Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диффузия при гетерогенном катализе

    Формулируют дифференциальные уравнения, описывающие одновременно протекающие и влияющие друг на друга процессы химическую реакцию, диффузию, теплопередачу и потерю напора. Такие данные, как константы скорости реакции, коэффициенты диффузии, теплопередачи и трения, могут быть получены путем соответствующих корреляций или экспериментально. После подстановки этих данных в дифференциальные уравнения последние могут быть решены. Во многих случаях, особенно в процессах гетерогенного катализа, указанные уравнения решаются без помощи электронных вычислительных машин лишь с большим трудом. Отметим, что в настоящее время производство и применение математических машин непрерывно возрастает. В весьма недалеком будущем электронные вычислительные машины могут стать серьезным конкурентом опытных установок. [c.340]


    Массо- и теплопередача в порах. Наиболее важное значение в процессах гетерогенного катализа имеет перенос вещества и тепла внутри пористой частицы катализатора. Перенос вещества в порах осуществляется исключительно путем молекулярной диффузии. Если диаметр поры значительно превышает среднюю длину свободного пробега, то молекулы диффундирующих веществ сталкиваются друг с другом гораздо чаще, чем со стенками поры и последние не оказывают существенного влияния на скорость диффузии в пористом зерне. В этих условиях диффузия в порах протекает так же, как в объеме неподвижной жидкости или газа и скорость переноса вещества вдоль поры, отнесенная к единице ее поперечного сечения, определяется законом Фика - [c.98]

    Очевидно, что изучение реакции гидрирования в присутствии комплексных соединений переходных металлов ценно тем, что процесс не осложнен явлениями диффузии внутри пор, характером и параметрами поверхности и др., что имеет место в случае гетерогенного катализа. [c.137]

    Более сложен механизм гетерогенного катализа. В этом случае существенную роль играет поглощение поверхностью катализатора реагирующих частиц. Процесс также протекает в несколько стадий. Начальными стадиями являются диффузия частиц исходных реагентов к катализатору и поглощение частиц его поверхностью (активированная адсорбция). Последний процесс вызывает сближение молекул и повышение их химической активности, прн этом под влиянием силового поля поверхностных атомов катализатора изменяется структура электронных оболочек молекул н, как следствие, понижается активационный барьер. В результате на катализаторе происходит реакция. Затем продукты взаимодействия покидают катализатор и, наконец, в результате диффузии переходят в объем. Таким образом, в гетерогенном катализе образуются промежуточные поверхностные соединения. [c.225]

    Шервуд Т. К., Явления диффузии при гетерогенном катализе. Теорети- [c.547]

    Гетерогенный катализ широко применяется в промышленности, например для синтеза аммиака, серной кислоты, метилового спирта, различных углеводородов. Как и в других гетерогенных процессах, здесь можно выделить ряд стадий. Наиболее обычными стадиями являются диффузия, обеспечивающая подвод исходных веществ к поверхности катализатора, адсорбция их на этой поверхности, взаимодействие адсорбированных веществ с образованием продуктов реакции, десорбция продуктов и, наконец, отвод продуктов реакции от поверхности катализатора в глубину соответствующей фазы с помощью диффузии. В тех случаях, когда решающей стадией является диффузия или адсорбция, скорость каталитической реакции определяется этими процессами. С изменением внешних условий роль определяющей стадии может перейти к другому процессу и изменить тем самым область протекающей реакции. [c.349]


    В связи с указанными особенностями гетерогенного катализа можно выделить четыре основные стадии этого процесса 1) диффузия исходных веществ к поверхности катализатора 2) абсорбция исходных веществ на активных центрах за счет химических и электростатических сил 3) взаимодействие адсорбированных веществ с образованием продуктов реакции 4) десорбция продуктов с поверхности и диффузия из в глубь фазы. [c.298]

    Аналогичное 5 вление происходит и в гетерогенном катализе, если только катализатор не будет смешиваться с реакционной средой (путем диффузии или растворения) в определенном количестве. [c.169]

