях и ниже своей точки плавления не подвергается действию любых обычных корродирующих агентов, исключая расплавленные щелочные металлы. Он выдерживает температуры до 300°С в течение длительного времени без заметного разложения и не хрупок при низких температурах. Сочетание низкого коэфициента мощности с низкой диэлектрической постоянной делает его выдающимся электроизоляционным материалом. Основным путем использования политетрафторэтилена в настоящее время является применение его в качестве прокладок и уплотнений в оборудовании для обработки горячих корродирующих жидкостей, а также в качестве электрической изоляции, особенно при высоких частотах и больших напряжениях. Пластик продается в небольших количествах для указанных целей в форме простых фигур, таких, как ленты, листы, стержни, трубки, прокладки и изолированная проволока. [c.345]

    Органические растворители. Многочисленность возможных по правлению и силе взаимодействий между растворяемым вещест-И растворителем определяет перспективность применения разнообразных по структуре и составу органических реагентов, по- воляющих наиболее гибко использовать их селективные свойства. Зная физико-химические свойства растворителя, например его диэлектрическую постоянную (большое значение которой присуще жидкостям с сильнополярными молекулами, обладающими высокой диссоциирующей способностью), а также структуру и свойства растворяемого вещества, можно в определенной мере обоснованно подбирать растворитель. [c.97]

    Для дальнейшего развития теории влияния частоты тока на электропроводность и диэлектрическую постоянную в применении к смесям сильных электролитов сыграли роль работы Фалькенгагена и Фишера [15]. [c.101]

    Для применения этой теории необходимо знать температуру, молярный объем и диэлектрическую постоянную растворителя, валентность, молярный объем раствора, эффективные радиусы всех ионов для процесса высаливания , эффективные расстояния сближения ионов а и коэффициент взаимодействия между молекулами Предполагается, что ионы щелочных галогенидов представляют собой сферы. В этом случае Ъ = г ж а = Г1+Гч. В качестве радиусов ионов были приняты значения, найденные Паулингом [53] из кристаллографических данных. Величины объемов ионов в растворе были взяты несколько меньшими, чем 4г.г /Ъ. Постоянная А принималась одинаковой для всех галогенидов. Теория взаимодействия ионов Бренстеда, которая исключает взаимодействие мея ду ионами одинакового знака на близких расстояниях, была тоже использована для упрощения некоторых подстановок. Два параметра были определены эмпирически с помощью осмотических коэффициентов, а именно отношение объема иона в растворе к истинному объему иона и коэффициент А. Первый из этих параметров совпал с теоретическим значением, в то время как для второго параметра получилось лишь приближенное согласие. [c.369]

    Изыскание такой индикаторной системы привело к исследованию методов, основанных на физических принципах. Такие принципы, известные уже много лет и позволившие разработать много надежных методов, часто определяют общее название инструментального метода анализа. Принцип их заключается в измерении физического свойства раствора, изменяющегося во время реакции Л и С, но при условии, что изменение этого свойства раствора прекращается при завершении реакции, что графически отображается перегибом на кривой, по которому устанавливают конечную точку реакции. Например, если растворы являются электролитами с высокой диэлектрической постоянной, то могут быть применены какие-то индикаторные электродные системы типа используемых в потенциометрических и кондукто-метрических методах. Такие методы имеют весь.ма широкое применение в титриметрии. Однако они непригодны, если электроды загрязняются продуктами реакции [c.7]

    Для этой цели может быть использовано измерение диэлектрической постоянной по длине колонки или применение метода счета импульсов при работе с радиоактивными изотопами и т. д. [c.326]

    Измерения диэлектрической постоянной оказались весьма полезным средством для установления структуры многих органических веществ. Применение этого метода для изучения соединений с Н-связями представляет меньший интерес. Исключение составляют отдельные объекты, в которых обычно имеется внутримолекулярная Н-связь. [c.22]

    В растворитель, применяемый при химической чистке, масляная пленка удаляется вследствие ее растворения. Вслед за этим частицы пятнообразующего вещества, оставаясь в растворителе, переходят в состояние дисперсии, которое временно стабилизуется адсорбированными масляными пленками, покрывающими каждую отдельную частицу. По мере растворения этих пленок в растворителе частицы либо получают возможность флокулировать, либо они снова адсорбируются поверхностями волокон ткани, что в итоге приводит к явлению, известному под названием посерения ткани. Надо полагать, что именно по этой причине длительная обработка ткани без применения фильтра имеет своим следствием явно выраженное ее посерение. Второй причиной этого явления может быть увеличение статического заряда на поверхностях волокон ткани, которое вызывается трением в среде, обладающей низкой диэлектрической постоянной. [c.102]

