Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разрушение биологическое ПАВ механизм

    Коррозия — это разрушение металлов, вызванное химическим или электрохимическим взаимодействием их с коррозионной средой. Процессы коррозии могут стимулировать биологические факторы. Разрушение железобетонных конструкций сопровождается обычно интенсивной коррозией металлической арматуры. Высокотемпературная (газовая) коррозия, как и коррозия металлов в органических (неполярных) веществах протекает по химическому механизму. [c.12]


    В Лаборатории прикладных исследований ВМС США было исследовано влияние микробов на коррозию и разрушение металлов в глубоководных условиях, связанных с большим гидростатическим "давлением, осмотическим давлением и пониженными температурами воды. Все перечисленные физические факторы обычно подавляют клеточную активность (за исключением некоторых адаптированных к таким условиям организмов) и поэтому могут оказывать существенное влияние на биологические коррозионные механизмы. Необходимость в подобных исследованиях возникла в связи с ожидаемым использованием дна океана для различных целей, в том числе для сооружений систем противолодочной обороны. Натурные испытания материалов были предприняты с целью получения надежных коррозионных данных в реальных условиях. Эти данные служат критерием при анализе результатов ускоренных коррозионных лабораторных испытаний и, конечно же, дополняют другие данные о коррозионном поведении различных металлов на больших глубинах  [c.435]

    ВИЯ энтеротоксинов весьма ограничены, нарушение ими какого-либо конкретного биохимического процесса не обнаружено. Показано, что действие стафилококкового энтеротоксина типа В приводит у кроликов к нарушению обмена аденозинтрифосфата и ионов поражаются функции митохондрий отдельных чувствительных тканей. При введении токсина в кровяное русло до 15-20%, его обнаруживают в лейкоцитах, а остальная часть содержится в альбуминовой фракции сыворотки. Лейкоциты, содержащие энтеротоксин, в основном, локализуются в легочной ткани. Что касается желудочно-кишечного тракта, то токсин вызывает поражение слизистой, а, именно, эрозию, разрушение ворсинок, расширение лимфатических сосудов. Было установлено действие энтеротоксина на рвотный центр, находящийся в желудочке продолговатого мозга через парасимпатическую нервную систему, а при внутривенном введении он действует на рвотный центр через симпатическую нервную систему. Для защиты от биологического действия токсина необходимо блокировать оба звена. Механизм биологического действия стафилококковых энтеротоксинов тем не менее остается неизвестным, так как еще до конца не ясна его структура. [c.363]

    Под коррозией металлов понимают их разрушение при взаимодействии с окружающей средой. В зависимости от механизма этого взаимодействия различают химическую, электрохимическую и биологическую коррозии. [c.104]

    Наряду с процессами химического окисления нефтепродуктов большую роль играют процессы их биологического разрушения под действием углеводородных бактерий. В связи с особенностями механизмов биогенного и химического окисления ряды устойчивости углеводородов разных классов в этих процессах не совпадают. Так, скорость биодеградации возрастает в ряду н-алканы > разветвленные алканы > ароматические углеводороды > циклопарафины. Эти данные представляют большой интерес для прогнозирования качества воды и для ликвидации последствий нефтяного загрязнения. Особый интерес они представляют для аналитика, поскольку позволяют вести оперативное экспрессное определение суммарного содержания в воде нефтепродуктов по люминесценции их окисленных форм [c.225]


    Электрохимическая коррозия встречается чаще других видов коррозионного разрушения и наиболее опасна для металлов. В атмосфере, когда на поверхности металлов конденсируется влага, коррозий подвергаются металлические конструкции, различное оборудование,, машины, механизмы, средства транспорта. В почве происходит коррозионное разрушение стальных трубопроводов, резервуаров. В морской и речной воде подвергаются ржавлению металлическая обшивка судов, гидросооружения, сваи. В жидких электролитах (растворы кислот, солей и щелочей) корродируют емкости, аппараты и другое оборудование многих химических производств. Под действием внешнего электрического тока (блуждающие токи) могут разрушаться подземные металлические сооружения, стенки электролитических ванн. Биологическая коррозия (биокоррозия) металла может быть вызвана жизнедеятельностью некоторых микроорганизмов. [c.14]