    Однако в ряде случаев, например при растворении алюминия и олова в соляной кислоте, диффузионная теория оказалась неприменимой. В этом случае скорость процесса на границе твердое тело — растворитель невелика по сравнению со скоростью диффузии, но быстро растет с температурой. Диффузионная теория также неприменима для объяснения кинетики реакции гетерогенного катализа. [c.228]

    Учение о гетерогенном катализе составляет важный раздел химии. Успехи в его развитии зависят не только от прогресса в химической кинетике, но и в других областях, в частности, в теории поверхностных явлений, теории диффузии, физике твердого тела, гидродинамике и т. д. [c.764]

    В гетерогенном катализе для объяснения компенсационного эффекта в основном используются представления об изменении тех или иных свойств твердых тел. Компенсационный эффект —явление более широкое, свойственное не только гетерогенному катализу. Этот эффект характерен для процессов гомогенного катализа, электродных реакций, для реакций радикалов с молекулами в газовой фазе, для химических реакций в растворах, для процессов диффузии. [c.135]

    Реакции гетерогенного катализа представляют собой многостадийные процессы, включающие стадии внешней и внутренней диффузии в порах катализатора к поверхности зерен. Так как каталитическое превращение происходит на поверхности твердого тела, то скорости подобных реакций пропорциональны его суммарной поверхности, т. е. чем сильнее развита внутренняя поверхность, тем эффективнее действие катализатора. [c.524]

    Весь каталитический процесс, осуществляемый на твердом катализаторе, можно разбить на пять последовательно протекающих стадий 1) диффузия молекул реагирующих веществ к поверхности катализатора 2) адсорбция молекул реагирующих веществ на катализаторе 3) химическая реакция 4) десорбция молекул продуктов реакции 5) диффузия молекул продуктов реакции с поверхности катализатора в жидкую или газовую фазу. Первая и последняя стадии называются диффузионными, остальные кинетическими. Все эти стадии могут идти с различными скоростями и скорость всего каталитического процесса лимитируется (определяется) его наиболее медленной стадией. При низких температурах диффузионные стадии не влияют на скорость катализа, так как они обычно идут быстрее кинетических процессов. Кинетические стадии (адсорбция, химическая реакция, десорбция) характеризуются невысокими значениями энергии активации и, следовательно, также идут с большой скоростью. С повышением температуры скорость диффузии растет медленнее, чем скорость химической реакции, и при высоких температурах диффузионные стадии лимитируют скорость гетерогенного катализа. [c.109]

    Важное значение поверхностной диффузии в фундаментальной и прикладной физике показывает разнообразие областей ее применения за пределами разделения газов—гетерогенный катализ, образование месторождений нефти и руд, их добыча. Но до сих пор еще не существует теории, которая объясняла бы все накопленные экспериментальные данные [3.147, 3,148]. [c.90]

    Если не рассматривать диффузию и считать, что равновесие адсорбция десорбция устанавливается быстро, то скорость каталитической реакции определяется скоростью реакции в адсорбционном слое, где роль реагента играют свободные адсорбционные центры. Простейший механизм гетерогенного катализа описывается схемой  [c.227]

    Диффузия при гетерогенном катализе. Диффузионный массоперенос играет большую роль в гетерогенном катализе, в котором обычно используют твердые пористые катализаторы. Во. многих случаях диффузия реагентов (или продуктов реакции) через поры в гранулах катализатора (внутренняя диффузия) значительно влияет на скорость процесса. Промышленные катализаторы имеют активную поверхность порядка нескольких сотен квадратных метров на 1 г, что обусловлено их тонкопористой структурой, т. е. они фактически являются капиллярно-пористыми материалами. [c.536]


    Реакции этого типа играют важную роль в гетерогенном катализе (см. гл. 9). Под влиянием диффузии в порах относительное содержание промежуточного продукта в них возрастает и этот продукт быстро превращается в С. Если В нужно получить или ввести в другую реакцию на другом компоненте катализатора, например в бифункциональной каталитической системе, то следует подавить влияние диффузии в порах. [c.77]