    История развития газовой хроматографии в известной степени есть история развития детектора. На первом этапе детектирование основывалось на химическом определении суммарного количества вещества (поглощение газа-носителя, титрование и т. д.). Применение детектора, работающего по принципу измерения теплопроводности (катарометра), создало известный переворот в газовой хроматографии. Катарометр обладает рядом недостатков. Невысокая чувствительность делает его мало пригодным для анализа примесей и микропримесей. Зависимость показаний катарометра от температуры, давления и скорости потока газа-носителя вносит погрешности в результаты анализа. В связи с этим предпринимались поиски новых физических принципов детектирования измерение плотности (газовые весы Мартина), теплот адсорбции, диэлектрической постоянной и др. Эти детекторы не получили широкого распространения из-за сложности изготовления, большой инерционности и по другим причинам. [c.239]

    Применение катарометра — детектора, работающего по принципу измерения теплопроводности, произвело известный переворот в газовой хроматографии. Однако катарометр обладает рядом недостатков. Невысокая чувствительность делает его мало пригодным для анализа примесей и микропримесей. Зависимость показаний катарометра от температуры, давления и скорости потока газа-носителя вносит погрешности в результаты анализа В связи с этим предпринимались поиски новых физических принципов детектирования измерение плотности (газовые весы Мартина), теплоты адсорбции, диэлектрической постоянной и др. [c.44]

    На первый взгляд кажется, что для дисперсных систем правило смесей должно хорошо оправдываться. Коллоидная частичка состоит из большего количества молекул или атомов, причем взаимодействие между ними не меняется при образовании дисперсной фазы, если не считать частичек, находящихся в поверхностном слое. Поэтому можно предположить, что вещество в дисперсном состоянии имеет ту же диэлектрическую постоянную, что и в недиспергированном, а дисперсионная среда — неизменную диэлектрическую постоянную, и в большинстве случаев концентрация дисперсной фазы невелика. И тем не менее правило смешения с применением уравнения Клаузиуса — Мо-сотти для дисперсных систем оправдывается почти всегда гораздо хуже, чем для истинных растворов. Это свидетельствует о том, что в коллоидных системах есть вторичные явления, влияющие на диэлектрическую постоянную, т. е. поверхностные явления. Вполне естественно предположить, что диэлектрические свойства коллоидного раствора, как и другие его свойства, зависят от взаимодействия поверхности дисперсной фазы с дисперсионной средой, а также от адсорбционных процессов в поверхности раздела. [c.106]

    К-Метилформамид обладает самой высокой диэлектрической постоянной (182,4) из всех рассматриваемых растворителей. Этот растворитель находится в жидком состоянии в удобной для работы области температур (от -5,4 до +131 °С) и характеризуется умеренной вязкостью (1,65 сН при 25 °С). Несмотря на подобные свойства, К-метилформамид очень редко использовался в качестве растворителя электролитов. Единственной информацией о К-метилформамиде является краткое сообщение Хале и Нарсонса [1] о его применении при полярографическом восстановлении Т1 , Сс1 и РЬ на КРЭ. [c.18]

    Метанол широко используется в препаративной электрохимии, например для проведения реакции анодного декарбоксилирования и анодного метоксили-рования. Эпизодически растворитель применялся также при полярографии на КРЭ. Метанол не пригоден в качестве растворителя для вольтамперометрии на платиновом микроэлектроде или кулонометрии при контролируемом потенциале на том же электроде. Метанол находится в жидком состоянии в удобной для работы области температур (от -98 до +64 °С). Имеет весьма высокое давление паров и достаточно высокую диэлектрическую постоянную (33). Максимальная допустимая концентрация составляет 2 10 %. Хотя по своему поведению метанол похож на воду, он сильнее растворяет различные органические соединения. Метанол подходит как растворитель для ультрафиолетовой спектроскопии поглощение наблюдается при 210 нм. Главное применение метанола связано с тем, что он хорошо растворяет сильноосновные электролиты КОН, NaOH, КОМе и NaOMe. Для растворения очень неполярных соединений используются смеси метанола с бензолом. [c.37]