    Механизм образования гидрофобной пленки на волокнистых материалах. Исследования показали, что обработка текстильных тканей кремнийорганическими препаратами дает возможность получить на их поверхности водоотталкивающую пленку, устойчивую к действию светопогоды, стиркам, действию химических реагентов и биологическому разрушению [1-4]. [c.204]

    Увеличение дозы озона до 3,5 мг на 1л воздуха вызывало вымирание биомассы. Замеры АТФ при оптимальной дозе озона указывали на увеличение активности микроорганизмов. После совместной обработки озонирование — биологическая очистка значительно улучшалось отстаивание ила, повышалась степень минерализации. Механизм действия озона на активный ил заключается в разрушении коллоидной структуры ила, что ведет к отделению твердого вещества от воды. При этом активный ил (даже с содержанием нитчатых форм микроорганизмов) обесцвечивается, полностью дезодорируется, стерилизуется. Результаты опытов позволяют предположить, что в случае применения озона на сооружениях биологической очистки бытовых сточных вод можно рассчитывать на 20— 30%-ное снижение ХПК. [c.40]

    Фотохимия органических веществ, т. е. исследование химических реакций, протекающих под действием света, является вполне самостоятельной областью химии (или, точнее говоря, физической химии), которая представляет большой интерес как для ряда важных в практическом отношении химических процессов, так и для теоретической химии [1 — П]. Действие света на органические вещества может приводить как к положительным, так и отрицательным эффектам. Так, под действием света могут осуществляться такие химические реакции, которые в темповых условиях либо вообще не протекают, либо идут весьма медленно. К числу таких полезных фотохимических процессов относятся биологический фотосинтез, реакции фото-изомеризации и фото-галоидирования, промышленные фотосинтетические процессы и некоторые другие. С другой стороны, действие света иногда приводит к частичному или полному разрушению органических материалов или к потере ими некоторых ценных свойств. Фотодеструкция полимеров и фотоокисление (выцветание) красителей как раз относятся к процессам такого рода. Перечисленные примеры позволяют понять то большое внимание, которое уделяют химики исследованию фотохимических процессов с целью выяснения их механизма и создания научно обоснованных путей управления ими. [c.210]

    Некоторые ферменты находятся в клетках и биологических жидкостях в неактивном или малоактивном состоянии. Такие ферменты получили название проферментов. Под действием определенных соединений они становятся активными — переходят в фермент. Механизмы такого превращения разнообразны. Часто профермент переходит в фермент при разрушении находящегося в нем ингибитора. Возможно превращение профермента в фермент в результате перестройки структуры и конформации его молекулы. Как известно, химотрипсин образуется в поджелудочной железе в виде каталитически неактивного химотрипсиногена. Это вещество превращается в активный химотрипсин лишь тогда, когда попадает в пищеварительный тракт животного. Происходит это под действием трипсина и заключается в гидролизе одной пептидной связи в первичной структуре фермента. Благодаря расщеплению пептидной связи полипептидная цепочка становится как бы менее стянутой, поэтому она расправляется и может принять ту третичную структуру, [c.13]

    До появления фотосинтезирующих организмов земная атмосфера, по-видимому, почти не содержала кислорода. Он создавался и создается в наше время фотосинтезирующими организмами путем разложения воды за счет энергии солнечного света. При фотосинтезе водород используется для синтеза органических веществ (восстановления СО ), а кислород является побочным продуктом. С образованием кислородной атмосферы стало возможным развитие организмов, использующих энергию органических веществ (иначе говоря, энергию солнечного света, запасенную в органических веществах) путем их окисления кислородом. Такой путь получения энергии гораздо более эффективен, чем те, которые возможны в отсутствие кислорода и действуют у анаэробных организмов. Однако вместе с преимуществами кислород принес и новую опасность для жизни. Молекулярный кислород, не слишком реакционноспособный в своем основном состоянии, может образовывать высокоактивные формы, способные даже убить живую клетку. В связи с этим одновременно с механизмами использования кислорода в ходе биологической эволюции вырабатывались и механизмы защиты от его повреждающего действия. С другой стороны, фагоцитирующие лейкоциты используют активные формы кислорода для разрушения бактерий и других клеток. [c.452]


