Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дипольный момент геометрия молекулы

    Дипольные моменты связей могут быть получены из анализа дипольных моментов алифатических молекул, геометрия которых сейчас хорошо известна. Все электрические дипольные мо- [c.291]

    Взаимосвязь между. дипольным моментом и геометрией молекулы [c.582]

    Специфическая геометрия переходного состояния, по-видимому, определяется прежде всего не электростатическими факторами, как это принималось первоначально (Бергман), а квантовомеханическими (Меер п Поляни). Атака молекулы замещающим ионом со стороны, противоположной той, где расположен вытесняемый заместитель, в нашем случае очень хорошо объясняется дипольным моментом атакуемой связи  [c.371]


    Дипольный момент молекул есть векторная сумма диполь-ных моментов связей. Если геометрия молекулы такова, что дипольные моменты связей компенсируют друг друга, то дипольный момент равен нулю и молекула неполярна даже при наличии в ней поляризованных связей (молекула 05). Молекула воды полярна (уголковая форма). [c.106]

    Молекула Геометрия Наличие дипольного момента Примеры [c.80]

    При поглощении кванта света молекула переходит в электронновозбужденное состояние, в котором существенно меняются такие свойства, как геометрия, электронное распределение, реакционная способность и др. Так, например, молекула формальдегида Н2С = 0, плоская в основном состоянии, при возбуждении меняет геометрическую структуру на пирамидальную с внеплоскостным углом 35°. Дипольный момент 4-амина-4 -нитростирола в основном состоянии равен 6,80, а в первом синглетном возбужденном состоянии он становится равным 28,50, что свидетельствует о существенном перераспределении электронной плотности. В нафталине а-положение в 50 раз реакционноспособнее р-положения. При возбуждении наблюдается нивелирование реакционной способности а- и 3-положений. [c.289]

    Рентгена- и электронография, как уже упоминалось, дают самую непосредственную информацию о геометрии молекул— межатомных расстояниях и валентных углах. Векторный характер дипольных моментов позволяет делать важные выводы об ориентации полярных связей. Менее прямую, но практически очень ценную, часто используемую стереохими-ческую информацию несут ультрафиолетовая и инфракрасная спектроскопия. [c.86]

    При поглощении света молекулы переходят в электронно-возбужденное состояние. При этом физические и химические свойства молекул изменяются по сравнению с основным состоянием. Меняются дипольный момент, 52-геометрия, распределение электронной плотности. Молекула в возбужденном состоянии обладает иной реакционной способностью, что проявляется не столько в ускорении химических реакций, сколько в ином направлении химического процесса с образованием других продуктов. [c.225]

    Изменение электронной структуры атомов и молекул при переходе из основного в В. с. приводит к изменению их геометрии, т.е. равновесных расстояний между атомами в молекулах, дипольных моментов и поляризуемости, хим. св-в. Электронные B. . могут быть стабильными или диссоциативными (нестабильными). Для первых характерно наличие полного минимума на поверхности потенциальной энергии, для вторых-монотонное понижение энергии при увеличении расстояния между к.-л. атомами или атомными группами. Изменение структуры молекулы при переходе в B. . можно проиллюстрировать на примере формальдегида. Его основное состояние является плоским, длина связи С—О составляет 0,122 нм. Синглетное и триплетное п,п В. с.-пирамидальные с углом между С—О связью и плоскостью СН J-группы 20 и 35 соотв. длина С—О связи увеличивается до 0,132 и 0,131 нм дипольный момент молекулы в основном состоянии 2,30, в возбужденном синглетном-1,60. [c.409]


    Как уже упоминалось, пептидная группа имеет лабильное электронное строение. В предыдущем разделе рассмотрено проявление этого свойства в геометрии группы - длинах химических связей, валентных углах и конфигурации. Не менее показательным здесь являются и колебательные спектры, в частности инфракрасные спектры поглощения, частоты которых отражают механические характеристики молекул, а интенсивности полос - дипольные моменты связей и их чувствительность к естественным колебательным координатам (Э 1,/Э Э Л.,/Эа где и соответственно отклонения длин связей и валентных углов от равновесных значений). И то и другое, помимо кинематики, определяется динамикой колебания, непосредственно связанной с электронным строением - поляризацией связей и миграцией зарядов в процессе нормальных колебаний молекул В силу этого в колебательных спектрах заключена богатейшая информа- [c.140]