    Экспериментальное исследование процессов тепло- и массообмена в химическом реакторе и гидродинамика потока играют важнейшую роль в создании математического описания процесса. Мы, однако, не рассматриваем в этой книге способов измерения таких параметров, как коэффициенты тепло- и массопередачи, диффузии и пр., так как это является специальной областью не связанной со спецификой гетерогенного катализа. Исключение будет сделано для динамического метода определения гидродинамических характеристик проточных аппаратов, описываемого здесь [23, 35—37]. Получаемая с помощью этого метода информация является весьма ценной для расчета каталитических реакторов [24, 35, 36]. [c.379]

    В практике гетерогенного катализа эффективный коэффициент диффузии часто определяют экспериментально. Однако наибольший интерес представляют попытки рассчитать эффективный коэффициент диффузии на основе модельных представлений пористой структуры катализатора. Расчет эффективного коэффициента диффузии сводится к тому, чтобы в рамках выбранной модели учесть влияние строения пористой структуры на скорость диффузии. [c.164]

    Недостаточно интенсивная диффузия не всегда повлечет за собой уменьшение скорости иногда она сказывается на выходе реакции. Так, например, если в ходе процесса возникает промежуточный продукт, который может подвергнуться конкурентному гидрированию в условиях гетерогенного катализа, и если в гомогенной фазе протекает конкурентная реакция, недостаток водорода на поверхности катализатора будет благоприятствовать второй реакции. [c.54]

    Сложность химических процессов и многообразие влияющих на их протекание факторов затрудняют прямое моделирование процесса в целом. Химический процесс не может быть описан простыми дифференциальными уравнениями. Законы кинетики химических реакций несравненно сложнее чем законы теплопроводности или диффузии.Обычно мы имеем дело со сложными реакциями, протекающими в несколько последовательных стадий. Эти реакции могут быть обратимыми, и тогда наряду с кинетикой для их протекания будут существенны и условия равновесия. Поскольку мы говорим о процессах гетерогенного катализа, задача исследователя осложняется еще и адсорбционными явлениями. Ясно, что полностью учесть столь сложные и многообразные зависимости посредством полного моделирования очень трудно. И действительно, такое полное прямое моделирование химического процесса вместе со всеми осложняющими его физическими процессами удается только в отдельных частных случаях. [c.363]

    Гетерогенный катализ состоит из целого ряда элементарных процессов, среди которых определяющее значение имеет взаимодействие реагентов с катализатором и между собою. Это и составляет то, что мы условно называем здесь каталитическим актом. Такие процессы, как диффузия реагентов к рабочей поверхности катализатора, эвакуация готовых продуктов, блокировка поверхности теми или иными продуктами, рекристаллизация катализатора,. оказывают весьма существенное влияние на ход катализа, на скорость реакции, но не играют решающей роли в определении его характера и потому не включаются в каталитический акт. Сильное влияние на характер катализа могут оказать изменения химического и фазового состава катализатора в результате его работы но они наступают не столь резко и поэтому при известной устойчивости катализатора и при наличии установленного режима тоже не играют решающей роли. Эти процессы поэтому также не включаются в каталитический акт. [c.256]

    Кроме того, гетерогенный катализ позволяет вести промышленные реакции непрерывно. Все это обусловило широкую распространенность гетерогенно-каталитических процессов. Вместе с тем, гетерогенный катализ имеет и недостатки уменьшение реакционного объема (реакция происходит в мономолекулярном слое на поверхности катализатора), затруднения с диффузией веществ к поверхности, с теплопередачей и т, д. [c.84]

    При стационарно протекающем гетерогенном процессе количество вещества, реагирующего на поверхности в единицу времени, должно пополняться за счет диффузии из объема, причем скорость диффузии определяется скоростью реакции и равна ей. Чтобы обеспечить нужную скорость диффузии, необходимо наличие определенной разницы между концентрациями веществ у поверхности и в объеме, причем концентрации исходных веществ всегда будут у поверхности несколько меньше, а продуктов — больше, чем в объеме. Разница эта, очевидно, будет тем больше, чем больше скорость химического процесса на поверхности. Итак, у поверхности катализатора концентрация веществ ( J будет отличаться от концентрации в объеме (Сц), и поэтому для случая гетерогенного катализа нужно в уравнении (VHI.I) заменить Q на [c.142]