    Одной нз важных областей применения химической кинетики является изучение кинетических закономерностей образования и деструкции иолимеров. Изделия из полимеров нашли широкое практическое нримененне, поэтому производство полимеров является одной из основных отраслей химической промышленности. Изучение кинетики и механизма синтеза полимеров и.меет большое значение для оптимизации соответствующих технологических пронессов. Деструкция полимеров является одним из основных факторов, ограничивающих диапазон условий, в которых могут эксплуатироваться изготовленные из полимерных материалов детали машин и меха-низ.мов. Кинетические исследования процессов деструкщш полимеров являются важным звеном в решении проблемы стабилизации полимерных материалов. Для понимания молекулярных основ жизнедеятельности важное значение имеет изучение кинетики и механизма образования и разрушения биологических полимеров — белков, нуклеиновых кислот, полисахаридов. [c.413]

    Использование света как средства для изучения физиологических процессов in vivo имеет ряд важных преимуществ, которые, однако, не выяснены и не оценены в достаточной мере. Свет может проникать в интактные клетки с минимальным разрушением биологического объекта. Некоторые стадии большинства биохимических путей метаболизма включают реакции, протекающие на свету. Для подобных реакций необходимо, чтобы фоторецептор смог воспринять излучение. Природу абсорбции фоторецептора можно определить, исследуя зависимость определенной светочувствительной реакции от длины волны света при этом получают спектр действия. Спектр действия может стать важным ключом к разрешению проблемы природы фоторецептора и механизма биохимической реакции. Полезные советы и обобщения по методам получения спектров действия имеются в обзорах (Сетлоу [5], Бутлер [6]). Место действия света можно установить, закрывая отдельные части объекта или используя микролуч (Бок и Хаупт [7]). Поляризованный свет можно использовать для выяснения причин реакции, обусловленной дихроичной организацией фоторецептора (Хаупт [8]). [c.340]

    Предположение о роли биологических агентов в разрушении кишечных бактерий, поступавших в море, было высказано еще в 1885 г., когда установили, что возбудители тифа и холеры дольше выживают в морской воде, стерилизованной нагреванием, чем в морской воде, стерилизованной фильтрованием [1]. Эта гипотеза подтверждается также данными о том, что в водах Северной Атлантики Е. соИ выживает зимой в 10 раз дольше, чем летом [2]. Для типичной кривой отмирания Е. oli в морской воде характерна фаза быстрого снижения числа микроорганизмов, за которой следует фаза их устойчивости, что также указывает на биологический механизм разрушения кишечных бактерий в море. Установлено также, что активным фактором в разрушении Staphylo o us в морской воде являются термолабильные макромолекулы, связанные с цветением воды [3]. [c.227]

    Как показывает опыт, удаление из воды микроводорослей приводит к резкому снижению скорости разложения пероксида водорода, тогда как введение в природную воду концентрата водорослей из того же водоема приводит к значительному возрастанию скорости. Введение в такую химико-биологическую систему (Н202 — микроводоросли — примеси ионов переходных металлов) загрязняющих веществ сопровождается их быстрым окислением за счет ОН радикалов, возникающих при распаде пероксида водорода. Результаты этих исследований позволили предложить редокс-модель природной воды, согласно которой микроводорос-левая биота участвует как в образовании пероксида водорода под действием солнечного света, так и в ее разрушении за счет выделения во внешнюю среду веществ с ярко выраженными восстановительными свойствами. В целом механизм самоочищения может быть представлен следующей схемой  [c.618]