    Дипольный момент молекулы можно считать векторной суммой дипольных моментов отдельных связей. Дипольные моменты связей можно рассчитать, зная дипольный момент молекулы (о его экспериментальном измерении см. ниже) и точную ее геометрию углы между валентными направлениями, межатомные расстояния. Так из дипольного момента молекулы воды (в газообразном состоянии), равного 1,84 О, и угла [c.346]

    Экспериментальные определения теплот адсорбции ряда других молекул с большими периферическими дипольными моментами при малых заполнениях поверхности графитированной термической сажи дали величины, близкие к теплотам адсорбции алканов, соответствующих по геометрии и общей поляризуемости молекул [143—145]. Вместе с тем экспериментальные значения теплот адсорбции этих же пар веществ на специфических адсорбентах (гидроксилированная поверхность кремнезема, катионированные цеолиты) значительно различаются теплоты адсорбции молекул, обладающих электрическими моментами, значительно выше теплот адсорбции соответствующих неполярных молекул [135, 143—145]. [c.247]

    Ко второй группе относятся методы структурно-группового анализа, выделение замкнутых по строению атомных групп в молекуле, исследование влияния окружения группы и замещений, внутри- и межмолекулярных взаимодействий и поворотных изомеров. При таких исследованиях наряду с измеренными величинами спектра необходимо располагать дополнительной информацией об относительных амплитудах колебаний частей молекулы в данном нормальном колебании (форма колебаний), а также о тех факторах (геометрия молекулы, характеристики межатомных сил и взаимодействий групп, дипольные моменты связей и др.), которые определяют положение полос или линий в спектре и их интенсивности и поляризации. Совокупность сведений такого рода принято называть интерпретацией полосы (линии). Достаточно надежная и полная интерпретация полосы может быть получена только на основе соответствующего теоретического исследования и модельных расчетов. [c.169]

    Как мы видели, полярность молекул является причиной ряда явлений, но, кроме того, измерения дипольных моментов сами по себе приносят непосредственную пользу, например при исследовании геометрии молекул. Так, двуокись углерода неполярна, и, следовательно, молекула должна быть линейной, тогда как вода имеет довольно большой дипольный момент и должна быть угловой молекулой (см. стр. 105 и 111). Молекула аммиака полярна и, следовательно, является пирамидальной, тогда как [c.147]

    Основные научные работы посвящены исследованию структуры молекул по данным об их дипольных моментах. Определил геометрию многих молекул, полярность химических связей, электроотрица- [c.467]

    Если причины, определяющие образование локальной структуры жидкого кристалла, ее геометрия и конфигурация локального молекулярного поля в настоящее время далеко не изучены, то для немезогенов свойства, ведущие к анизотропному взаимодействию с окружением, более ясны. В отсутствие специфического взаимодействия (водородная и донорно-ак-цепторная связь, кулоновские силы) анизотропия взаимодействия будет определяться положением векторов дипольного момента и главной оси тензора поляризуемости, зависящими также от направления оси главного момента инерции молекулы немезогена [137]. [c.252]

    Если известна геометрия молекулы, тогда, рассматривая дипольный момент как вектор, можно вычислить моменты связей [15]. Например, моменты фторбензола и хлорбензола в бензольном растворе равны, соответственно, 1,48D и l,58u, и так как моменты связей С—F и С—Н направлены соответственно от кольца и к кольцу, для фторбензола [c.203]


    Изучение дипольных моментов имело большое значение на ранней стадии развития стереохимии. Маловероятно, чтобы исследование дипольных моментов в прежних направлениях (кроме выяснения расположения групп) играло большую роль в будущем, так как обычно более точные данные можно получить при помощи рентгенографии, электронографии или других методов, позволяющих определять геометрию молекулы. Однако определение дипольных моментов может оказаться весьма полезным, чтобы решить, следует ли предпринимать более подробное исследование в некоторых же случаях оно может дать ценную дополнительную информацию. [c.210]