    В течение последних нескольких лет изучались реакции углерода с такими газами, как кислород, двуокись углерода и водяной пар, для того чтобы определить реакционную способность различных видов углерода, а именно спектроскопически чистого электродного угля, естественного графита, кокса и активированного древесного угля, и оценить энергии активации этих реакций. Так как углерод обладает пористой структурой, то наши результаты могут иметь общий интерес для всех тех реакций газов с твердыми частицами, где диффузия в поры оказывает влияние на превращение газообразных реагентов. В предыдущих исследованиях [1] это явление изучалось количественно на многочисленных реакциях гетерогенного катализа. Для случая газификации углерода возникает другая трудность, связанная с изменением внутренней поверхности во время реакции [2]. Это необходимо учитывать при вычислении констант реакции по результатам исследования газификации угля. [c.214]

    В химии — определение качественного и количественного состава веществ, определение растворимости, плотности насыщенных паров, коэффициентов диффузии, исследования в области химической кинетики и электрохимии, изучение гетерогенного катализа, изучение механизмов и кинетики органических реакций. [c.36]

    Отметим, что для реакции, протекающей в твердой фазе, например, в случае гетерогенного катализа с пористыми катализаторами, /d->oo, так как твердая фаза неподвижна, т. е. выполняется условие (1.20). Нестационарный процесс диффузии, описываемый уравнением (1.17), становится стационарным процессом. Действи- тельно, не считая первых мгновений существования поверхностных элементов, член г (с) должен быть намного больше члена d idt и потому последним можно пренебречь и тогда [c.27]

    В промышленности наиболее распространен гетерогенный катализ на твердых катализаторах, который и рассматривается ниже. Механизм гетерогенно-каталитического процесса слагается из массообменных и химических стадий. В общем случае при катализе на твердых катализаторах имеют место следующие эле-ментарлые стадии 1) диффузия реагентов из ядра потока к поверхности зерен катализатора 2) диффузия в порах зерна ката- [c.106]

    Ускоряющее действие на разложение пероксида водорода оказывают свет, температура, твердые катализаторы (платиновая чернь, стекло, многие металлы, соли, оксиды металлов). Каталитическое разложение Н2О2 на платиновой черни является примером гетерогенного катализа. Видимо, лимитирующей стадией в данном случае является диффузия молекул Н2О2 к поверхности платины. Стадии адсорбции и десорбции, а также отвод продуктов в глубину фазы протекают быстро и не определяют скорость процесса. [c.154]

    Более сложен механизм гетерогенного катализа. Однако бесспорно, что в этом случае существ12нную роль играет поглощение поверхностью катализатора реагирующих частиц. Процесс также протекает в несколько стадий, но здесь их больше и они иные за счет диффузии частицы исходных реагентов подводятся к катализатору и его поверхность поглощает их (активированная адсорбция). Этот процесс сопровождается сближением молекул и повышением — под влиянием силового поля поверхностных атомов катализатора — их химической активности изменяется структура электронных оболочек молекул и, как следствие, понижается активационный барьер. В результате на катализа- [c.135]

    Совсем другой эффект воздействия гидродинамических факторов был открыт в условиях функционирования гетерогенно-катали-тичеоких систем в различных типах проточных реакторов, созданных в результате новейших успехов в учении о химическом процессе, Достоинства гетерогенного катализа хорошо известны. Они заключаются не только в резком повышении окорости процесса в заданном направлении за счет активации молекул реагента при их контакте с твердым катализатором, но также еще в удобстве отделения катализаторов от продуктов реакции. Однако вместе с решением многих важных задач, связанных с ускорением и управлением химическим процессом, применение гетерогенного катализа вызвало и трудности. Оказалось, что скорость реального химического процесса, протекающего посредством катал изаторов, определяется законами не только химической, но и физической — диффузионной—кинетики, так как диффузия реагентов часто является [c.143]