    В связи с особой актуальностью охраны окружающей среды от загрязнения химическими реагентами большое внимание уделяется изучению способности ПАВ к биологическому разрушению в водной, почвенной и других средах. Биологическим разложением называют любое изменение (трансформацию) молекулы химического соединения, ведущее к упрощению структуры и изменению его различных свойств (физико-химических, токсикологических и др.) под влиянием живых организмов. Различают первичное и полное биологическое разложение. Так, гидрологическое отщепление от молекулы ПАВ активной сульфогруппы приводит к утрате веществом поверхностной активности, а с ней и способности к пенообразованию. В данном случае приемлемое для окружающей среды биоразложение совпадает с первичным разложением. Полное биоразложение — это распад вещества до простых неорганических соединений с образованием воды, углекислого газа, азота, аммиака и др. Известно, что алкилсульфаты разрушаются в результате гидролиза с образованием соответствующих спиртов которые окисляются до жирных кислот. В свою очередь последние подвергаются деструкции путем а- и р-окисле-ния. Вторичные жирные спирты (ВЖС) могут разлагаться по такому механизму ВЖС- спирт->кетон->оксикетон- дион альдегид-V кислота. Деструкция анионных ПАВ,, ведущая к потере поверхностной активности, может происходить либо путем отщепления от молекулы вещества гидрофильной группы, либо в результате последовательного окисления алкильного радикала. Отщепление гидрофильной, группы у синтетических алкилсульфатов, алкилсульфена-тов и алкиларилсульфенатов осуществляется в результате каталитического воздействия ферментов сульфатаз. [c.93]

    Характерным свойством живого материала является то, что он движется. Степень движения меняется от явного перемещения в потоке цитоплазмы до движения ионов, электролитов, молекул и макромолекул относительно друг друга внутри клетки. В результате обмена веществ биологический материал постоянно изменяется, разрушая и перестраивая функциональную архитектуру клетки. Эта выраженная нестабильность мешает проведению рентгеновского микроанализа, если не найдены пути мгновенного сдерживания активности клетки и удержания ее в этом состоянии до тех пор, пока выполняются исследования. Если бы это было сделано, то окружающая среда, в которой должен производиться рентгеновский микроанализ, полностью была бы лишена жизненных процессов. Типичный одноклеточный организм менее 2 мкм в поперечинке синтезирует много сотен соединений путем тонкого регулируемого процесса, способен воспроизводить сам себя и генетически эволюционировать и видоизменять эти процессы. Если захотелось бы найти быстрый способ разрушения этого уникального тончайшего механизма, то, вероятно, не нашлось бы ничего лучше потока быстрых электронов, который за одну секунду смог бы испарить количество воды, во много раз превышающее вес образца. [c.266]

    Природный хлор в стратосфере обычно переносится в виде ме-тилхлорида (СНзС1), который, по-видимому, поступает из морских и наземных биологических источников (см. п. 2.4.2). Эти природные источники составляют, однако, только 25 % хлора, который переносится через тропопаузу. С начала 1970-х ХФУ, используемые как аэрозольные распылители и охлаждающие вещества, стали широко распространяться в тропосфере. Раньше казалось, что не существует очевидного механизма разрушения этих высокоустойчивых соединений в нижней части атмосферы. Однако знание того, что ХФУ переносятся в стратосферу, позволило поднять вопрос об их влиянии на слой Оз. Эти соединения, например СРСЬ (Фреон-11) и СРгСЬ (Фреон-12), поглощают УФ-излучение в области 190-220 нм, что приводит к реакциям фотодиссоциации  [c.256]