    В оптимальных условиях экстракции Sb(V) с применением кристаллического фиолетового (при его исходной концентрации в водной фазе 1,66-10 М) краситель, находящийся в этих условиях в виде двух форм — мономерной (Ятах = 591 нм) и димерной (Ятах = 540 нм), образует с Sb la ионный ассоциат, бензольные экстракты которого также характеризуются двумя максимумами поглощения — при 610 и 550 нм [327]. Некоторое смещение максимумов поглощения объясняется явлением сольватохромии [361]. Однако при извлечении ионного ассоциата растворителями с более высокой диэлектрической проницаемостью, чем у бензола (хлорбензол, хлороформ, дихлорэтан и т. п.), и смесями бензола с высокополярными растворителями в спектрах экстрактов наблюдается только один максимум, принадлежащий мономерной форме красителя, т. е. наблюдается явление, обратное установленному для самих красителей. Таким образом ведут себя и другие красители, в том числе метиловый фиолетовый, бриллиантовый зеленый, малахитовый зеленый. Получение экстрактов с одним максимумом существенно увеличивает оптическую плотность экстракта. Таким образом, добавление к бензолу нитробензола, дихлорэтана и других высокополярных растворителей или использование только этих растворителей приводит к дезагрегации красителей, входящих в состав ионных ассоциатов. Растворители с диэлектрической постоянной > 10 (нитробензол, спирты, нитрилы, альдегиды и т. п.) в качестве экстрагентов для экстракционно-фотометрического определения Sb(V) непригодны, так как сильно извлекают солянокислые соли самих красителей. Для экстракции ионных ассоциатов, образуемых Sb lg с катионами трифенилметановых красителей, рекомендуется применять растворители с диэлектрической проницаемостью в пределах 4,8— 10,0 [327]. Эти растворители (хлорбензол, смеси бензола с нитробензолом или с дихлорэтаном) экстрагируют Sb(V) полнее, и получаемые экстракты характеризуются значительно большими молярными коэффициентами погашения. Добавление к бензолу циклогексанона и других кетонов, наоборот, уменьшает оптическую плотность экстрактов. Это объясняется тем, что кетоны хорошо извлекают Sb в виде HSb le, присоединяясь к ней с образованием соответствующих неокрашенных сольватов [393]. [c.46]

    КИСЛОЙ ртутью и гидрированием с последующим сравнением результатов. Последний метод несколько лучше метода с применением малеиыового ангидрида, но при на-яичии ацетилена в анализируемом продукте он не может быть применен. Для очищенного бутадиена со степенью чистоты выше 90% могут с высокой точностью применяться методы инфракрасной спектроскопии. Диэлектрические постоянные бутадиена и бутиленов отличаются друг от друга значительно больше, чем большинство других физических констант. [c.39]

    Лабораторные реакторы послужили прототипом для заводских реакторов. Полученные в лабораторных уело-ВИЯХ выходы не достигались при перенесении процесса в промышленные условия, вследствие более значительных механических потерь, большей степени разложения и большего количества образзтощихся побочных продук тов. Основной проблемой явилось рассеивание теплоты реакции как органического цикла, так и цикла реактивации. Очистка фторуглеродов фракционной перегонкой, с применением описанного выше метода определения диэлектрической постоянной для контроля, оказалась удовлетворительной в производственных условиях, [c.128]

    Можно ожидать, что этот материал представит большие преимущества как электрическая изоляция [34]. Комбинация низкой диэлектрической постоянной с низким фактором мощности, неизменная в широком пределе частот, дает политетрафторэтилену преимущество для применения его Е качестве электрической изоляции при ультравысо-ких частотах. Хорошая тепловая устойчивость и химиче ская стабильность полимера могут привести к выбору его для электрической изоляции в химических установках, где условия необычайно жестки. [c.367]

    Вследствие чрезвычайно малой диссоциации, приводящей к образованию ионов, определение А посредством прямой экстраполяции экспериментальных данных неосуществимо. В случае водных растворов слабых электролитов вычисляется на основе закона Кольрауша, т. е. косвенным путем из данных для соответствующих сильных электролитов. Очевидно, этот способ неприменим к растворителям, диэлектрическая постоянная которых настолько мала, что все электролиты, растворенные в них, сильно ассоциированы. В этом случае обычно применяется приближенное соотношение, известное под названием правила Вальдена. Это правило было установлено опытным путем [1], однако можно.показать, что оно является прямым следствием применения закона Стокса [уравнение (62) гл. IV] к движению ионов. Так как правило Вальдена наиболее строго выполняется для систем, удовлетворяющих тем условиям, которые принимаются при выводе закона Стокса, то следует. рассмотреть оба эти соотношен11я одновременно. [c.183]

    В настоящее время мы не знаем, насколько точно уравнение (6) выражает зависимость диэлектрической постоянной воды от давления при температурах, отличных от 20°, однако поскольку оно является единственным уравнением, которым мы располагаем, и, кроме того, оно было тщательно проверено с применением других жидкостей, мы воспользовались этим уравнением для определения S(y>, S(K) и S(E) для всех температур, которые встречаются в таблице. В 4 убудут рассмотрены экспериментальные доказательства того, что значения коэффициента наклона S(v), повидимому, определены правильно с точностью до двух значащих цифр при комнатной температуре. Слабая зависимость S k) от температуры и изменение знака S(E) при низких температурах также подтверждаются опытными данными [12, 13], однако изученные в этих исследованиях концентрации слишком высоки, чтобы можно было проверить нравильность численных значений этих теоретических коэффициентов наклона. [c.557]