    Электронное возбуждение влияет на дипольные моменты не только путем изменений в геометрии молекулярного скелета, но и через перераспределение самих электронов. Определяя это распределение, дипольные моменты таким образом предполагают возможное химическое поведение возбужденных состояний. Изменения в дипольном моменте при возбуждении можно установить по влиянию полярных растворителей на спектры поглощения и флуоресценции и по воздействию приложенных электрических полей на деполяризацию флуоресценции, возбужденной поляризованным светом. Все эти изменения могут происходить как в сторону увеличения, так и в сторону уменьшения величины дипольных моментов. Например, в формальдегиде (метаноле) дипольный момент уменьшается от 2,3 дебая в основном состоянии до 1,6 дебая в состоянии ( , я ), тогда как для бензофенона эти значения составляют 2,9 и 1,2 дебая в основном и возбужденном состояниях соответственно. Уме1[ьше-ние дипольных моментов определяется уменьшением поляризации связи С = 0 в возбужденной молекуле. В то же время дипольный момент ароматической молекулы, такой, как 4-нитроанилин, при возбуждении увеличивается от 6 до 14 дебая. Это происходит в значительной мере благодаря процессам переноса заряда в возбужденном состоянии можно ожидать, что полностью биполярная структура 4-нитроанилина, с полностью отрицательными зарядами на каждом кислороде и полностью положительными зарядами на каждом азоте, должна иметь дипольный момент около 25 дебая. [c.150]

    Из рассмотрения геометрии молекулы циклооктина виднс., что необходимы большие отклонения валентных углов, чтобы закрыть цикл, т. е. необходимо существование изогнутых связей . Это приведет также к искривлению линейной системы С—С = С—С и в результате к изменению гибридизации тройной связи, к ее электронной асимметрии и впоследствии, вероятно, к появлению дипольного момента в молекуле циклооктина. [c.83]

    Дипольные моменты. Измерение дипольных моментов в стереохимии основано па сравнении экспериментальных данных с расчетом для различных предполагаемых геометрических моделей соответствующих молекул. Так, например, существование дипольного момента у молекул воды уже в 1924 г. было принято как указание на то, что связи О—Н в ней не лежат на одной прямой. Изучение дипольных моментов дигалогенэтиленов свидетельствовало в пользу традиционных формул строения этих молекул [18]. Определение дипольного момента ортодихлорбензола приводит к выводу о том, что бензол — правильный плоский шестиугольник [19]. При этом принимается, что дипольные моменты моно- и дихлорбензолов определяются полностью дипольными моментами связей С—С1. Однако уже это допущение не безупречно, так как в дипольный момент связи С—С1 в монохлорбензоле включается момент противоположной связи С—Н. В настоящее время старое представление о возможности строгой корреляции между дипольными моментами и геометрией молекул подвергается все более серьезному сомнению [20]. [c.179]

    Значительная часть исследований, связанных с теоретической органической химией, посвящена выяснению зависшкости между" химическими свойствами соединений и их электронной структурой. В последние годы большое внимание уделяется квантовохимическим расчетам электронных структур органических соединений [20], что способствует более глубокому пониманию их свойств и, следовательно, более рациональному выбору условий и направлений проведения химических превращений этих продуктов. Кроме того, квантовохимические расчеты позволяют оценить и ряд важных физических свойств молекул, как например, геометрию, дипольные моменты, теплоты образования. [c.29]

    Таким образом, определив при помощи метода МОХ распределение я-электронной плотности и зная геометрию молекулы, можно вычислить дипольный момент, обусловленный распределением я-элек-тронов. Расчеты по методу МОХ дают завышенные значения диполь-ного момента. [c.42]