    Проферменты. Протеолитические ферменты пищеварительного тракта, а также поджелудочной железы синтезируются в неактивной форме—в виде проферментов (зимогенов). Регуляция в этих случаях сводится к превращению проферментов в активные ферменты под влиянием специфических агентов или других ферментов—протеиназ. Так, трипсин в поджелудочной железе синтезируется в форме неактивного трипсиногена. Поступив в кишечник, он превращается в активный трипсин в результате аутокатализа или под действием других протеиназ (механизм активации подробно рассматривается в главе 12). Превращение неактивного пепсиногена в активный пепсин происходит аутокаталитически в результате специфического ограниченного протеолиза в присутствии соляной кислоты и также связано с отщеплением от профермента специфического ингибитора пептидной природы. Эти превращения зимогенов в активные ферменты связаны с конформационными изменениями молекулы фермента и формированием активного центра или его раскрытием (демаскирование). Синтез протеиназ в неактивной форме и ряда других неактивных белков-пред-шественников имеет, очевидно, определенный биологический смысл, предотвращая разрушение клеток органов, в которых образуются проферменты. Примерами подобного активирования белков является активиро- [c.153]

    Известно, что токоферолы выполняют в организме две главные метаболические функции. Во-первых, они являются наиболее активными и, возможно, главными природными жирорастворимыми антиоксидантами разрушают наиболее реактивные формы кислорода и соответственно предохраняют от окисления полиненасыщенные жирные кислоты. Во-вторых, токоферолы играют специфическую, пока еще не полностью раскрытую роль в обмене селена. Селен, как известно, является интегральной частью глутатионпероксидазы-фермента, обеспечивающего защиту мембран от разрушающего действия пероксидных радикалов. Биологическая роль витамина Е сводится, таким образом, к предотвращению аутоокисления липидов биомембран и возможному снижению потребности в глутатиониероксидазе, необходимой для разрушения образующихся в клетке перекисей. Участие токоферолов в механизме транспорта электронов и протонов, как и в регуляции процесса транскрипции генов, и их роль в метаболизме убихинонов пока недостаточны выяснены. [c.220]

    Важное значение в защитных реакциях организма имеют гликопротеины плазмы крови (см. стр. 576). Показано присутствие в плазме по крайней мере двадцати биологически активных гликопротеинов выполняющих различные функции. В частности, фракция углобулинов, к которой принадлежат антитела, вырабатываемые при введении в организм антигенов, содержит значительное количество остатков моносахаридов. Непосредственным участником защитной иммунной реакции в организме является так называемый комплемент , который соединяется с комплексом антиген—антитело и вызывает разрушение введенных чужеродных клеток. Активность комплемента зависйт от присутствия четырех компонентов, из которых по крайней мере два являются гликопротеинами. Многие полисахариды микроорганизмов повышают неспецифическую резистентность животных к бактериальной инфекции . Механизм их действия пока не вполне понятен. [c.606]

    Для грамицидина 8 характерна разносторонняя биологическая активность. Он подавляет грамположительные и слабее грамотри-цательные бактерии и примеияется 0 медицинской практике (а частности, для полоскания горла прн ангине). Механизм биологического действия антибиотика, по всей вероятности, связан с его взаимодействием с фосфолипидными мембранами, приводящим к их разрушению. Не исключено его участие в трансмембраином транспорте иуклеотидов. [c.286]

    Реакция озона с фенолом и его аналогами, особенно в разбавленных водных растворах, была предметом ряда исследований [1—4]. в которых было изучено влияние параметров опытов на скорость разрушения фенола [1, 3] и изменение биологических показателей воды [3], описывались конструкции установок. Механизм и кинетика реакции озона с фенолом изучены мало, а опубликованные результаты зачастую противоречат друг другу. Так, например, полагали, что при озонировании 2,3-диоксинафта-лина озон присоединяется по С= С-связям ароматического кольца [5], либо, что атакуется СН-связь в а-положении к гидроксилу и образуется новая оксигруппа [3, 6]. [c.298]