    Думанский А. В., Куриленко О. Д. Применение дисперсии диэлектрической постоянной для определения гидрофильности золя крохмала.— Докл. АН СССР, 1948, 60, № 7, с. 1197—1199. [c.122]

    Апротонные растворители с большой диэлектрической постоянной, такие, как ДМФА, ДМСО, сульфолан и дру- гие, хорошо растворяют как соли, так и обычные органиче- СКие соединения, поэтому находят в настоящее время ши-Грокое применение в органической химии [c.155]

    Количественный анализ хроматограммы целесообразно проводить лишь в том случае, когда осуществлено полное разделение смеси и хроматограмма состоит из серии отдельных неперекрывающихся зон. В этом случае анализ сводится к определению количества вещества, содержащегося в каждой зоне. Ориентировочные данные можно получить, измеряя ширину полосы при стандартном сорбенте, откалиброванном по данному веществу при постоянных условиях. Для этой цели может быть использовано измерение диэлектрической постоянной по длине колонки или применение метода счета импульсов при работе с радиоактивными изотопами и т. д. Широко применяется способ химического и радиохимического анализа отдельных зон, вырезанных из колонки. [c.316]

    Из прямых методов определения коэффициентов активности чаще всего применяют метод измерения электродвижущих сил цепей без переноса. Таким путем определены коэффициенты активности НС1 во многих неводных растворителях и в их смесях с водой (табл. 11), коэффициенты активности многих галогенидов щелочных металлов (табл. 12). Коэффициенты активности хлористого лития в амилово.м спирте определены, кроме того, на основании коэффициентов распределения. Криоскопический метод широко применялся для определения коэффициентов активности солей в формамиде и в других растворителях, применялся также эбулиосконический метод. Затруднения в применении этих методов в неводных растворах, особенно в растворителях с низкой диэлектрической постоянной, связаны обычно с трудностями в экстраполяции свойств, например электродвижущих сил, к бесконечному разведению. Это объясняется тем, что даже в разведенных растворах коэффициенты активности электролитов значительно меньше единицы. [c.141]

    Следует указать, что литературные данные по шнрпне запрещенной зоны и, работе выхода электрона ф и диэлектрической постоянной е некоторых полупроводников, особенно окислов переходных металлов, очень противоречивы. В этом случае предпочтение отдавалось новейшим данным, полученным в результате применения цаиболее современных методов исследования. Например для УзОз в литературе имеются следующие цифры, характеризующие ширину запрещенной зоны 0,45 эв [687], 0,58 эв [688], 1 ав [689], 2,1 ав [690], 3,0 эв [80]. Из этих цифр выбрано значение оптической ширины запрещенной зоны 2,1 эв, полученное в 1964 г. Это значение хорошо согласуется с общим ходом изменения II в ряду окислов переходных металлов. [c.229]

    Остер и Кирквуд [1557] таже приняли модель структуры жидкой воды с тетраэдрической координацией Н-связей. Кроме того, они предположили, что имеет место свободное вращение вокруг жестких линейных Н-связей и учли взаимодействие только с первым координационным слоем (на основании рентгенографических данных Моргена и Уоррена [1447] было принято, что число молекул в первом координационном слое колеблется от четырех до пяти). Иной путь использовал Попл [1659], постулировавший возможность как изгиба Н-связей, так и вращения вокруг них. Попл вычислил влияние первых трех координационных слоев. Теория Попла приводит к неверной величине диэлектрической постоянной, но лучше описывает ее температурную зависимость. В работах другой группы исследователей (Хаггис и др. [854]) был применен вероятностный метод для оценки числа молекул воды, не связанных с окружающими молекулами, а также числа молекул, имеющих одну, две и т. д. до четырех Н-связей. В остальных отношениях использованная ими модель совпадает с моделью Остера и Кирквуда. Позже Харрис и Олдер [877] применили модель Попла, но учли поляризацию, вызванную деформацией молекул под действием поля. Наконец, Харрис [875] ввел поправку на флуктуации дипольного момента в отдельных молекулах. [c.25]


Смотреть страницы где упоминается термин Диэлектрическая постоянная применение: [c.8]    [c.746]    [c.369]    [c.30]    [c.329]    [c.124]    [c.191]   
Физическая биохимия (1949) -- [ c.82 , c.83 ]




ПОИСК





Смотрите так же термины и статьи:

Диэлектрическая постоянная



© 2025 chem21.info Реклама на сайте