    Применительно к гетерогенному катализу задача по диффузионной кинетике впервые была поставлена и решена в 1939 г. Я.Б.Зельдовичем [121] и независимо от него Тиле [122]. Ими показано, что скорость суммарной гетерогенной реакции есть функция скоро> тей двух процессов - химической реакции и диффузии - и лимитируется ее наиболее медленной стадией. Если скорость химической реакции несопоставимо велика, то процесс реагирования определяется более медленной его физической стадией - диффузией реагентов (диффузионная область) и напротив, если она мала, то скорость суммарного процесса всецело определяется истинной кинетикой химической реакции на поверхности и не зависит от условий диффузии (чисто кинетическая область). Чисто кинетическая и диффузионная области - это предельные области реагирования. Между ними существует промежуточная область, в которой скорости химических реакций и процессов диффузии сравнимы. З.Ф.Чуханов подразделяет ее еще на три промежуточные области первая переходная, кинетическая и вторая переходная области. По мнению исследователей [16, 8Э], деление гетерогенных процессов на пять областей удобнее деления на три области, так как оно позволяет более четко определить практические условия интенсификации гетерогенных реакций и однозначно установить условия соответствующих экспериментальных исследований. [c.12]

    Определение границы условий, при которых играет роль внешняя диффузия и теплопередача, О. Левеншпиль П1)едлагает провести следуюпцт образом [18]. На основании опытных данных измеряется степень превращения Хд реагента А в реакторе идеального вытеснения при различных линейных скоростях потока и неизменных объемной скорости и начальном составе исходных реагентов (газа). Линейную скорость газового потока при прочих равных условиях можно изменить, проводя серию опытов в реакторе с разной высотой слоя катализатора и соответственным изменением объемного потока реакционной массы, чтобы сохранить постоянным отношение V/F a . JPA.a)y где V - объем 1)еактора. Тогда при внешнедиффузионной области гетерогенного катализа определяющей является диффузия через пограничный диффузионный слой у внешней поверхности катализатора (уравнение 11.10), толщина которого, а следовательно, и диффузионное сопротивление зависят от линейной скорости газа. Если диффузионное сопротивление существенно, то степень превращения (Хд) меняется с изменением скорости газового потока. Величина Хд остается постоянной, когда скорость реакции не зависит от диффузионного сопротивления. Пределы условий, при которых становится заметным влияние переноса вещества и теплоты, соответствуют точке, при которой Хд начинает уменьшаться. [c.679]

    В гетерогенном катализе обычно используются твердые пористые катализаторы, и сопротивление массообмену между окружающим потоком и внутренней поверхностью обусловлено главным образом диффузией через неподвижную жидкость, находящуюся в порах. Исследование вопроса о влиянии диффузии на наблюдаемые характеристики реакции явилось предметом изящной и плодотворной теории, впервые сформулированной Тиле в США в 1939 г. и независимо от него Дамкелером и Зельдовичем. Разработанная затем Уилером и усовершенствованная многими другими исследователями, эта теория представляет собой основной инструмент для химиков и для инженеров, связанных с каталитическими процессами. Ей посвящена значительная часть книги. [c.11]

    Закон установло опытным путем Г. И. Гессом в 1836. ГЕТЕРОГЕННЫЙ КАТАЛИЗ, вызывается катализаторами, образующими самостоят. фазу, отделенную от реагентов границей раздела. Наиб, распространен Г. к., при к-ром ТВ. кат. ускоряет р-цию в газовой фазе или в р-ре. При Г. к. процесс всегда состоит из неск. стадий диффузии реагентов к пов-сти катализатора, их адсорбции, хим. р-ции на пов-сти, десорбции продуктов. Практически различают диффуз. и кинетич. области протекания Г. к. Поскольку катализаторами часто бывают пористые тела, а р-ции происходят при высоких давл. и т-рах с большими скоростями, суммарная скорость процесса может определяться диффузией в-ва в порах катализатора или теплопередачей (о роли диффузии и теплопередачи в Г. к. см. Макрокинетика). Чтобы уменьшить влияние диффузии и теплопередачи и увеличить эффективность катализатора, его раздробляют, наносят на непористый носитель или проводят процесс в псевдоожиж. слое, где пьи.евидный катализатор поддерживается потоком реагентов во взвеш. состоянии. [c.129]