    Модель нефтяного месторождения Экринг может также служить для иллюстрации некоторых механизмов, обуславливающих связь органического вещества с осадочными образованиями. Непрочные углеводороды, пытаясь проникнуть в покрывающие породы , создают весьма реакционные условия. Накапливаются доказательства того, что трещины, образовавшиеся в процессе развития антиклинали, были захвачены такими углеводородами и что углеводороды реагируют с глинистыми минералами, образуя кристаллические скопления серицитовых слюд, наиболее простой разновидностью которых является иллит [17]. В обширной области седиментологии влияние органических молекул, и особенно биологических параметров, быстро осознается геохимиками. Представление о цементации осадочных пород традиционными неорганическими путями в течение длительного времени и при повышенных давлениях быстро вытесняется концепцией о цементации с помощью металлоорганических реакций, протекающих в морских и устьевых водах довольно быстро. Биогенетические реакции играют такую же важную роль в развитии и разрушении пород, как и в происхождении и выживании организмов, и теперь трудно сделать разграничение между продуктами органической геохимии и биогеохимии . [c.31]

    Но в динамических биологических структурах, выполняющих функции высших кодов, всегда имеется множество участков, важных для высших кодов, но уязвимых для случайных кодовых действий и внешней и даже внутренней среды в этом заключается драматизм положения. С одной стороны, высшие коды (нервная система, клетки мозга) обеспечивают высокую степень параметрической изоляции организма и сопротивления случайным кодам, а с другой — сами они плохо защищены от беспорядочных кодовых воздействий и способны подобно скалам, размываемым волнами, накапливать результаты хаотических кодовых воздействий. Защиту их природа в основном доверила именно механизмам высшего ранга. Мозг должен заботиться о сохранении нервных клеток от разрушения, а сами клетки почти беззащитны. хМозг человека действительно занят выполнением работ, [c.129]

    Фотодинамическое действие можно рассматривать как сенсибн лизируемое красителем фотоокисление субстрата типа окислительной деструкции определенных аминокислотных боковых цепей белка [639], которое протекает без разрушения красителя [320, 651]. Биологический эффект этого процесса отличается от биологического эффекта, вызываемого прямым поглощением ультрафиолетового излучения [662—665]. Например, при бактерицидном действии УФ-света (280 нм) может иметь место фотодимеризация тимина, протекающая в процессе дезактивации ДНК [665, 666]. Для объяснения различных фотодинамических эффектов могут быть привлечены механизмы, рассмотренные на стр. 454, например, механизмы с переносом кислорода. В отсутствие кислорода фотоокисленИе может протекать и по пути отрыва водорода с образованием семи-хиноновых радикалов красителя и радикалов субстрата [237]. [c.459]

    Деструктирующее влияние света находит применение при создании фоторазрушаемых полимеров. Необходимосп в таких материалах обусловлена требованиями экологии. В естественных условиях полимерная тара одноразового использования может сохраняться много лет, что приводит к загрязнению окружающей среды. Введение в полимеры сенсибилизаторов фотодеструкции (например, ароматических кетонов, 9,10-антрохинона, меркаптобензтиазола, производных акридина и др.) позволяет значительно ускорить процесс разрушения полимерной тары, образующиеся в процессе деструкции вещества включаются в естественные биологические циклы. Под действием света может происходить фотосшивание макромолекул полимеров. Оно может наблюдаться даже при облучении полимеров, молекулы которых не содержат реакционноспособных групп в основной цепи или в боковых заместителях. В этом случае акту сшивания предшествует возникновение свободных радикалов и накопление ненасыщенных фрагментов молекул. В отсутствие кислорода наиболее вероятным является следующий механизм, который можно продемонстрировать на примере полистирола (Ph-фенил eHs)  [c.59]

    Реакция озона с фенолом и его аналогами, особенно в разбавленных водных растворах, являлась предметом многочисленных исследований [1—6], в которых было изучено влияние параметров опытов на скорость разрушения фенола [1—3] и изменение биологических показателей воды [4], описывались конструкции установок. Механизм и кинетика реакции озона с фенолом изучены мало, а опубликованные результаты зачастую противоречат друг другу. Так, например, Бернатек и Винце [5] полагали, что при озонировании 2,3-диоксинафталина озон присоединяется но С=С-связям ароматического кольца, в то время как другие считают, что атакуется С—Н-связь в а-положении к гидроксилу и образуется новая оксигруппа [3,6] в одном из ранних исследований [1 предполагалось, что при окислении фенола озоном образуется хинон. Опубликованы работы, где принимается, что озон отрывает водород от оксигруппы [7]. [c.219]