    Квантово-химические расчеты показали, что образование координационной связи с участием неподеленной электронной пары атома азота аминогруппы является маловероятным. Кроме того, в случаях, когда в молекуле нитрила имеется несолько нтрильных групп (тетра-(Р-цианэтил)этилендиамин, диэтаноламинопропионитрил), наиболее устойчивыми являются комплексы, в которых все нитрильные атомы азота участвуют в координации. Расчеты позволили установить геометрию молекул, вычислить теплоты образования, дипольные моменты, потенциалы ионизации, рассчитать длины и порядки связей, валентные углы. Некоторые результаты расчетов приведены в табл. 1. [c.60]

    Величина поверхностного натяжения является мерой интенсивности молекулярно-силового поля в поверхностном слое. Поскольку поверхностное натяжение является результатом нескомпенсированности меясмолекулярного взаимодействия в разных фазах, оно определяется разностью интеисивности взаимодействия молекул внутри каждой фазы (когезии) и взаимодействия молекул различных фаз (адгезии). Интенсивность молекулярных взаимодействий внутри ф .зы в теории поверхностных явлений обычно обозначают термином полярность . Полярность вещества в очень больш(л1 степени связана с такими ее параметрами, как дипольный момент молекул, диэлектрическая проницаемость, поляризуемость молекул, способность к образованию водородной связи меясду молекулами. Существенную роль играют также плотность (молярный объем) вещества, геометрия строения ьолекул, ориентация молекул в поверхностном слое, определяющая направление силовых полей, возможная взаимная растворимость граничащих фаз, их химическое взаимодействие. [c.189]

    Симметрия. молекулярной орбитали во многом определяется симметрией равновесной конфигурации молекулы. Следовательно, от симметрии молекулы зависят правила отбора в спектрах поглощения и испускаш1я и распределение электронной плотности. Молекулы, обладающие центром симметрии (Д, <Х и др.), — неполярны, например Вер2 и, неполярны также молекулы высокой симметрии, хотя и не имеющие центра, симметрии, как, например, тетраэдрические СН4, СС1(4 и другие (3 ), плоские ВРз, А1Рз и другие (1>з ). Если равновесная конфигурация молекулы известна, то существование или отсутствие дипольного момента может быть точно предсказано на основании соображений симметрии при помощи теории групп. В свою очередь измерение дипольного момента может указать на геометрию равновес- [c.176]

    Возможности диэлкометрических исследований можно показать на примере определения геометрии молекул. Симметричные молекулы имеют дипольный момент, равный О (разд. 4.1.7). В случае СО дипольный момент ц = О, т. е. молекула имеет линейное строение, так как только в этом случае U может быть равен 0. Тот факт, что молекула I4 также не имеет диполя, свидетельствует о ее тетраэдрическом строении, так как только в этом случае взаимно уравновешены четыре момента связи С—С1. [c.169]

    Заменяя АУ - АУ = АУ р - АУ. , получаем для обычных растворителей, что величина АУ - АУ может быть равна от -15 до О смУмоль. Таким образом, возможны системы, в которых клеточный эффект слабо зависит от давления АУ АУ ), и системы, например в бензоле, в которых соотношение kJk[, увеличивается при увеличении давления, т.е. при росте давления реакция радикалов в клетке протекает медленнее, чем снижается их выход из клетки. Из работ Джонаса следует также, что геометрия молекул определяет взаимосвязь поступательных и вращательных перемещений в существенно большей мере, чем дипольный момент. [c.224]

    Как и для большинства др. видов межмол. взаимод. между полярными молекулами, в энергию В. с. главные вклады дают энергия AE электростатич. притяження неде-формиров. фрагментов комплекса и энергия А обм обменного отталкивания, начинающего действовать на близких расстояниях между фрагментами. В стабилизацию комплекса вносят также вклад (сравнительно небольшой) взаимная поляризация молекул (энергия Д ол) дисперсионное взаимодействие (энергия ЛЕд сп)- Энергия ЛЕ на больших расстояниях между фрагментами комплекса равна энергии притяжения их дипольных моментов. На близких расстояниях AE определяется как средняя энергия электронов и ядер одной из молекул, напр. RAH, в электростатич. потенциале другой. Т.к. атом И в RAH заряжен положительно, он наиб, сильно притягивается к тем точкам молекулы BR, в к-рых ее потенциал наиб, отрицателен эти точки обычно находятся в области локализации неподеленной электронной пары атома В. Поэтому молекула BR часто ориентируется по отношению к RAH так, чтобы ось неподеленной пары приблизительно совпадала с направлением связи А—Н. В молекулах с ароматич. циклами, не имеющими гетероатомов с неподеленными электронами, потенциал наиб, отрицателен вблизи я-электрониого облака. что и определяет в осн. геометрию комплекса с такими молекулами. [c.403]