    Диффузии в гетерогенном катализе посвящено много работ, в частности монографии [123, 129]. В условиях катализа реагенты сначала переносятся к поверхности катализатора (внещ-няя диффузия вследствие градиента концентраций между газом и поверхностью катализатора). Затем эти вещества проникают в глубь зерен катализатора, т.е. в его поры, что происходит также вследствии разности концентраций между внешней по-верхн9стью и центрами зерен (внутренняя диффузия). В зависимости от соотношения скоростей диффузии и реакции различают три области протекания каталитического процесса. [c.118]

    Тейлор и Бёрнс [276] рассматривали отравляющее действие при гетерогенном катализе как результат образования пленок, преграждающих доступ к поверхности количество яда, необходимое для образования такой блокирующей пленки, относительно мало, и удаление ее возможно путем превращения-в менее легко адсорбируемую форму. Эти исследователи указывают, что адсорбция блокирующей пленки на поверхности катализатора может сопровождаться внедрением яда в массу катализатора, представляя не только процесс адсорбции, но и процесс диффузии. [c.396]

    Помимо массопередачи от ядра потока к внешней поверхности частицы, большую роль в процессах гетерогенного катализа играет перенос вещества в порах катализатора. Диффузия в широких порах описывается законом Фика (III. 1) с обычным коэффициентом молекулярной диффузии. Однако у большинства катализаторов поры преимущественно малого диаметра, внутри которых молекулярная диффузия перестает подчиняться закону Фика. Если диаметр поры меньше средней длины свободного пробега, молекулы чаще сталкиваются с ее стенками, чем между собой. В таком капилляре перенос вещества идет по механизму Кнудсена и коэффициент диффузии равен [c.116]

    Семеновым было показано, что стенка сосуда может не только оказывать ускоряющее действие на реакцию, как в случае гетерогенного катализа, но и замедлять реакцию, т. е. оказывать такое же действие, как нримеси отрицательных гомогенных катализаторов. В этом случае скорость реакции растет иро-иорционально квадрату диаметра сосуда. Ускорение реакции также имеет место при разбавлении реагирующих газов инерт-ньгми (аргон, гелий, азот и т. и.). Такое действие является результатом уменьшения скорости диффузии активных молекул к стенке. Таким образом, разбавление инертным газом эквивалентно увеличению диаметра сосуда. Тормозящее действие стенок объясняется адсорбцией ими активных частиц, ири помощи которых развивается цепь [38]. [c.64]

    Роль поверхностной диффузии в гетерогенном катализе окончательно не выяснена. Данные, полученные при исследовании диффузии диоксида углерода, этана, пропана и н-бутана в силикагеле, свидетельствуют о том, что поверхностный поток может составлять значительную долю (до 87 %) общего диффузионного потока. При обезвреживании сточных вод каталитическим методом на катализаторах, приготовленных с использованием угля в качестве носителя, диффузия углеводородов внутри 1ранулы в основном может определяться диффузией адсорбированных на угле молекул. Определить вклад поверхностного потока в диффузию реагентов в грануле катализатора в условиях химической реакции непросто из-за трудностей, возникщих при интерпретации экспериментальных данных. Роль поверхностной диффузии широко обсуждается в литературе [41]. [c.569]


Библиография для Диффузия при гетерогенном катализе: [c.452]   
Смотреть страницы где упоминается термин Диффузия при гетерогенном катализе: [c.295]    [c.136]    [c.165]    [c.129]    [c.169]    [c.422]    [c.9]   
Теория технологических процессов основного органического и нефтехимического синтеза (1975) -- [ c.172 , c.182 , c.185 ]




ПОИСК





Смотрите так же термины и статьи:

Гетерогенный катализ Катализ

Гетерогенный катализ Катализ гетерогенный

Катализ гетерогенный



© 2025 chem21.info Реклама на сайте