    Так мы подошли к рассмотрению первого кризиса в биологической эволюции — дальнейшее совершенствование, т. е. дальнейшее ускорение матричного воспроизведения посредством уже существующих механизмов оказывается невозможным. Здесь эволюционирующая система может задержаться неопределенно долго до тех пор, пока не возникнет принципиально новый механизм ускорения кинетического совершенствования объектов эволюции. Есть два неисключающих друг друга пути выхода из этого самого острого в биологической эволюции кризиса первый — выработка механизмов ускорения синтезов мономеров и второй — выработка механизмов ускорения разрушения старых полинуклеотидов. Избирательное ускорение определенных химических реакций есть катализ. Следовательно, основное содержание второго этапа биологической эволюции — возникновение в ходе естественного отбора предельно совершенных катализаторов-ферментов. Самое естественное начальное предположение состоит в допущении каталитических свойств у самих матричных полимерных молекул. В одном отношении такое допущение тривиально — матрицы избирательно катализируют синтез своих копий . [c.49]

    Анализируя проблему возникновения жизни, Д. С. и Н. М. Чер-навские [322] выдвинули гипотезу о возможном механизме установления соответствия между последовательностями нуклеотидов и аминокислот. Они предположили, что двойная полинуклеотидная спираль служит гетерогенным катализатором, ускоряющим синтез пептидных связей между аминокислотами, адсорбированными на полинуклеотиде. Так образуется белковый чехол, предохраняющий полинуклеотидную двойную спираль от разрушений, который сам может обладать каталитическими свойствами, способствующими тем или иным путем образованию полинуклеотидных цепей. Для того, чтобы такой механизм играл биологическую, т. е. эволюционную, роль, последовательность, аминокислот, образующих белковый чехол, должна зависеть от последовательности нуклеотидов. Гипотеза ценна тем, что ее можно проверить экспериментально (см. также [371]). [c.54]

    Процесс поглощения антигена сопряжен с активацией внутриклеточных молекулярных механизмов, направленных на разрушение чужеродных агентов. Образовавшаяся в результате поглощения опсонизированного антигенного материала фагосома сливается в клетке с одной или несколькими лизосомами, образуя фаголизосому. В фаголизосоме бактериальные и другие антигены оказываются в резко кислой среде (pH 3,5-4,0), которая сама по себе обладает бактериостатическими и бактерицидными свойствами. Кроме того, в результате фагоцитоза происходит усиленное образование кислородпроизводных продуктов, которые крайне токсичны для бактерий. В процесс разрушения и активного переваривания бактерий обязательно включаются антимикробные пептиды (дефенсины и катионные белки), а также основные ферменты лизосом — ЛИЗОЦИ.М и кислые гидролазы. Совместное действие всех этих механизмов приводит к успешному разрушению чужеродных антигенов до биологически инертных низкомолекулярных соединений. [c.258]

    Чем обусловлены столь высокая каталитическая эффективность ферментов и их специфичность Это одна из фундаментальных научных проблем, хотя некоторые ее аспекты имеют и прикладное значение. Переход неактивных проферментов в каталитически активное состояние, который наблюдается в клетках при определенных патологических условиях (например, при остром панкреатите), приводит к внутриклеточному перевариванию и разрушению тканей. Проводя фундаментальные иследования механизма действия ферментов, мы в конце концов сможем, используя технологию рекомбинантных ДНК и метод направленного точечного мутагенеза, систематически синтезировать ферменты с более высокой каталитической активностью или новой специфичностью. Некоторые из этих синтетических ферментов могут оказаться мощными терапевтическими агентами. Если мы хотим понять, как действуют металлы на биологические системы, мы тоже должны исследовать их влияние на работу ферЫеитов. [c.91]