    Метод М. м. позволяет получать информацию для полного описания геометрии разл. конформеров в осн. состоянии и в седловых точках на пов-сти потенц. энергии (ППЭ), а также геом. строения в кристалле. Определяют также теплоты образования, энергии напряжения, энергии отдельных конформеров и высоты барьеров для конформац. превращений, частоты колебаний, распределения электрич. заряда, дипольные моменты, хим. сдвиги в спектрах ЯМР, скорости хнм. р-ций и др. Диапазон применения М.м. велик от простых молекул до полисахаридов и белков. В сочетании с др. методами, в частности газовой электронографией и рентгеновским структурным анализом, надежность и точность определения геом. характеристик повышается. [c.114]

    Спектроскопическое изучение трехатомных молекул столь же важно и столь же интересно, как и анализ электростатических данных, которым мы сейчас и займемся. Как и в случае двухатомных молекул, спектры поглощения и испускания доставляют сведения о межатомных расстояниях и частотах колебаний, тогда как данные о диэлектрических свойствах и рефракции являются источником знания молекулярной поляризуемости и значений дипольных моментов. Так как поляризуемость является мерой деформации электронных орбит, она представляет свойство, общее для всех электронных систем и поэтому для всех типов молекул. Данные для трехатомных молекул включены в табл. 14. Существование постоянного электрического диполя как в случае трехатомных, так и двухатомных молекул обусловлено их асимметрией. Хотя и нет необходимости в привлечении новых принципов, следует отметить важное отличие, состоящее в том, что как поляризуемость, так и постоянный дипольный момент, наблюдаемые для трехатомных молекул, являются сложными величинами. Если геометрия молекулы известна, то обычно оказывается возможным, как показал Дж. Дж. Томсон, разложить вектор общего дипольного момента на составляющие для каждой связп. Однако для определепия удельных поляризуемостей, связанных с различными осями молекулы, требуется постановка специальных опытов. Мы ограничимся здесь рассмотрением вопроса об общей поляризуемости и о постоянном динольном моменте. [c.420]

    Заметное влияние на частоту и интенсивность колебательного спектра поглощения оказывают также симметрия и геометрия молекулы. Напомним, что колебание активно в ИК-области, если оно приводит к изменению дипольного момента, а интенсивность полосы поглощения зависит от изменения дипольного момента, которое падающее излучение видит в процессе колебания. Ясно, что отсутствие характеристического поглощения в определенном месте спектра не должно обязательно указывать на отсутствие данной группы. Хорошим примером является связь С=С. Ее валентное колебание не проявляется в спектрах таких молекул, как Н2С=СН2, С12С=Са2> и транс-изомеров по той [c.157]

    Структурные изменения при кипении или сублимации. Поскольку о структурах жидкостей известно так мало, фактически нам приходится ограничиться сравнением структур в твердом и парообразном состояниях. В доструктурной эре знание структур паров подтверждалось только молекулярной массой и ее изменением в зависимости от температуры и давления. Благодаря электронной дифракции и спектроскопическим исследованиям разного рода теперь стала довольно доступной богатая информация, устанавливающая связь между межатомными расстояниями и валентными углами в молекулах пара. Эта информация ограничивается главным образом сравнительно простыми молекулами не только потому, что невозможно установить большое число параметров, требуемых для того, чтобы определить геометрию более сложной молекулы из ограниченных экспериментальных данных, но также и потому, что геометрия многих молекул становится промежуточной, если молекулы гибки. (К тому же некоторые методы установления молекулярной структуры подчиняются определенным ограничениям например, микроволновые спектры обычно возникают только от молекул с постоянным дипольным моментом.) Информация о молекуляр- [c.38]