    Наночастицы (НЧ) получают полимеризацией мицелл. В наиболее общей схеме их получения имеет место солюбилизация биологически активного вещества, при которой оно включается в мицеллы. При определенных условиях (температура, pH среды, скорость перемешивания) солюбилизированный раствор взаимодействует с раствором полимеризирующего агента. Процесс полимеризации индуцируют с помощью у-лучей, УФ-облучения. Размеры частиц полученного легкого порошка составляют от 10 до 1000 нм, удельная поверхность 10 м г. Наночастицы, диспергированные в воде, могут давать прозрачные или опалесцирующие растворы, вводимые парентерально. Различные лекарственные вещества включаются в частицы в процессе полимеризации или адсорбирукугся на осажденных частицах, причем адсорбция представляет собой наиболее распространенный механизм связьшания. Скорость высвобождения лекарственных средств из наночастиц тесно связана со скоростью разрушения этих частиц и в некоторой степени может контролироваться выбором мономера. [c.199]

    Рассмотренные выше процессы направлены на возможно более быстрое заполнение раневого дефекта новообразованной соединительной ткани. После ее созревания в действие вступает второй этап ауторегуляции, биологическим смыслом которого является защита от избыточного роста ткани. Как показали наши исследования, это достигается тремя одновременно действующими механизмами ингибицией биосинтеза коллагена путем превращения фибробластов в неактивные формы — фиброциты, разрушением большей части клеток и частичной резорбцией волокон фибробластами, которые превращаются в фиброкласты. Часть фибробластов разрушается в результате клазматоза на высоте своей биосинтетической деятельности. В других клетках вследствие гиперфункции происходит изнашивание клеточных структур, которое уже не восполняется внутриклеточной и молекулярной регенерацией. В таких клетках появляется большое число аутофаголизосом и сегрессом, затем клетки распадаются. Часть фибробластов подвергается естественной гибели в соответствии с генетически запрограммированным сроком жизни. К ним, возможно, относятся так называемые короткоживущие фибробласты (см. раздел 1.1.2). [c.276]

    Недавно удалось выявить еще один интересный факт PER белок взаимодействует с другим белком, названным timeless (TIM). Оба соответствующих гена включаются утром, и синтезируемая ими мРНК накапливается в течение дня (рис. 7.11). По ходу дня уровни PER и TIM возрастают. Эти белки накапливаются в очень высокой концентрации, взаимодействуют друг с другом, образуя комплекс, который проникает в ядро и останавливает транскрипцию собственных генов. Уровни per и tim снижаются в течение ночи, с последующим снижением уровней белков PER и TIM. В конце концов уровень содержания этих белков становится столь низким, что они перестают образовывать комплекс и репрессировать транскрипционную активность генов per и tim. Эти гены вновь активируются и начинают активно транскрибировать, так что уровень белков PER и TIM снова возрастает. Такой генетически детерминированный функциональный цикл и лежит в основе биоритмов. При этом возникает вопрос о том, каким образом реализуется зависимость биоритмов от света. Оказалось, что Т1М белок инактивируется светом. При освещении разрушается как Т1М белок, так и PER-TIM комплекс, а tim и per гены становятся транскрипционно активными. Когда степень освещенности снижается (сумрак к ночи), уровень белка TIM возрастает, вызывая выключение генов per и tim с последующим снижением уровня PER и Т1М белков. Экспериментальное освещение животных в ночное время вызывает деструкцию TIM белка и вновь устанавливает биологические часы. Механизм разрушения TIM белка светом неизвестен. Тем не менее, циркадный ритм является одной из удобных моделей, демонстрирующих связь поведенческих реакций с молекулярными событиями. [c.188]


Смотреть страницы где упоминается термин Разрушение биологическое ПАВ механизм: [c.628]    [c.204]    [c.139]    [c.293]    [c.58]    [c.293]    [c.269]    [c.19]    [c.19]   
Химия и технология синтетических моющих средств Издание 2 (1971) -- [ c.290 , c.292 ]




ПОИСК





Смотрите так же термины и статьи:

Биологическое разрушение ПАВ

Биологическое разрушение ПАВ разрушение биологическое



© 2025 chem21.info Реклама на сайте