    Расчет геометрии изолированной молекулы воды методом молекулярных орбит показывает, что взаимное расположение связывающих и заполненных орбит тоже близко к тетраэдрическому [256, 369, 371]. Помещение зарядов, равных сумме зарядов электронов, находящихся на каждой орбите, в центре тяжести этих орбит привело к появлению точечной молекулы воды, хорошо описывающей геометрию и дипольный момент молекулы и носящей название точечной модели Данкена — Попла [256] (рис. 1). По этой модели угол между орбиталями спаренных электронов равен 120,2°, угол между связывающими орбиталями — 104,5°, а угол между связывающей орбитой и орбитой неподеленной пары электронов — 107,8°. Расстояния от ядра атома кислорода до центров спаренных и связывающих орбиталей и до протонов соответственно равны 0,317 0,583 и 0,963 А. [c.15]

    Сидноны (153) являются бесцветными кристаллическими соединениями, физические свойства которых хорошо изучены. Значения их дипольных моментов согласуются с мезоионной структурой, например для соединения (153 R = Ph, R = H) л, = 6,5Д [2]. Полоса поглощения карбонильной группы в ИК-спектре находится в интервале 1720—1770 см-> [2, 4, 8]. Описаны масс-спектры при этом в незамещенных производных (153 R = И) наблюдается последовательная фрагментация с потерей N0, СО и H N [61]. Определены кристаллические структуры двух сиднонов геометрия этих двух молекул совпадает и согласуется с планарной оксадиазо-лиевой структурой [9, 62]. Рентгеноэлектронные спектры yV-фенил-и yV-метилсиднонов (153 R = Ph или Ме, R = И) указывают на существенные различия в распределении формальных зарядов между двумя атомами азота [9. Интерес к характеру связи в сиднонах (153) привел к появлению большого числа теоретических исследований, которые обсуждены в обзоре [9]. [c.734]

    Вода (оксид врдоррда) — химическое соединение водорода с кислородом (Н —11,11% О — 88,89%). Валентный угол равен 104,5°, и геометрия молекулы Н2О напоминает искаженный тетраэдр, в двух вершинах которого располагаются атомы Н, а две другие заняты орбиталями непо-деленных пар электронов атома кислорода, не участвую1цих в образовании химических связей. Молекула Н О полярна, дипольный момент равен 6,17.10 Кп-м. Плотность Н2О при 20°С 0,988 г/см , диэлектрическая проницаемость при 25°С 78,3 (рис. 3). [c.62]

    Закономерности, наблюдающиеся в рядах 1—5, могут быть сопоставлены также с некоторыми другими характеристиками молекул. Эйринг и др. [754, 1513, 1514] предложили приближенный способ расчета эффективных зарядов атомов в молекулах галогензамещениых предельных углеводородов, исходя из данных о дипольных моментах молекул СНдХ, продольной поляризуемости связей и геометрии молекул КХ. Для хлор-замещенных метана получаются следующие значения эффективных зарядов атомов  [c.296]

    Изменение A .i дипольного момента при электронном возбуждении практически одинаково для всех рассматриваемых кетонов и составляет около 0,5/). Отклонения от этого значения для Vni и XI можно объяснить стерическими препятствиями для VIII (если не обращать внимания на малую точность результатов для этого соединения) и изменением геометрии молекулы XI при электронном возбуждении [c.60]


Смотреть страницы где упоминается термин Дипольный момент геометрия молекулы: [c.596]    [c.166]    [c.104]    [c.79]    [c.310]    [c.147]    [c.442]    [c.259]    [c.170]    [c.204]   
Как квантовая механика объясняет химическую связь (1973) -- [ c.187 , c.191 ]




ПОИСК





Смотрите так же термины и статьи:

Дипольные молекулы

Дипольный момент

Молекула дипольный момент



© 2025 chem21.info Реклама на сайте